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Decision Form Games
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Preliminaries

Definition (of sequential continuity at a point). Let (X, d) and (X ′, d′)
be two metric spaces and let B : X → X ′ be a correspondence of the set X
into the set X ′. The correspondence B is said sequentially continuous at a
point x∗ ∈ X if whenever a sequence x in X d-converges to x∗ (in symbols,
x →d x∗) and whenever a sequence x′ in X ′ d′-converges to a point x′∗ ∈ X ′

(in symbols, x′ →d′ x′∗) and verifies x′n ∈ B(xn), for every natural n, then the
(limit) relation x′∗ ∈ B(x∗) holds true.

Remark. Obviously, a correspondence is sequentially continuous if and
only if it is sequentially continuous at every point of its domain. Moreover, a
correspondence is sequentially continuous if and only if its graph is closed.

0.1 The Banach fixed point theorem

Definition (of orbit). Let X be a non-empty set and let x0 be a point of
X. Let f : X → X be a mapping of X into itself. We call orbit of f
starting from x0 the sequence of iterated images (fn(x0))

∞
n=0, where fn is

defined inductively by the composition fn = f ◦fn−1, if n is a positive integer,
and the power f 0 is the identity idX . If S is a subset of X, we call orbit of
f starting from S the sequence of iterated images (fn(S))∞n=0.

Lemma. Let (X, d) be a metric space, let f : X → X be a Lipschitz
continuous function with a constant L and let B be a bounded subset of the
space. Then, for every non-negative integer n, the following inequality holds

dfn(B) ≤ Ln dB.
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Consequently, if the function f is a contraction, the sequence of diameters
(dfn(B))∞n=0 is vanishing.

Proof. It’s easy to see, by induction, that, for every non-negative integer
n,

dfn(B) ≤ Ln d (B) .

Indeed, let us prove the inequality for n = 1. Let y and y′ lie in f(B), then
there are two points x and x′ in B such that y = f(x) and y′ = f(x′). By
Lipshitz continuity, we have

d(y, y′) = d(f(x), f(x′)) ≤
≤ Ld(x, x′) ≤
≤ L dB.

Since the preceding inequality holds for all y and y′ in f(B), we deduce

d(f(B)) ≤ L d(B),

as we desired. If the result is true for n− 1, we have

d(fn(B)) = d(f(fn−1(B))) ≤
≤ L d(fn−1(B)) ≤
≤ LLn−1 d(B) ≤
≤ Ln d (B) .

If L < 1, from the above inequality, since d(B) < ∞, the result follows imme-
diately. �

Remark (about Cauchy sequences). A sequence x in a metric space
(X, d) is said a Cauchy sequence if, for every positive real r, there exists an
index n0 of the sequence such that, for every couple of integers m, n > n0, is
d(xm, xn) < r. It is clear that, a sequence x is a Cauchy sequence if and only
if, setting Bn = (xi)

∞
i=n for every natural n, the sequence of diameters (dBn)∞n=0

vanishes.

Theorem (Banach-Picard fixed point theorem). Let (X, d) be a
complete metric space and let f : X → X be a contraction with a constant
L ∈ ]0, 1[. Then, the contraction has one and only one fixed point x∗. Precisely,
for every point x0 of the space, the orbit x of f starting from the point x0

converges to x∗ and the fixed point is localized in the closed ball centered at x0

and of radius
d (x1, x0)

1− L
Ln,

3



for each natural n. In other words, the fastness of convergence of the sequence
x towards the fixed point is given by the inequality

d (xn, x
∗) ≤ d (x1, x0)

1− L
Ln,

for every n ∈ N0.

Proof. Let x0 be a point of the space. If the orbit x converges, then
it converges to a fixed point of f , by continuity of f . Let us prove that x
converges. Since the metric space is complete, it’s enough to prove that it
is a Cauchy sequence. Note that, setting Bn = (xi)

∞
i=n, for every natural n,

is Bn = f(Bn−1) , for every positive integer n. So, by the lemma, if B0 is
bounded then the sequence of diameters (dBn)∞n=0 is vanishing, and hence the
sequence x is a Cauchy sequence. To prove that B0 is bounded, we claim that
it is contained in the closed ball Bd(x0, R) centered at x0 and of radius

R :=
d(x0, f(x0))

1− L
.

Indeed, for every positive integer k, the following inequalities hold

d(x0, f
k(x0)) ≤

k∑
i=1

d(f i−1(x0), f
i(x0)) ≤

≤
k∑

i=1

Li−1d(x0, f(x0)) ≤

≤ d(x0, f(x0))
k∑

i=1

Li−1 ≤

≤ d(x0, f(x0))
∞∑
i=1

Li−1 =

=
d(x0, f(x0))

1− L
,

so the claim is proved. Concerning the uniqueness, let x0 and x′0 be two fixed
points of f , the set B := {x0, x

′
0} is bounded, so the sequence of diameters

(dfn(B))∞n=0 vanishes, but fn(B) = B, for every natural number n, so the
diameter of B must be 0, i.e., x0 = x′0. �

The Banach fixed point theorem can be generalized as follows.

Theorem. Let (X, d) be a complete metric space and let f : X → X be
a mapping. Assume there exists a non-empty subset S of the space such that

4



the orbit of f starting from it has the corresponding sequence of diameters
vanishing; assume, moreover, that there is a point x0 of the space such that
the corresponding orbit of f starting from it is eventually in S. Then, the
mapping f has at least one fixed point.
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Chapter 1

Decision-form Games

1.1 Strategy spaces and strategy base of game

The context. We deal with two-player games. We shall consider two non-
void sets E and F , viewed as the respective sets of strategies at disposal of
two players. The aim is to form ordered pairs of strategies (x, y) ∈ E × F ,
called strategy profiles or bistrategies, via the (individual or collective) selection
of their components x and y, done by the two players in the sets E and F ,
respectively, in order that the strategy x of the first player is a good reaction
to the strategic behavior y of the second player and vice versa.

Let us formalize our starting point.

Definition (strategy base and bistrategy space). Let (E, F ) be a
pair of non-empty sets, we call it strategy base of a two-player game.
The first set E is said the first player’s strategy set; the second set F
is said the second player’s strategy set. Any element x of E is said a
first player’s strategy and any element y in F is said a second player’s
strategy. Every pair of strategies (x, y) ∈ E×F is said a bistrategy of the
strategy base (E, F ) and the cartesian product E×F is said the bistrategy
space of the base (E, F ).
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Interpretation and terminology. We call the two players of a game
Emil and Frances: Emil, simply, stands for “first player”; Frances stands for
“second player”. Emil’s aim is to choose a strategy x in the set E , Frances’
aim is to choose a strategy y in F , in order to form a bistrategy (x, y) such
that the strategy x is an Emil’s good response to the Frances’ strategy y and
vice versa.

We can make a first distinction between bases of game.

Definition (finite and infinite bases). A strategy base is said finite if
it has finitely many bistrategies, infinite on the contrary.

Example (of infinite strategy bases). Two producers offer the identical
good on a same market. They can interact a la Cournot or a la Bertrand. In
the first case they choose the quantities to produce; in the second one, they
choose the unitary prices of the good. The strategy spaces E and F of the
two players coincide with the interval [0, +∞[, or they are infinite subsets of
this semi-line. In both cases, the strategy base is the pair of strategy spaces
(E, F ), and it is infinite.

1.2 Decision rules

A standard way for Emil and Frances to choose their reactions to the strategies
of the other player is the adoption of decision rules. Let us formalize this basic
concept (see also [2] and [3]).

Definition (decision rule). Let (E, F ) be a strategy base of a two-player
game. An Emil’s decision rule on the base (E, F ) is a correspondence
from F to E, say e : F → E. Symmetrically, a Frances’ decision rule on
the base (E, F ) is a correspondence from E to F , say f : E → F .

1.3 Decision-form games

Let us formalize the basic concept of our discourse.

7



Definition (decision-form game). Let (E, F ) be a strategy base of a
two-player game. A two-player decision-form game on the base (E, F )
is a pair (e, f) of decision rules of the players Emil and Frances, respectively,
on the strategy base (E, F ).

Example (of a game). Let E = [−1, 2] and F = [−1, 1] be the strategy
sets of two players. The multifunctions e : F → E and f : E → F , defined by

e(y) =


−1 if y < 0
E if y = 0
2 if y > 0

, f(x) =


−1 if x < 1
F if x = 1
1 if x > 1

,

for every strategy x in E and y in F , are decision rules, of Emil and Frances
respectively, on the base (E, F ). The pair (e, f) is a two-player decision-form
game on the base (E, F ).

Definition (finite and infinite games). A game is said finite if it has
a finite number of bistrategies, infinite on the contrary.

Definition (symmetric games). A decision-form game is said sym-
metric if the decision rules of the two players coincide (consequently, the two
players have the same strategy space).

Definition (of univocal game). A decision-form game is said, with
abuse of language, univocal if its decision rules are everywhere defined and
univocal, that is if its decision rules are functions.

1.4 Possible reactions

Definition (of possible reaction and of capability of reaction). Let
(e, f) be a decision-form game. Let y be a Frances’ strategy, the elements of the
image of y by the correspondence e (that is, the elements of the set e(y)), i.e.,
the direct corresponding strategies of y by the rule e, are called Emil’s possi-
ble responses, or Emil’s possible reactions, to the Frances’ strategy
y. Analogously, let x be an Emil’s strategy, the elements of the image of x
by the decision rule f (that is, the elements of the set f(x)), i.e. the direct
corresponding strategies of x by the rule f , are said Frances’ possible re-
sponses, or Frances’ possible reactions, to the Emil’s strategy x. The
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set of Emil’s possible reactions (responses) to the Frances’ strategy y is said
the Emil’s reaction set to the Frances’ strategy y. Finally, we say that
Emil can react to the Frances’ strategy y if the corresponding reaction
set e(y) is non-void.

Interpretation. In the conditions of the above definition, the decision
rule e associates, with each strategy y ∈ F (of Frances), all those strategies x
of E among which Emil can choose his response, when Frances is playing y.
Analogously, the decision rule f associates, with every strategy x ∈ E, played
by Emil, all those strategies y in F among which Frances can choose her own
response, to react to the Emil’s action x.

Example (of reaction). Let e : F → E and f : E → F be two decision
rules, with strategy spaces E = [−1, 2] and F = [−1, 1], defined by

e(y) =


−1 if y < 0
E if y = 0
2 if y > 0

, f(x) =


−1 if x < 1
F if x = 1
1 if x > 1

,

for every x in E and y in F . The only possible Emil’s response, to a Frances’
strategy y < 0 is the strategy −1. Emil can choose an arbitrary strategy in
E, if Frances plays 0; Emil has only the reaction strategy 2, if Frances plays
a strategy y > 0. The only possible Frances’ response to an Emil’s strategy
x < 1 is the strategy −1; Frances can choose an arbitrary strategy in F if Emil
plays 1; Frances has only the reaction strategy 1 if Emil uses a strategy x > 1.

Definition (of equilibrium). We call equilibrium of a decision form
game (e, f) each bistrategy (x, y) of the game such that the strategy x is a
possible reaction to the strategy y, with respect to the decision rule e, and y is
a possible reaction to x, with respect to f . In other terms, an equilibrium of
(e, f) is any bistrategy of the game belonging to the intersection of the graph
of f with the inverse (symmetric) graph of e.

1.5 Some classic examples

In this section we present some elementary finite games. These games are the
decision-form version of some classic example of normal-form game theory.
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Example (Matching pennies). To win a prize, two players 1 and 2 must
write a number, chosen among −1 and 1, hiding the choice to the other player.
After this, the choices are revealed simultaneously. If the numbers coincide,
player 1 wins, if they are different player 2 wins. The preceding scenario can
be formalized as a decision-form game G = (e1, e2), with both strategy spaces
coincident with the finite set E = {−1, 1} and decision rules e1, e2 : E → E,
defined by e1(s) = s and e2(s) = −s, for every strategy s in E. It is a univocal
non-symmetric game.

Example (Coordination game). To win a prize, two partners of a pair
(1, 2) must write a number, chosen among −1 and 1, hiding the choice to
the other partner. After this, the choices are revealed simultaneously. If the
numbers coincide, the pair wins, if they are different, the pair loses. The
preceding scenario can be formalized by a decision-form game G = (e1, e2),
with strategy spaces coincident with the set E = {−1, 1} and decision rules
e1, e2 : E → E, defined by e1(s) = s and e2(s) = s, for every strategy s in E.
It is a univocal and symmetric game.

An opposite version of the above game is the following one.

Example (Discoordination game). To win a prize, two partners of a
pair (1, 2) must write a number, chosen among −1 and 1, hiding the choice
to the other partner. After this, the choices are revealed simultaneously. If
the numbers coincide, the pair loses, if they are different, the pair wins. The
preceding scenario can be formalized as a decision-form game G = (e1, e2),
with strategy spaces coincident with the set E = {−1, 1} and decision rules
e1, e2 : E → E, defined by e1(s) = −s and e2(s) = −s, for every strategy s in
E. It is a univocal and symmetric game.

1.6 Disarming strategies

Our definition of game does not exclude the existence of Emil’s strategies x
such that the Frances’ reaction set to x, that is the image f(x), is empty. In
other words, it may happen that Frances could not be able to react to a certain
Emil’s strategy x, as she does not consider any own strategy appropriate to
face up to the Emil’s action x. It makes harder and harder the comprehension
of what we can define as a solvable game or the solution of a game. This
consideration prompts us to give the following definition.
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Definition (of a disarming strategy). Let (e, f) be a game. The Emil’s
strategies x to which Frances cannot react, i.e. such that the image f(x)
is empty, are called Emil’s disarming strategies (for Frances). The
Frances’ strategies y to which Emil cannot react, namely such that the reaction
set e(y) is empty, are called Frances’ disarming strategies (for Emil).

Example (of disarming strategies). Let E = [−1, 2] and F = [−1, 1]
be two strategy spaces and let e : F → E and f : E → F be two decision rules
defined by

e(y) =


{−1} if y < 0

E if y = 0
∅ if y > 0

, f(x) =


{−1} if x < 1

∅ if x = 1
{1} if x > 1

,

for every x in E and y in F . Emil has no reaction strategies if Frances chooses
a strategy y > 0: then, any positive Frances’ strategy is disarming for Emil.
Instead, Frances has no reaction strategy if Emil plays 1: the Emil’s strategy
1 is disarming for Frances.

Remark. For the previous example, consider the graphs of the two corre-
spondences e and f in the cartesian products F ×E and E × F , respectively,
and the graph of the reciprocal correspondence of e and that of the corre-
spondence f in the same space E × F . It is easily seen (geometrically and
algebraically) that the intersection of the graph of the reciprocal of e with the
graph of f contains just the point (−1, 1).

Remark (about the domain of a decision rule). From previous def-
initions we can gather that the set of Emil’s strategies to which Frances can
oppose a reaction is the domain of the correspondence f , domf . Similarly, the
set of Frances’ strategies to which Emil can oppose a reaction is the domain of
the correspondence e, dome. Consequently, the set of Emil’s disarming strate-
gies is the complement of domf with respect to E and the set of Frances’
disarming strategies is the complement of dome with respect to F .

A game with decision rules everywhere defined is said a game without dis-
arming strategies.

The instance that a decision rule is univocal at any point can be interpreted
in the context of game theory, as in the following definition.

Definition (obliged strategies). Let (e, f) be a decision-form game. If,
with respect to the decision rule f , there is only one Frances’ reaction y to a
certain Emil’s strategy x, that is if f(x) is the singleton {y}, such strategy y
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is called Frances’s obliged strategy by the Emil’s strategy x. Analogous
definition can be given for Emil’s strategies.

1.7 Subgames

We now introduce another fundamental notion, that of subgame.

Definition (of subgame). Let G = (e, f) be a decision-form game with
strategy base (E, F ) and let (E ′, F ′) be a subbase of (E, F ), namely a pair
of subsets of E and F , respectively. We call subgame of G with strategy
base (E ′, F ′) the pair (e′, f ′) of the restrictions of the decision rules e and
f to the pairs of sets (F ′, E ′) and (E ′, F ′), respectively. It is important to
remember that e′ is the correspondence from F ′ to E ′ which associates with
every strategy y′ in F ′ the part e(y′) ∩ E ′. In other words, it sends every
strategy y′ of F ′ into the corresponding Emil’s reaction strategies to y′ which
belong to E ′. We also call the subgame (e′, f ′) the restriction of the game
G to the strategy pair (E ′, F ′).

Example (of subgame). Let (R, R) be the strategy base of the game
G = (e, f), defined by e(y) = y2 and f(x) = x2, for every couple of real
numbers x and y. The subgame G′ = (e′, f ′), with base ([−2, 2] , [0, 1]) is
defined by

e(y) = y2, f(x) =

{
x2 if x ∈ [−1, 1]
∅ if x /∈ [−1, 1]

,

for each x in [−2, 2] and y in [0, 1]. Even though in the game G there were
no disarming strategies, its restriction to the subbase ([−2, 2] , [0, 1]) detects
disarming strategies.

1.8 Rules induced by utility functions

In this section we introduce a standard method to define a decision rule when
a player has a preference (preorder) on the bistrategy space induced by an
utility function.
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Definition (decision rule induced by a utility function). Let (u1,≥)
be an Emil’s utility function on the bistrategy space E × F , that is a function
u1 : E × F → R endowed with the usual upper order of the real line. We
call Emil’s best reply decision rule induced by the utility function
(u1,≥), the rule B1 : F → E defined by

B1(y) = maxu1(.,y)(E),

for every Frances’ strategy y. In other words, Emil’s reaction set to a Frances’
strategy y ∈ F , with respect to the rule B1, is the set of every Emil’s strategy
maximizing the section u1(., y). Symmetrically, let (u2,≥) be a Frances’ utility
function on the bistrategy space E ×F , that is a real function u2 defined upon
the bistrategy space E × F together with the canonical upper order of the real
line. We call Frances’ best reply decision rule induced by the utility
function (u2,≥), the rule B2 : E → F defined by

B2(x) = maxu2(x,.)(F ),

for each Emil’s strategy x. In other words, Frances’ reaction set to the Emil’s
strategy x ∈ E, with respect to the rule B2, is the set of every Frances’ strategy
maximizing the section u2(x, .).

Memento. We write maxu1(.,y)(E) to denote the set of maxima of the
preordered space (E,≤u1(.,y)), where by ≤u1(.,y) we denote the preorder induced
by the section u1(., y) on the set E. Such set of maxima is the set of maximum
points (on E) of the function u1(., y), it is also denoted by argmaxE u1(., y).
There are symmetric notations for Frances.

Example (of induced rule). Let E = [−1, 2] and F = [−1, 1] be two
strategy spaces and let f : E → F be the decision rule defined by

f(x) =


−1 if x < 0
F if x = 0
1 if x > 0

,

for every Emil’s strategy x in E. The rule f is induced by the utility function
u2 : E×F → R defined by u2(x, y) = xy, for each bistrategy (x, y) of the game.
Indeed, fix an Emil’s strategy x, the section of partial derivative ∂2u2(x, .)
coincide with the derivative u2(x, .)′, therefore the function u2(x, .) is strictly
increasing if x > 0, strictly decreasing if x < 0 and constant if x = 0, in
particular:

1) if x < 0, the only Frances’ strategy maximizing the function u2(x, .) ,
on the compact interval [−1, 1], is the strategy −1;
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2) if x > 0, the only Frances’ strategy maximizing the function u2(x, .), on
the interval [−1, 1], is the strategy 1;

3) if x = 0, each Frances’ strategy maximizes the function u2(x, .), on the
interval [−1, 1], (since the value of the section f2(0, .) is zero in the whole
domain).

Remark (about the never-best reply strategies). In the conditions
of the above definition, an Emil’s strategy x is called never-best reply strategy
with respect to the utility function u1 if and only if there is no y ∈ F such that
x ∈ B1(y). Moreover, a strategy x in E is said non-reactive with respect to an
Emil’s decision rule e if there is no y in F such that x lies in e(y). The u1

-never-best reply strategies are, so, the non-reactive strategies with respect to
the decision rule B1.

1.9 Rules induced by preorders

In this section we point out a generalization of the standard method to define
decision rules of the previous section.

Note that, if ≥1 is an Emil’s preference on the bistrategy space E×F and if
y is a Frances’ strategy, the preorder ≥1 induces, through y, a section preorder
≥y

1 on E, that defined by

x0 ≥y
1 x iff (x0, y) ≥1 (x, y),

for each pair (x0, x) of Emil’s strategies.

Definition (decision rule induced by a preorder on the bistrategy
space). Let ≥1 be an Emil’s preference on the bistrategy space E × F . We
call Emil’s best reply decision rule induced by the preorder ≥1, the
correspondence B1 : F → E defined by

B1(y) = max≥y
1
(E),

for each Frances’ strategy y. In other words, the Emil’s reaction set to the
Frances’ strategy y ∈ F is the set of all those Emil’s strategies maximizing the
section preorder ≥y

1. Similarly, let ≥2 be a Frances’ (utility) preorder on the

14



bistrategy space E×F . We call Frances’ best reply decision rule induced
by the utility preorder ≥2, the correspondence B2 : E → F defined by

B2(x) = max≥x
2
(F ),

for each Emil’s strategy x. In other words, the Frances’ reaction set to the
Emil’s strategy x ∈ E is the set of all those Frances’ strategies maximizing the
section preorder ≥x

2.

Memento. We denote by max≥y
1
(E) the set of maxima in the preordered

space (E,≥y
1). Such set of maxima is as well the set of maximum points of the

preorder ≥y
1 and it may also be denoted by argmaxE ≥y

1. There are similar
notations for Frances.

1.10 Cournot decision game

We apply the above standard method to build up standard decision rules for
the case of an economic duopoly.

The context. Let us suppose Emil and Frances produce the same good
and sell it on the same market.

Productive strategies and prices. Let x, y ∈ R≥ be the amounts re-
spectively produced by the players. The strategy sets are, a priori, upper
unbounded. We assume that the price function, i.e. the inverse demand func-
tion p : R2

≥ → R, is an affine function of the total production (aggregate
supply) x + y. Specifically, let us assume p(x, y) = α− β(x + y), for each pro-
ductive bistrategy (x, y), with α ≥ 0 (price at aggregate supply 0) and β > 0
(marginal price with respect to the production x + y).

Cost functions. Assume the cost functions C1 and C2 of both producers
are affine functions of the production, namely, C1(x) = γx + δ and C2(y) =
γy + δ, with γ > 0 (marginal cost) and δ ≥ 0 (fixed cost).

Net cost functions. Emil’s net cost, corresponding to a bistrategy (x, y),
is the cost C1(x) minus the revenue p(x, y)x, that is

f1(x, y) = γx + δ − p(x, y)x = βx (x + y − u) + δ,
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and, symmetrically, Frances’ one is

f2(x, y) = γy + δ − p(x, y)y = βy (x + y − u) + δ,

where we put u = (α − γ)/β. The quantity u is called characteristic pro-
duction or critic production of the considered duopoly.

Reduction of the strategy spaces. To stand a chance of obtaining a
non-negative gain the two producers must exclude the strategies strictly greater
than u. Indeed, if x > u, then the value x + y − u is positive, even more it is
strictly greater than y, and thus the net cost f1(x, y) is positive. Analogously,
one can proceed for Frances. The previous condition conducts to a reduction
of the individual strategic possibilities: from the unbounded space [0, +∞[ to
the compact space [0, u].

Cournot decision rules. Suppose that Frances produces y units of the
good. An Emil’s best reply to y is to produce x units to minimize his net cost
function

f1(·, y) : x 7→ x(x + y − u),

on the compact interval [0, u]. There exists a quantity x with minimum net
cost, thanks to Weierstrass theorem, and it is unique, namely

x = (1/2)(u− y).

Indeed, the derivative f1(·, y)′(x) is negative for x < x and positive for x > x.
The Emil’s best reply decision rule is

B1 : [0, u] → [0, u] : y 7→ (1/2)(u− y).

Note that this rule sends Frances’ strategy space onto the part [0, u/2] of the
Emil’s strategy space. Analogously, Frances’ best reply decision rule is

B2 : [0, u] → [0, u] : x 7→ (1/2) (u− x) .

We call the two rules B1 and B2 Cournot decision rules, and the decision form
game (B1, B2) Cournot decision form game with bistrategy space [0, u]2.
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1.11 A first price auction

In this section we study a first price auction as a decision-form game.

The context. Two players 1 and 2 take part to an auction to obtain an
item in return for a payment.

Rules of the game. The auction has the following rules:
a) each player i makes a public evaluation vi of the item;
b) if the two evaluations are equal and if no one of the two participants

changes his own evaluation (or withdraws), the item will be drawed lots and
the winner will pay an amount equal to his evaluation ;

c) if the evaluations are different, the two players will make simultaneously
an offer for the item;

d) the bid bi of the player i cannot exceed the evaluation vi;
e) the item is assigned to the player that offers the greatest bid, or, in case

of two same offers, to the player with the biggest evaluation;
f) the winner i∗ pays his own bid bi∗ and receives the item.

Our aim is to describe the previous situation as a decision-form game, in
case the auction actually takes place, that is when an evaluation is strictly
greater than the other one.

Let us suppose that the first player evaluated the item more than the second
one. The strategy spaces E and F of the two players are the spaces of the
possible offers of the same players. The utility of the player i is zero, if he does
not win; it is vi − bi, if he carries off the item paying bi.

Strategy spaces and utility functions. Emil’s and Frances’ strategy spaces
are the compact intervals [0, v1] and [0, v2], respectively. The utility functions
of the two players are defined by

u1(x, y) =

{
v1 − x if x ≥ y

0 if x < y
, u2(x, y) =

{
v2 − y if x < y

0 if x ≥ y
.

Decision rules. The best reply rules induced by the two utility functions
are defined, respectively, by B1(y) = y, for each y in [0, v2] and

B2(x) =

{
∅ if x < v2

F if x ≥ v2
,
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for each x in E. As a matter of fact, if Emil offers a price x strictly smaller
than v2, Frances could carry off the prize, but she should maximize her own
utility function on F , fixed the choice x of Emil, that is she has to maximize
the section u2(x, .), which, when the Frances’ offer is strictly greater than x
(those that would assure her the item) is defined by

u2(x, .)(y) = v2 − y,

for every y ∈ ]x, v2]. Unfortunately, the supremum of u2(x, .) is the difference
x− y, and such utility value is a shadow maximum (!), it is unreachable on F :
therefore Frances has no best reply to the Emil’s offer x. If, instead, x ≥ v2 ,
the section u2(x, .) is constantly null, hence it assumes its maximum 0 on the
whole F .

Best reply graphs. Emil’s (inverse) best reply graph is the compact seg-
ment with end points (0, 0) and (v2, v2). Frances’ best reply graph is the
compact interval [v2, v1]× F .

Equilibrium. The two graphs intersect in the point (v2, v2) alone. An
equilibrium solution, therefore, is that Emil awards the item and pays Frances’
evaluation.

1.12 ε-best reply induced by a utility function

In this section we shall give a generalization of the concept of best reply.

Definition (ε-best reply induced by a utility function). Let (u1,≥)
be an Emil’s utility function on the bistrategy space E × F , that is a function
u1 : E × F → R endowed with the usual upper order of the real line. For each
positive real ε, we call Emil’s ε-best reply decision rule induced by the
utility function (u1,≥), the rule εB1 : F → E defined by

εB1(y) = {x ∈ E : u1(x, y) ≥ supEu1(., y)− ε} ,

for every Frances’ strategy y. In other words, Emil’s reaction set to a Frances’
strategy y ∈ F , with respect to the rule εB1, is the set of every Emil’s strat-
egy whose utility distance from the shadow utility supEu1(., y) is less than ε.
Symmetrically, we can do for Frances.
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Remark. The ε-best reply reaction set εBi(s) is always non-void by defi-
nition of supremum. Moreover, it contains the best reply Bi(s).

Example. In the case of the above auction, we have

εB2(x) =

{
]x, x + ε] ∩ F if x < v2

F if x ≥ v2
,

for each x in E, and hence Emil has no longer disarming strategies. Note,
however, that, also in this case, there is only one equilibrium.

1.13 Example of different equilibria in a game

Scope of the section. In this section we associate with a normal-form game
some decision-form games different from the canonical one (the pair of the
best-reply rules). Each decision-form game which we shall consider represents
a pair of player behavioural ways. In particular we introduce two types of
behaviour: the devote behaviour and that offensive behaviour.

Let us introduce the devote behaviour.

Definition (devote responce). We say that an Emil’s action x is a
devote response to the Frances’ strategy y, in the game G, if x mini-
mizes the Frances’ partial loss function f2(., y). We define Emil’s devotion
decision rule L1 : F → E by L1(y) = minf2(.,y) E, for each y in F . In
other terms, for any y, the responce-set L1(y) is the set of all Emil’s strategies
minimizing the partial loss function f2(., y). Analogously, we can define the
Frances’ reaction-set L2(x), for every Emil’s action x.We call the equilibria of
the game (L1, L2) devote equilibria of the loss game G.

Interpretation. The decision-form game (L1, L2) represents the interac-
tion of the two players when they are devoted each other.

Example (of devote behaviours). We consider the two-player normal-
form loss-game G = (f,≤) with strategy sets E = F = [0, 1] and biloss
(disutility) function defined by

f(x, y) = (−4xy, x + y),
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for every bistrategy (x, y) of the square [0, 1]2.
Devotion correspondences. We have ∂2f1(x, y) = −4x, then there are two

cases for the sign of the derivative: x = 0 and x > 0. If x = 0 then the
partial loss function f1(x, .) is constant and then all Frances’ strategies are
devote to Emil’s strategy 0. If x > 0 then the partial loss function f1(x, .) is
strictly decreasing, and then the minimum value is reached with the strategy
1. Concluding, the devotion Frances’ correspondence is defined by

L2 (x) =

{
F if x = 0
1 if x > 0

.

Concerning Emil’s devotion, we have ∂1f2(x, y) = 1, so the partial function
f2(., y) is strictly increasing, for every y ∈ F , and then it assumes its minimum
at 0. Concluding the Emil’s devotion correspondence is defined by L1(y) = 0,
for every y in the Frances’ strategy space.

Devotion equilibria. The set of all the devotion equilibria is the segment
[02, e2], where 02 is the origin of the plane and e2 is the second canonical vector
of the plane: it is an infinite set.

About the devotion equilibria. The devotion equilibria are non-cooperatively
reachable, playing Emil the reaching-strategy x = 0.

Remark. Concerning the efficiency, the devotion equilibrium e2 is
“strongly inefficient”, since it lies upon the Pareto maximal boundary, on the
contrary, the devotion equilibrium 02 is efficient, since it belongs to the Pareto
minimal boundary, the remaining devotion equilibria are inefficient (this can
be viewed with the complete study of the biloss-space).

We can made a confrontation of the devotion equilibria of the game con-
sidered in the example with the Nash equilibria.

Example (of properly non-cooperative behaviors). Best reply cor-
respondences. We have ∂1f1(x, y) = −4y, so there are two cases. First case.
If y = 0, the section f1(., y) is constant and then B1(0) = E. Second case.
If y > 0 then ∂1f1(x, y) < 0, the section f1(., y) is strictly decreasing and the
minimum point of the section is 1, thus B1(y) = 1, for every y > 0. Resuming,
the Emil’s best-reply correspondence is defined by

B1(y) =

{
E if y = 0
1 if y > 0

.

Concerning the Frances’ best reply, we have ∂2f2(x, y) = 1, hence the section
f2(x, .) is strictly increasing and the best reply is defined by B2 (x) = 0, for
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every x ∈ E. Existence of Nash equilibria. Kakutany’s fixed point theorem
assures the existence of at least a Nash equilibrium, Brouwer’s fixed point
theorem does not. Nash equilibria. The intersection of the graph of B2 with
the reciprocal graph of B1 is

gr (B2) ∩ gr
(
B−

1

)
= [A, B] ,

so there are infinitely many Nash equilibria. All these equilibria are equiva-
lent for Emil (Emil loss function is constantly equal zero on [A, B]) but not
for Frances, so they are not equivalent. About Nash equilibria. The Nash
equilibrium zone is reachable, playing Frances the reaching-strategy yN = 0.
The Nash equilibrium A is minimal, and it’s the unique minimal equilibrium
(good equilibrium), on the contrary, the Nash equilibrium B maximal (very
bad equilibrium) the other ones are neither minimal nor maximal. The Nash
equilibrium A is also a devotion equilibrium. By the way, we can ask if there
are dominant strategies. Frances has one (and only one) dominant strategy:
yD = 0. Emil has one (and only one) dominant strategy: xD = 1. Dominant
equilibria. The Nash equilibrium B is a dominant Nash equilibrium.

Let us introduce the offensive behaviour.

Definition (offensive responce). We say that an Emil’s action x is an
offensive response to the Frances’ strategy y, in the loss game G with
biloss function f , if x maximizes the Frances’ partial loss function f2(., y). We
define Emil’s offensive decision rule O1 : F → E by O1(y) = maxf2(.,y) E,
for each y in F . In other terms, for any y, the responce-set O1(y) is the set of
all Emil’s strategies maximizing the partial loss function f2(., y). Analogously,
we can define the Frances’ reaction-set O2(x), for every Emil’s action x.We
call the equilibria of the game (O1, O2) offensive equilibria of the loss
game G.

Interpretation. The decision-form game (O1, O2) represents the interac-
tion of the two players when they are offensive each other.

Example(offensive correspondences and equilibria). We refer to the
above example. We already saw that the players’s (worst) offensive correspon-
dences are defined by O1(y) = 1, for every strategy y ∈ F , and

O2 (x) =

{
F if x = 0
0 if x > 0

,

respectively. The intersection of the graph of O2 with the reciprocal graph of
O1 is the unique offensive equilibrium B. About the offensive equilibrium. The
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unique offensive equilibrium is reachable non-cooperatively with the strategies
xO = 1 and yO = 1, respectively. It is strongly-inefficient, since it lies on
the Pareto maximal boundary. Confrontation of the equilibria. The unique
Nash equilibrium that is a devotion equilibrium too is A. The unique Nash
equilibrium that is an offensive equilibrium too is B. Dominant offensive
strategies. Emil has the unique dominant offensive strategy 1. Frances has the
unique dominant offensive strategy 0. About the noncooperative solution. The
set of all Nash equilibria [A, B] is controlled by Frances by the strategy 0. The
equilibrium A is a focal point in the sense of Myerson: it is unique.
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Chapter 2

Non-Reactivity

2.1 Introduction

The concept of solution by iterated elimination of non-reactive strategies, for
two-player decision-form games was conceived by one of the authors and pre-
sented in [4], there (in [4]) two-player decision-form games were introduced. In
this paper decision rules are used in the sense introduced by J. P. Aubin in [2]
and [3], and they represent the action-rationality, the behavioural way itself, of
each player in front of the competitive situation represented by the game. For
different concepts of rationalizable solution, for instance solutions obtained by
elimination of dominated strategies, the reader can see in [17], [18] and [15].

2.2 Preliminaries, notation and terminology

The context. We deal with two-player games. We shall consider two non-
void sets E and F , viewed as the respective sets of strategies at disposal of
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two players. The aim is to form ordered pairs of strategies (x, y) ∈ E × F ,
called strategy profiles or bistrategies, via the (individual or collective) selection
of their components x and y, done by the two players in the sets E and F ,
respectively, in order that the strategy x of the first player is a good reaction
to the strategic behavior y of the second player and vice versa.

Let us formalize our starting point.

Definition (strategy base and bistrategy space). Let (E, F ) be a
pair of non-empty sets, we call it strategy base of a two-player game.
The first set E is said the first player’s strategy set; the second set F
is said the second player’s strategy set. Any element x of E is said a
first player’s strategy and any element y in F is said a second player’s
strategy. Every pair of strategies (x, y) ∈ E×F is said a bistrategy of the
strategy base (E, F ) and the cartesian product E×F is said the bistrategy
space of the base (E, F ).

Interpretation and terminology. We call the two players of a game
Emil and Frances: Emil, simply, stands for “first player”; Frances stands for
“second player”. Emil’s aim is to choose a strategy x in the set E , Frances’
aim is to choose a strategy y in F , in order to form a bistrategy (x, y) such
that the strategy x is an Emil’s good response to the Frances’ strategy y and
vice versa.

Definition (decision rule). Let (E, F ) be a strategy base of a two-player
game. An Emil’s decision rule on the base (E, F ) is a correspondence
from F to E, say e : F → E. Symmetrically, a Frances’ decision rule on
the base (E, F ) is a correspondence from E to F , say f : E → F .

Let us formalize the basic concept of our discourse.

Definition (decision-form game). Let (E, F ) be a strategy base of a
two-player game. A two-player decision-form game on the base (E, F )
is a pair (e, f) of decision rules of the players Emil and Frances, respectively,
on the strategy base (E, F ).

Definition (of possible reaction and of capability of reaction). Let
(e, f) be a decision-form game. Let y be a Frances’ strategy, the elements of the
image of y by the correspondence e (that is, the elements of the set e(y)), i.e.,
the direct corresponding strategies of y by the rule e, are called Emil’s possi-
ble responses, or Emil’s possible reactions, to the Frances’ strategy
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y. Analogously, let x be an Emil’s strategy, the elements of the image of x
by the decision rule f (that is, the elements of the set f(x)), i.e. the direct
corresponding strategies of x by the rule f , are said Frances’ possible re-
sponses, or Frances’ possible reactions, to the Emil’s strategy x. The
set of Emil’s possible reactions (responses) to the Frances’ strategy y is said
the Emil’s reaction set to the Frances’ strategy y. Finally, we say that
Emil can react to the Frances’ strategy y if the corresponding reaction
set e(y) is non-void.

Definition (of a disarming strategy). Let (e, f) be a game. The Emil’s
strategies x to which Frances cannot react, i.e. such that the image f(x)
is empty, are called Emil’s disarming strategies (for Frances). The
Frances’ strategies y to which Emil cannot react, namely such that the reaction
set e(y) is empty, are called Frances’ disarming strategies (for Emil).

We now introduce another fundamental notion, that of subgame.

Definition (of subgame). Let G = (e, f) be a decision-form game with
strategy base (E, F ) and let (E ′, F ′) be a subbase of (E, F ), namely a pair
of subsets of E and F , respectively. We call subgame of G with strategy
base (E ′, F ′) the pair (e′, f ′) of the restrictions of the decision rules e and
f to the pairs of sets (F ′, E ′) and (E ′, F ′), respectively. It is important to
remember that e′ is the correspondence from F ′ to E ′ which associates with
every strategy y′ in F ′ the part e(y′) ∩ E ′. In other words, it sends every
strategy y′ of F ′ into the corresponding Emil’s reaction strategies to y′ which
belong to E ′. We also call the subgame (e′, f ′) the restriction of the game
G to the strategy pair (E ′, F ′).

2.3 Reactive strategies

In a decision-form game, if a certain player’s strategy s does not react to any
strategy of the other one, this strategy s can’t be a reasonable action of the first
player. For this reason, we are motivated to formalize, in the below definition,
the concept of non-reactive strategy.

Definition (of a reactive strategy). Let (e, f) be a two-player decision-
form game. Let y0 be a Frances’ strategy, we call it reactive (with respect
to the decision rule f) if it is a possible reaction to some Emil’s strategy.
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In other words, a Frances’ strategy y0 is called reactive (with respect to f),
if it belongs to the set f(x), for some Emil’s strategy x. A Frances’ strategy
is called non-reactive if it is not reactive. Analogously, let x0 be an Emil’s
strategy, we call it reactive (with respect to the decision rule e) if it
is a possible reaction to some Frances’ strategy. In other words, an Emil’s
strategy x0 is called reactive (with respect to e), if it belongs to the set e(y),
for some Frances’ strategy y. An Emil’s strategy is called non-reactive if it
is not reactive.

Remark (on the sets of reactive strategies). Emil’s and Frances’
sets of respective reactive strategies are the two unions ∪e :=

⋃
y∈F e(y) and

∪f :=
⋃

x∈E f (x), i.e., the images of the correspondences e and f , respectively.
Note that, for example, with the correspondence e : F → E it is, in a standard
way, associated with the mapping Me : F → P(E) , sending any Frances’
strategy y into the reaction set e(y). The mapping Me is, therefore, a family
of subsets of E indexed by the set F . Analogously, for the correspondence f ,
we can consider the family Mf = (f(x))x∈E. So, the above two unions are the
unions of the families Me and Mf , respectively.

Example (of reactive and non-reactive strategies). Let (e, f) be a
two-player decision-form game, let E = [−1, 2] and F = [−1, 1] be the strategy
sets of the players and let the decision rules e : F → E and f : E → F be
defined by

e(y) =


{−1} if y < 0

E if y = 0
∅ if y > 0

, f(x) =


{−1} if x < 1

∅ if x = 1
{1} if x > 1

,

for each bistrategy (x, y) of the game. All of Emil’s strategies are reactive,
since ∪e = E. Otherwise, only the Frances’ strategies −1 and 1 are reactive,
since ∪f = {−1, 1}.

2.4 Reduced games by elimination of non-

reactive strategies

Definition (of a reduced game by elimination of non reactive strate-
gies). A game (e, f) is called reduced by elimination of non-reactive
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strategies if the images of the decision rules e and f are the strategy sets E
and F , respectively. In other words, the game is reduced if the decision rules
of the two players are onto.

Example (of a non reduced game). Let (e, f) be a decision-form game,
let E = [−1, 2] and F = [−1, 1] be the strategy sets of the two players and let
the decision rules e : F → E and f : E → F be defined by

e(y) =


{−1} if y < 0
{−1, 2} if y = 0
{2} if y > 0

, f(x) =


{−1} if x < 1
{0} if x = 1
{1} if x > 1

,

for every bistrategy (x, y). The images of the rules e and f are the sets {−1, 2}
and {−1, 0, 1}; so, the game is not reduced by elimination of non-reactive
strategies.

2.5 Elimination of non-reactive strategies

In a game, a rational behavior of the players is to use only reactive strategies,
eliminating the non-reactive ones. So, they will play a subgame of the pre-
vious one, that we call reduction of the game by elimination of non-reactive
strategies.

Before defining the reduction of a game we recall that, if F : X → Y is
a correspondence and if X ′ and Y ′ are subset of X and Y, respectively, the
restriction to the pair (X ′, Y ′) of F is the correspondence F|(X′,Y ′) whose graph
is gr(F ) ∩ (X ′, Y ′).

Definition (the reduction of a game by elimination of non-reactive
strategies). Let (e, f) be a decision-form game on the strategy base (E, F ).
We call (first) reduction of the game (e, f) by elimination of non-
reactive strategies the subgame (e′, f ′) on the subbase (e (F ) , f (E)), pair
of images of the decision rules e and f , respectively. In other words, the
(first) reduction of the game (e, f) by elimination of non-reactive
strategies is the game whose decision rules are the restrictions e|(F ′,E′) and
f|(E′,F ′), where E ′ and F ′ are the images of the rules e and f .
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Example (of reduction). Let (e, f) be the game, on the base E = [−1, 2]
and F = [−1, 1], with decision rules e : F → E and f : E → F defined by

e(y) =


{−1} if y < 0
{−1, 2} if y = 0
{2} if y > 0

, f(x) =


{−1} if x < 1

{−1, 0, 1} if x = 1
{1} if x > 1

,

for every bistrategy (x, y) of the game. The images of the rules e and f are
the sets E1 = {−1, 2} and F1 = {−1, 0, 1}; so, the game is not reduced, since
they don’t overlap the spaces E and F , respectively. The (first) reduction of
the game (e, f), by elimination of non reactive strategies, is the game whose
decision rules e1 : F1 → E1 and f1 : E1 → F1 are defined by

e1(y) =


{−1} if y = −1
{−1, 2} if y = 0
{2} if y = 1

, f1(x) =

{
−1 if x = −1
1 if x = 2

.

Note that the subgame (e1, f1) is not reduced (since f1 is not onto). The second
reduction of the game (that is, the reduction of the first reduction), has the
rules

e2(y) =

{
{−1} if y = −1
{2} if y = 1

, f2(x) =

{
−1 if x = −1
1 if x = 2

,

on the base (E2, F2), where E2 = {−1, 2} and F2 = {−1, 1}. In this case, both
rules are onto and, so, the subgame G2 = (e2, f2) is reduced by elimination of
non-reactive strategies.

2.6 Iterated elimination of non-reactive

strategies

As we saw, the first reduction of a game can be non-reduced, so, we can
consider the successive reductions to find a reduced subgame.

Definition (of k-th reduction by elimination of non-reactive
strategies).Let G0 = (e0, f0) be a game on a strategy base (E0, F0) and let
k be a natural number. We define (recursively) the k-th reduction, or re-
duction of order k, by elimination of non-reactive strategies of the
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game G0 as follows: the same game G0, if k = 0 ; the subgame Gk = (ek, fk)
on the base (Ek, Fk), pair of the images of the decision rules of the (k − 1)
reduction, i.e., pair of the sets ek−1 (Fk−1) and fk−1 (Ek−1), if k ≥ 1. In other
words, if k ≥ 1, the decision rules ek and fk are the restrictions to the pairs
(Fk, Ek) and (Ek, Fk) of the decision rules ek−1 and fk−1, respectively. We say
that a strategy x0 ∈ E survives the k-th elimination of non-reactive strategies
if it belongs to Ek.

Theorem (on the values of the reduced decision rules). In the
conditions of the above definition, for each strategy s of a player, which survived
the k-th elimination of non-reactive strategies, the reaction set of the other
player remains unchanged. In particular, if the game G0 has not disarming
strategies, all the reductions Gk has not disarming strategies.

Proof. The first reduction (e1, f1) has strategy base (e0(F0), f0(E0)), so

e1(y) = e0(y) ∩ e0(F0) = e0(y),

for all Frances’ strategy y ∈ f0(E0). By induction we have

ek(y) = e0(y) AND fk(x) = f0(x),

for all k and for all bistrategy (x, y) in Ek × Fk. �

Definition (reducing sequence by elimination of non-reactive
strategies). Let G0 = (e0, f0) be a game on a strategy base (E0, F0). We
define reducing sequence by elimination of non-reactive strategies
of the game G0 the sequence of reduced subgames G = (Gk)

∞
k=0 . In other

words, it is the sequence with first term the game G0 itself and with k-th term
the k-th reduction of the game G0.

2.7 Solvability by iterated elimination

The reducing sequence allows us to introduce the concept of solvability and
solution by iterated elimination of non-reactive strategies.

Definition (of solvability by iterated elimination of non-reactive
strategies). Let G0 = (e0, f0) be a decision-form game and let G be its
reducing sequence by elimination of non-reactive strategies. The game G0 is
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called solvable by iterated elimination of non-reactive strategies if
there exists only one bistrategy common to all the subgames of the sequence G.
In this case, that bistrategy is called solution of the game G0 by iterated
elimination of non-reactive strategies.

Remark. The definition of solvability by iterated elimination of non-
reactive strategies means that the intersection of the bistrategy spaces of all
the subgames forming the reducing sequence, that is the intersection

∞⋂
k=0

Ek × Fk,

has one and only one element, which we said the solution of the game.

Remark. If the game G0 is finite, it is solvable by iterated elimination of
non-reactive strategies if and only if there exists a subgame of the sequence
G with a unique bistrategy. In this case, that bistrategy is the solution, by
iterated elimination of non-reactive strategies, of the game G0.

2.8 Example of resolution

In the following example we present a simple resolution by iterated elimination
of non-reactive strategies of an infinite game.

Example (solution by elimination of non-reactive strategies). Let
E = [−1, 2] and F = [−1, 1], and let e : F → E and f : E → F be the decision
rules defined by

e(y) =


{−1} if y < 0

E if y = 0
∅ if y > 0

, f(x) =


{−1} if x < 1

∅ if x = 1
{1} if x > 1

.

By elimination of non-reactive strategies, we obtain the subgame G1, with
strategy sets E1 = E and F1 = {−1, 1} and multifunctions e1 : F1 → E1 and
f1 : E1 → F1 defined by

e1(y) =

{
{−1} if y = −1

∅ if y = 1
, f1(x) =


{−1} if x < 1

∅ if x = 1
{1} if x > 1

.
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In the new game only the Emil’s strategy−1 is reactive. Deleting all the others,
we obtain an other subgame with strategy sets E2 = {−1} and F2 = F1 and
multifunctions e2 : F2 → E2 and f2 : E2 → F2 defined by

e2(y) =

{
{−1} if y = −1

∅ if y = 1
, f2(−1) = {−1} .

At last, Frances strategy 1 is, now, non-reactive, so, we have the trivial sub-
game with strategy sets E3 = F3 = {−1} and multifunctions e3 : F3 → E3 and
f3 : E3 → F3 defined by

e3(−1) = {−1} , f3(−1) = {−1} .

We solved the game by iterated elimination of non-reactive strategies, and the
solution is the unique survived bistrategy: the bistrategy (−1, 1).

2.9 Iterated elimination in Cournot game

The game. Let G0 = (e0, f0) be the Cournot decision-form game with bis-
trategy space the square [0, 1]2 and (univocal) decision rules defined, for every
x, y ∈ [0, 1], by e0(y) = (1 − y)/2 and f0(x) = (1 − x)/2. Set x′ = 1 − x and
y′ = 1− y, the complement to 1 of the production strategies, for all bistrategy
(x, y) of the game; briefly, we have e0(y) = y′/2 and f0(x) = x′/2.

The reducing sequence. Let G = (Gk)
∞
k=0 be the reducing sequence by

elimination of non-reactive strategies of the game G0. The sequence G has as
starting element the game G0 itself. Let Ek and Fk be the strategy spaces of
the k-th game Gk = (ek, fk), for all natural k. The base of the game Gk+1 is,
by definition, the pair of images ek(Fk) and fk(Ek).

Reduction of the strategy spaces. The function ek is strictly decreasing
and continuous, so, the image of a real interval [a, b] is the compact interval
[ek(b), ek(a)]. The initial strategy spaces E0 and F0 are intervals, then, by
induction, all the spaces Ek = Fk are intervals. Let [ak, bk] be the k-th strategy
space Ek, then, concerning the (k + 1)-th, we have

Fk+1 = ek([ak, bk]) = [ek(bk), ek(ak)] = [e0(bk), e0(ak)] = [b′k/2, a
′
k/2] .

The interval [b′k/2, a
′
k/2] does not coincide with the space Fk = Ek: the reduc-

tion Gk is not reduced.
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Iterated reduction. We now study the sequence of the initial end-points
of the interval family (ak, bk)

∞
k=1. We have

ak+1 = e(bk) = e(f(ak−1)).

The composite function e ◦ f is increasing and, moreover, the following in-
equalities a0 ≤ a1 ≤ a2 hold true. So, the sequence a is increasing, and, then,
it is convergent (as it is upper bounded by b0). Moreover, being

ak+1 =
1− bk

2
=

1− a′k−1/2

2
=

2− a′k−1

4
=

1 + ak−1

4
,

and putting a∗ := lim(a), we deduce

4a∗ = 1 + a∗,

which gives a∗ = 1/3. Similarly, we prove that b is a decreasing sequence and
it converges to 1/3.

Solution. Concluding, the unique point common to all the strategy inter-
vals is the strategy 1/3, in other terms we have

∞⋂
k=0

[ak, bk] = {1/3} .

Then, the game is solvable by elimination of non-reactive strategies and the
solution is the bistrategy (1/3, 1/3).

2.10 Iterated elimination survival

In this section, we deal with the relations between solutions by iterated elimi-
nation of non-reactive strategies and game equilibria.

We introduce some definitions.

Definition (of survival the iterated elimination). Let G = (e, f)
be a decision-form game. We say that a bistrategy survives the iterated
elimination of non-reactive strategies if it belongs to all the bistrategy
spaces of the reducing sequence of the game G.
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Terminology. We say that a base-game (E, F ) is compact if E and F are
both compact.

Theorem (existence of bistrategies surviving the iterated elimina-
tion). Let G = (e, f) be a game on a strategy base (E, F ). Assume that (ε, ϕ)
is a pair of topologies on the strategy sets of the base (E, F ) and assume the
game with closed-graph decision-rules and that there is at least a compact base
of the reducing sequence of the game. Then, there exists at least one bistrategy
surviving the iterated elimination of non-reactive strategies.

Proof. Assume the subbase (Ek, Fk) be compact. Then, the images Fk+1 =
fk(Ek) and Ek+1 = ek(Fk) are compacts, since e and f are with closed graph.
By induction, every subbase (Ej, Fj) is compact, for j > k. So, the sequence
of bistrategy space (Ej × Fj)j>k is a sequence of compact sets with the finite
intersection property; indeed, for every finite subset H of the set N(> k), that
is the interval ]k,→ [N, setting h∗ := max H, we have⋂

h∈H

Eh × Fh = Eh∗ × Fh∗ .

So, since the bistrategy space Ek×Fk is compact, that sequence has a non-void
intersection. �

Theorem (existence of a solution by iterated elimination). Let
G = (e, f) be a game on a strategy base (E, F ). Assume that (ε, ϕ) is a pair
of complete metrics on the strategy sets of the base (E, F ) and assume all the
bistrategy spaces of the game are closed and with the sequence of their diameters
vanishing. Then, there exists one and only one bistrategy surviving the iterated
elimination of non-reactive strategies. So, under these assumptions, the game
is solvable by elimination of non reactive strategies.

Proof. It is a direct consequence of the nested closed principle in complete
metric spaces (see, for instance, Kolmogorov - Fomin, Functional Analysis). �

Corollary (existence of a solution, by iterated elimination, for se-
quentially continuous games). Let G = (e, f) be a sequentially continuous
game on a compact base (E, F ), with respect to a pair of complete metrics
(ε, ϕ). Then, if the sequence of the diameters of the reduced bistrategy spaces
is vanishing, the game is solvable by iterated elimination of non-reactive strate-
gies.
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Proof. Strategy spaces of the game are compact and the decision rules are
sequentially continuous, so, all the reduced bases are compact and, then, we
can apply the previous theorem. �

2.11 Survival of equilibria

Memento. Let G = (e, f) be a decision-form game. Recall that a bistrategy
(x∗, y∗) is called an equilibrium of the game G if x∗ ∈ e(y∗) and y∗ ∈ f(x∗).

The following theorem gives the first relation between solutions by iterated
elimination of non-reactive strategies and game equilibria.

Theorem (survival of equilibria). Let (x, y) be an equilibrium of a
game (e0, f0). Then it survives iterated elimination of non-reactive strategies.

Proof. By equilibrium definition, x ∈ e0(y) and y ∈ f0(x), that is, (x, y) ∈
E1 × F1. Moreover, if x ∈ ek(y), then x ∈ ek(Fk) = Ek+1, for every natural
number k; analogously, if y ∈ fk(x), then y ∈ fk(Ek) = Fk+1. By induction,
we deduce that (x, y) ∈ Ek × Fk, for each k ∈ N. �

Before the next theorem we need a lemma.

Lemma (characterization of Lipschitz continuity via bounded sub-
sets). Let (X, d) be a metric space, let f : X → X be a function and let L
be a positive real number. Then, the following conditions are equivalent:

1) f is Lipschitz continuous with a Lipschitz-constant L;
2) for any bounded subset B of the space, the following inequality holds

df(B) ≤ L dB;

3) for any natural n and for any bounded subset B of the space, it is

dfn(B) ≤ Ln dB.

Consequently, if the function f is a contraction, the sequence of diameters
(dfn(B))∞n=0 is vanishing.

Proof. 1) ⇒ 2). It’s easy to see, by induction, that, for every non-negative
integer n,

dfn(B) ≤ Ln d (B) .
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Indeed, let us prove the inequality for n = 1. Let y and y′ lie in f(B), then
there are two points x and x′ in B such that y = f(x) and y′ = f(x′). By
Lipschitz continuity, we have

d(y, y′) = d(f(x), f(x′)) ≤
≤ Ld(x, x′) ≤
≤ L dB.

Since the preceding inequality holds for all y and y′ in f(B), we deduce

d(f(B)) ≤ L d(B),

as we desired. If the result is true for n− 1, we have

d(fn(B)) = d(f(fn−1(B))) ≤
≤ L d(fn−1(B)) ≤
≤ LLn−1 d(B) ≤
≤ Ln d (B) .

If L < 1, from the above inequality, since d(B) < ∞, the result follows im-
mediately. 3) ⇒ 2). Obvious. 2) ⇒ 1). Let x, y be two points of the
space and let B = {x, y}. The set B is bounded and its diameter is the
distance d(x, y). The image f(B) is the pair {f(x), f(y)}, whose diameter
is the distance d(f(x), f(y)). From 2) it follows the Lipschitz -inequality
d(f(x), f(y)) ≤ Ld(x, y). The Lemma is completely proved. �

Theorem (existence of solution in contracting games). Let G0 =
(e0, f0) be a game on a strategy base (E0, F0). Assume (ε, ϕ) be a pair of
complete metrics on the base (E0, F0) and let the game be univocal, contracting
and with a bounded base (bounded with respect to the metrics). Then, there
exists a unique bistrategy surviving the iterated elimination of non-reactive
strategies, and it is the pair of the fixed points of the game rules.

Proof. Existence of a survivor. Note that the intersection I of all the
bistrategy spaces of the reduction sequences is non-void. Indeed, let d : E ×
F → E × F be the function defined by

d(x, y) = (e(y), f(x)),

for each ordered pair (x, y) in E × F ; the unique fixed point of the function
d, that is the point (x∗, y∗) such that d(x∗, y∗) = (x∗, y∗), belongs to the
intersection I, thanks to the above theorem. Uniqueness of the survivor. We
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have just to prove that there is only one bistrategy surviving the iterated
elimination. For, we claim that the sequence of diameters of the sequences E
and F of the strategy spaces of the reduction sequence are vanishing. It is
simple to prove that, for every natural n, we have

E2n = (e ◦ f)n(E0) , E2n+1 = (e ◦ f)n(E1).

Since the strategy base (E0, F0) is bounded, by the preceding lemma, the two
subsequences (E2n)∞n=1 and (E2n+1)

∞
n=1 have the corresponding sequences of

diameters vanishing. So, the intersection ∩E can contain at most one point.
Analogously, we can proceed for the sequence F , and the theorem is proved.
�

2.12 Nested compacts lemma

The following lemma will allow us to provide sufficient conditions in order that
a solution of a game, by iterated elimination, is an equilibrium.

Notations and terminology. Recall that:

• A sequence of sets is said to be nested if each term of the sequence
contains (widely) the following one.

Lemma (nested compacts lemma). Let F = (Fn)∞n=1 be a sequence of
nested compact subsets of a metric space (F0, ϕ) whose intersection contains
one and only one point y∗. Then, the sequence of diameters of the family F
is vanishing, that is

lim
k→∞

ϕ(Fk) = 0.

Consequently, each sequence y in the set F0 such that yn ∈ Fn, for each positive
integer n, converges to the point y∗.

Proof. Let d be the sequence of diameters of the family F . Since the family
F is nested, the sequence d is (widely) decreasing and it is bounded below by
0, so, it converges to its infimum d∗, that is to say to

d∗ = inf
n∈N

sup
y,z∈Fn

ϕ(y, z).
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Since the set Fn is compact, for every index n, and since the metric ϕ is
continuous, by Weierstrass theorem, there exist two sequences s and t in the
compact F0 such that sn, tn ∈ Fn, for all natural n, and such that

d∗ = inf
n∈N

ϕ(sn, tn).

Let us prove that the real d∗ is zero. For all natural k, it is ϕ(sk, tk) ≥ d∗.
Moreover, since F1 is compact, there exist two subsequences s′ and t′, extracted
from the sequences s and t, respectively, converging in F1 to points s∗ and
t∗, respectively. These subsequences are eventually contained in any closed
Fk, and then, their limits are in any closed Fk, that is, in their intersection
∩F = {y∗}. This circumstance implies s∗ = t∗ = y∗, from which it must be

0 ≤ d∗ ≤ lim
k→∞

ϕ(s′k, t
′
k) = ϕ(s∗, t∗) = ϕ(y∗, y∗) = 0.

Now, let y be a sequence in F0 such that yk ∈ Fk, for all k. For all k, then we
have

ϕ(yk, y
∗) ≤ ϕ(Fk),

because both y∗ and yk belong to Fk. By the squeeze theorem, the sequence
(ϕ(yk, y∗))

∞
k=1 is vanishing, then y →ϕ y∗, so, the lemma is proved. �

Remark. The hypothesis of compactness is not avoidable. First of all we
prove that the assumption of boundness is unavoidable. Case of closed but not
bounded sets. Let F0 be the real line R and Fk = {0} ∪ [k,→[, for all natural
k. The sequence (Fk)

∞
k=1 is a sequence of nested closed sets whose intersection

is {0}, but all of the closed sets are not bounded. Then the diameter sequence
must be vanishing. Now, we prove that the closedness needs, too. Case of
open bounded sets. Consider the union

Ak = ]0, 1/k[ ∪B(1, 1/k),

for all natural k ≥ 1, where B(1, 1/k) is the open ball centered at 1 and
with radius 1/k. The sequence A = (Ak)

∞
k=1 is a sequence of nested bounded

open sets, whose intersection is (evidently) {1}. But, the diameter sequence
converges to 1 and not to 0. Indeed, we have

d(Ak) = 1 + 1/k,

for every natural integer k.
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2.13 Non-reactive strategy and equilibria

Notations and terminology. Let G = (e, f) be a game.

• If (X, µ) is a metric space and if S is a subset of X, we call diameter of
S, with respect to µ, the following extremum

µ(S) := sup
x,y∈S

µ(x, y).

• If the base of G is the pair (E, F ) and (ε, ϕ) is a pair of metric on
E and F , respectively, G is called a sequentially continuous game on
the compact base (E, F ) with respect to the pair of metrics if its rules
are sequentially continuous, or if the graphs are closed in the product
topology on the base F × E and E × F , respectively.

Theorem (characterization of solvability). Let (E0, ε) and (F0, ϕ) be
compact metric spaces and let G0 = (e0, f0) be a decision-form game upon the
base (E0, F0), without disarming strategies and sequentially continuous with
respect to the pair of metrics (ε, ϕ). Then, the game G0 is solvable by iterated
elimination of non-reactive strategies if and only if the two diameter sequences
of the strategy spaces of the reduced games are vanishing. Moreover, if the
game is solvable, its solution is a game equilibrium.

Proof. Let E and F be the sequences of the strategy spaces of the reduc-
ing sequence G of the game G0 and let (x∗, y∗) be the solution by iterated
elimination of non-reactive strategies. By definition of solution, it is

∞⋂
k=1

(Ek × Fk) = {(x∗, y∗)} ,

then, we have
⋂∞

k=0 Ek+1 = {x∗} and
⋂∞

k=0 Fk+1 = {y∗}, or, in other terms

∞⋂
k=0

fk(Ek) = {y∗} et
∞⋂

k=0

ek(Fk) = {x∗} .

Consequently, for all natural k, there exist a strategy yk ∈ Fk and a strategy
xk ∈ Ek such that x∗ ∈ ek(yk) and y∗ ∈ fk(xk), that means x∗ ∈ e0(yk) e
y∗ ∈ f0(xk). Since the correspondences e0 and f0 are sequentially continuous,
all of their restrictions ek and fk are sequentially continuous. Moreover, since
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G0 has not disarming strategies and all the subgames of reducing sequence G
are the restrictions to the images of the decisional rules of the previous game,
these subgames have not disarming strategies. Therefore, the decision rules
of the subgames are all sequentially continuous and with nonempty values
and, because the initial strategy spaces E0 and F0 are compact, all the images
of those decision rules are compact. Then, the sequences x = (xk)

∞
k=1 and

y = (yk)
∞
k=1 converges to x∗ and y∗ respectively, thanks to the nested compacts

lemma. Finally, because e0 and f0 are correspondences with closed graph, we
have x∗ ∈ e0(y

∗) e y∗ ∈ f0(x
∗), ending the proof of the theorem. �
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Chapter 3

Reactivity

3.1 Introduction

In this paper we introduce the concept of reactivity for two-player decision-
form games and concentrate upon it. Let G = (e, f) be a decision-form game
and let us christen our two player Emil and Frances, it is quite natural that if
an Emil’s strategy x can react to all the Frances’ strategies to which an other
strategy x′ can react, then we must consider the strategy x reactive at least as
the strategy x′; moreover, if the strategy x is reactive at least as x′ and x can
react to a Frances’ strategy to which x′ can not react, then Emil has to consider
x strictly more reactive than x′. The previous simple considerations allow to
introduce the capacity of reaction, or reactivity, of any Emil’s strategy and to
compare it with the capacity of reaction of the other Emil’s strategies. In this
direction, we introduce the super-reactive strategies of a player i, i.e. strategies
of player i capable to reply to any opponent’s actions to which the player i
can reply: obviously these strategies (whenever they there exist) are the best
ones to use, in the sense explained before. In a second time, we introduce the
reactivity comparison between strategies and we observe that this relation is a
preorder. Then, we define the concept of reactivity and explain the nature of
the super-reactivity, this permits to define the concepts of maximally reactive
strategy, minimally reactive strategy, and of sub-reactive strategy. The concept
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of sub-reactivity will give the opportunity to introduce the principal operative
concepts of the paper, i.e. the elimination of sub-reactive strategies, the concept
of reducing sequence of a game by elimination of sub-reactive strategies and,
at last, the solvability of a game by elimination of sub-reactive strategies and
the meaning of solution in the case of solvability.

3.2 Super-reactive strategies

Definition (of super-reactive strategy). Let (e, f) be a two player
decision-form game. An Emil’s strategy x0 is called super-reactive with
respect to the decision rule e if it is a possible reaction to all the Frances’
strategies to which Emil can react. In other terms, an Emil’s strategy x0 is
called super-reactive if it belongs to the reaction set e(y), for each Frances’
strategy y belonging to the domain of the decision rule e. Analogously, a
Frances’ strategy y0 is called super-reactive with respect to the deci-
sion rule f if it is a possible reaction to all the Emil’s strategies to which
Frances can react. In other terms, a Frances’ strategy y0 is called super-reactive
if it belongs to the reaction set f(x), for each Emil’s strategy x in the domain
of the decision rule f .

Remark. The sets of all the Frances’ and Emil’s super-reactive strategies
are so the two intersections

∩6=(e) =
⋂

y∈dome

e(y),

∩6=(f) =
⋂

x∈domf

f(x),

respectively. If Frances has no disarming strategies toward Emil we have

∩6=(e) = ∩e =
⋂
y∈F

e(y).

Analogously, if Emil has no disarming strategies toward Frances

∩6=(f) = ∩f =
⋂
x∈E

f(x).

Obviously these two intersections can be empty.

We note here an elementary and obvious result.
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Proposition. Let (e, f) be a decision form game and let x0 and y0 be
two non-disarming and super-reactive strategies of the first and second player
respectively. Then the bistrategy (x0, y0) is an equilibrium of the game.

It is straightforward that a game can have equilibria and lack in super-
reactive strategy, as the following example shows.

Example (of game without super-reactive strategies). Let (e, f) be
the decision form game with strategy spaces E = [−1, 2] and F = [−1, 1] and
decision rules e : F → E and f : E → F defined by

e(y) =


−1 if y < 0
E if y = 0
2 if y > 0

,

f(x) =


−1 if x < 1
F if x = 1
1 if x > 1

.

Emil has not super-reactive strategies, in fact

∩e = {−1} ∩ E ∩ {2} = ∅.

Also Frances has no super-reactive strategies, in fact

∩f = {−1} ∩ F ∩ {1} = ∅.

Note that this game has three equilibria.

We say that any equilibrium of a game is a super-reactive equilibrium when
it is a super-reactive cross, i.e. when it is a pair of super-reactive strategies.

Example (of game with super-reactive strategies). Let (e, f) be the
game with strategy spaces E = [−1, 2] and F = [−1, 1] and decision rules
e : F → E and f : E → F defined by

e(y) =


[−1, 1] if y < 0

E if y = 0
[0, 2] if y > 0

,

f(x) =


−1 if x < 1
F if x = 1

{−1, 1} if x > 1
.

Emil has infinite super-reactive strategies, in fact

∩e = [−1, 1] ∩ E ∩ [0, 2] = [0, 1] ,
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all the strategies x between 0 and 1 are super-reactive for Emil. Frances has
only one super-reactive strategy, in fact

∩f = {−1} ∩ F ∩ {−1, 1} = {−1} .

Note that this game has infinitely many equilibria, their set is the graph of
the correspondence f1 : E → F defined by

f1(x) =


−1 if x < 1
F if x = 1
1 if x > 1

.

On the other hand, only the equilibria belonging to the segment [0, 1]× {−1}
are super-reactive equilibria. Thanks to super-reactivity, in this game an equi-
librium is non-cooperatively reachable; indeed, it is reasonable for Frances to
play his unique super-reactive strategy −1 and for Emil to play one of his
super-reactive strategies x in [0, 1], consequently the game finishes in the equi-
librium (x,−1).

Remark (independence of the super-reactivity on the rival’s rule).
The Emil’s (Frances’s) super-reactive strategies depend only upon the Emil’s
(Frances’s) decision rule, and not on both the decision rules.

Example (game with super-reactive strategies). Let E be the com-
pact interval [0, 1] and let F be the interval [−1, 1], let e : F → E be the
correspondence defined by e(y) = [0, |y|], for each y in F . Frances has no dis-
arming strategies toward Emil. The strategy 0 is the only Emil’s super-reactive
strategy, because

∩e =
⋂
y∈F

[0, |y|] = {0} .

Let f : E → F be defined by f(x) = [−x, x]. Emil has no disarming strategies
toward Frances. The strategy 0 is the only Frances’ super-reactive strategy,
because

∩f =
⋂
x∈E

[−x, x] = {0} .

In this case we have again infinitely many equilibria, the points of the graph
of the correspondence f1 : E → F defined by f1(x) = {−x, x}, but we have
only one super-reactive equilibrium: the strategy profile (0, 0).
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3.3 Comparison of reactivity

The definition of super-reactive strategy can be generalized.

Definition (of comparison among reactivity). Let (e, f) be a two
player decision form game. Let x0 and x be two Emil’s strategies. We say
that the strategy x0 is more reactive (in wide sense), with respect to
the decision rule e, than the strategy x, and we write x0 ≥e x, if x0

is a possible reaction to all the Frances’ strategies to which x can react. In
other terms, a Emil’s strategy x0 is called more reactive than an other strat-
egy x when x0 belongs to the reaction set e(y), for each strategy y ∈ e−(x).
Analogously, let y0 and y be two Frances’ strategies. We say that y0 is more
reactive, with respect to the decision rule f , than the strategy y,
and we write y0 ≥f y, if the strategy y0 is a possible reaction to all the Emil’s
strategies to which y is a possible reaction. In other terms, a Frances’ strategy
y0 is more reactive than y when y0 belongs to the reaction set f(x), for each
strategy x ∈ f−(y).

Memento (reciprocal correspondence). We remember that the set
e−(x) is the set of Frances’ strategies to which the strategy x can reply with
respect to the decision rule e. In fact, the reciprocal image of the strategy x
with respect to e is

e−(x) = {y ∈ F : x ∈ e(y)} ,

therefore it is defined, exactly, as the set of the Frances’ strategies y for which
x is a possible response strategy. The reciprocal correspondence of e, i.e. the
correspondence e− : E → F : x → e−(x) , associates to every Emil’s strategy
x the set of all those Frances’s strategies for which x is a possible reaction.
From here the interest in the determination of the correspondence e−.

Example (of comparison of reactivity). Let (e, f) be the game with
strategy spaces E = [−1, 2] and F = [−1, 1] and decision rules e : F → E and
f : E → F defined by

e(y) =


{−1} if y < 0

E if y = 0
{2} if y > 0

,

f(x) =


{−1} if x < 1

F if x = 1
{1} if x > 1

.
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we want to determinate the reciprocal multifunctions of e and f . We have

e−(x) =


[−1, 0] if x = −1
{0} if x ∈ ]−1, 2[
[0, 1] if x = 2

,

f−(y) =


[−1, 1] if y = −1
{1} if y ∈ ]−1, 1[
[1, 2] if y = 1

.

From here we can easily remark that Emil’s strategies −1 and 2 are more
reactive than all the other Emil’s strategies in the interval ]−1, 2[, with respect
to the rule e. For this aim, we have to prove that the strategies 1 and 2 belong
to the set e(y), for each strategy y ∈ e−(x). Let, so, x be in ]−1, 2[, we have
e−(x) = {0}, then the relation y ∈ e−(x) is equivalent to y = 0, but the image
e(0) is all E therefore include −1 and 2. Analogously, we prove that Frances’
strategies −1 and 1 are more reactive than every other strategy y ∈ ]−1, 1[,
with respect to f .

The following theorem expresses the reactivity comparison in conditional
form.

Theorem. In the conditions of the previous definition. An Emil’s strategy
x0 is more reactive than an Emil’s strategy x, with respect to the decision rule
e, if for each Frances’ strategy y, from x ∈ e(y) we have x0 ∈ e(y). In symbols,
the relation x0 ≥e x holds if and only if

(∀y ∈ F )(x ∈ e(y) ⇒ x0 ∈ e(y)).

Analogously, a Frances’ strategy y0 is more reactive than an other Frances’
strategy y, with respect to the decision rule f , if for each Emil’s strategy x,
from y ∈ f(x) we have y0 ∈ f(x). In symbols, the relation y0 ≥f y holds if
and only if

(∀x ∈ E)(y ∈ f(x) ⇒ y0 ∈ f(x)).

3.4 The reactivity preorder

It is immediate to verify that the relation of reactivity comparison determined
by the decision rule f upon the strategy space F , defined, for each pair of
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strategies (y, y′), by y ≥f y′, and that we denote by ≥f , is a preorder. This
justifies the following definition.

Definition (of reactivity preorder). Let (e, f) be a decision form game
upon the underlying strategy pair (E, F ). The binary relation ≥f on the strat-
egy set F is called preorder of reactivity induced by the decision rule f
on Frances’ strategy space. Symmetrically, the binary relation ≥e on the
strategy space E is called preorder of reactivity induced by the decision
rule e on Emil’s strategy space.

Remark (strict preorder of reactivity). Since the reactivity compar-
ison ≥f is a preorder, it has an associated strict preorder, the preorder >f

defined, as usual, for each pair of strategies (y0, y) by y0 >f y if and only if
y0 ≥ y and y � y0. Analogous consideration holds for Emil.

Now we see an example of strict comparison of reactivity.

Example (of strict reactivity comparison). Let (e, f) be the game
with strategy spaces E = [−1, 2] and F = [−1, 1] and with decision rules
e : F → E and f : E → F defined by

e(y) =


−1 if y < 0
E if y = 0
2 if y > 0

,

f(x) =


−1 if x < 1
F if x = 1
1 if x > 1

.

We apply the conditional characterization to prove (again) that Emil’s strate-
gies −1 and 2 are more reactive than all the strategies of the open interval
]−1, 2[. In fact, for each Frances’ strategy y, if a Emil’s strategy x ∈ ]−1, 2[
is in e(y), y must necessarily be 0 (because it is the unique e(y) that contains
numbers different from −1 and 2 is e(0)), but, in that case, whether −1 or 2
belong to e(y) (inasmuch, in reality, it is e(0) = E). We have demonstrated
that −1, 2 ≥e x, for each x in E. Now we prove that −1, 2 >e x, for each
x ∈ ]−1, 2[ (i.e. that −1 and 2 are strictly more reactive strategies than every
other Emil’s strategy). It is sufficient prove that, to fix the ideas, the relation
2 ≤e x is false; or, it is sufficient also show that a strategy y in F exists such
that 2 ∈ e(y) and x /∈ e(y) (or a strategy which 2 reacts and x no). Let be
y = 1, we have e(y) = {2}, then 2 is in e(y) and any x ∈ ]−1, 2[ no.
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3.5 The reactivity of a strategy

Terminology (reciprocal decision rule). Let f : E → F be a Frances’
decision rule. We can associate, in a natural way, with the correspondence f
the Emil’s decision rule

f− : F → E : y 7→ f−(y),

that we call Emil’s decision rule reciprocal of the Frances’s decision rule f .
This reciprocal decision rule is canonically associated with the application of
F into the set of subsets of E that associates with every Frances’s strategy
y the set of all Emil’s strategies for which y is a possible reaction. With
abuse of language, we will name this application reciprocal function of the
correspondence f .

Theorem (characterization of the preorder of reactivity). The (op-
posite) reactivity preorder ≤f is the preorder induced (in the usual sense) by
the reciprocal function of the decision rule f , that is by the function

F → P(E) : y 7→ f−(y),

endowing the set of the parts of E (denoted by P(E)) with the order of set
inclusion ⊆. In other terms, the opposite preorder of reactivity is the reciprocal
image of the set inclusion order with respect to the reciprocal function of the
decision rule f .

Proof. Let x ∈ E and y ∈ F be strategies. The relation y ∈ f(x) is
equivalent to the relation x ∈ f−(y), therefore a Frances’s strategy y0 is more
reactive than y if and only if f−(y) ⊆ f−(y0). �

The above characterization allows to give the following definition.

Definition (of reactivity). Let (e, f) be a decision form game. For each
x in E, the reciprocal image of the strategy x by the correspondence e, that is
the set e−(x), is called the reactivity of x with respect to e. Analogously,
for each y in F , the reciprocal image of y by the decision rule f is called the
reactivity of y with respect to f .
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3.6 Super-reactive strategies and maxima

The following obvious result characterizes super-reactive strategies of a player
as maxima (upper optima) of the strategy space of the player with respect
to the reactivity preorder induced by his decision rule. Therefore it allows to
reduce the concept of super-reactive strategy to the concept of optimum.

Theorem (characterization of super-reactivity). Let (e, f) be a de-
cision form game. Every Frances’ super-reactive strategy is a maximum of the
preorder space (F,≥f ).

Remark (on the nature of super-reactive strategies). After the
realization of the true nature of super-reactive strategies, we can observe some
of the previous examples in an other way. We have, in fact, seen that there are
situations in which Frances has no super-reactive strategies, this simply means
that the preorder space (F,≥f ) has no maxima, this does not surprise, in fact
a preorder space has maxima only in very particular cases. Obviously, when a
space has no maxima (as observed in preorder spaces theory) we have to look
for other solutions of the corresponding decision problem (Pareto boundaries,
cofinal and coinitial parts, suprema and so on) but we shall analyze this aspects
in the following paragraphs.

We should notice that, in general, the space (F,≥f ) is not an ordered space,
and therefore several maxima can exist (they must necessarily be indifferent
between themselves by the theorem of indifference of optima in preordered
spaces), as show the following example.

Example (of distinct and indifferent super-reactive strategies).
Let (e, f) be the game with strategy spaces the two intervals of the real line
E = [a, b] and F = [c, d] and decision rules e : F → E and f : E → F defined
by

e(y) =


{a, b} if y < 0

E if y = 0
{a, b} if y > 0

,

f(x) =


{c, d} if x < 1

F if x = 1
{c, d} if x > 1

,

for each bistrategy (x, y) of the game. It is easy to realize that the two strate-
gies a and b are super-reactive for Emil, and, because they are maxima of the
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set E with respect to the preorder ≥e, they are indifferent. Let us see this
directly. The set of Frances’ strategies for which a is a possible reaction is
e−(a) = F , from which immediately follows that a is a maximum of the space
(E,≥e) (no Emil’s strategy can be more reactive than a inasmuch the strategy
a is a reaction for all Frances’ strategies). Analogously, we can proceed for b
(that is exactly in the same situation).

Remark (on the indifference in reactivity of strategies). We note
that the reactivity indifference of two Emil’s strategies x and x′ is equivalent
to the relation e−(x) = e−(x′). In fact, the preorder ≤e is induced by the
function of E in P(F ) defined by x 7→ e−(x) with respect of the set inclusion,
and therefore x and x′ are equivalent in reactivity if and only if they have the
same value in e.

3.7 Maximally reactive strategies

Definition (of maximally reactive strategy). Let (e, f) be a game upon
the underlying strategy pair (E, F ). A Frances’ strategy y ∈ F is called max-
imally reactive if does not exist another Frances’ strategy strictly more re-
active than y (i.e., as we shall see later, if the strategy y is not a sub-reactive
strategy). In other terms, a Frances’ strategy is called maximally reactive if
is (Pareto) maximal in the preorder space (F,≥f ). Analogously, an Emil’s
strategy is called maximally reactive if it is (Pareto) maximal in the preorder
space (E,≥e).

Example (of maximally reactive strategy). Let (e, f) be the decision
form game with strategy spaces E = [−1, 2] and F = [−1, 1] and decision rules
e : F → E and f : E → F defined by

e(y) =


{−1} if y < 0

E if y = 0
{2} if y > 0

,

f(x) =


{−1} if x < 1

F if x = 1
{1} if x > 1

.
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The reciprocal correspondences of e and f are

e−(x) =


[−1, 0] if x = −1
{0} if x ∈ ]−1, 2[
[0, 1] if x = 2

,

f−(y) =


[−1, 1] if y = −1
{1} if y ∈ ]−1, 1[
[1, 2] if y = 1

.

Hence we can easily note that the Emil’s strategies −1 and 2 are maximally
reactive. To fix the ideas, we study the strategy 2. It is sufficient to show that
the subset e−(2) is not strictly included in any other image e−(x), and this
is evident. We have seen before that these two maximal strategies are more
reactive than all other Emil’s strategies x ∈ ]−1, 2[, with respect to the rule
e: therefore all the Emil’s strategies, with the exception of the two maximal
ones, are strictly less reactive than the maximal; moreover all Emil’s strategies
in ]−1, 2[ are indifferent between them (have same image through e−), we see
so that the interval ]−1, 2[ is even the set of all the minima of the preorder
space (E,≥e). Analogously, we can prove that the strategies −1 and 1 form
the maximal boundary of the preorder space (F,≥f ).

3.8 Sub-reactive strategies

Definition (of sub-reactive strategy). A strategy s is called sub-reactive
if there exists a strategy s′ strictly more reactive strategy than s. In other
terms, a Frances’ strategy is called sub-reactive if it is not (Pareto) maximal
in the preorder space (F,≥f ). Analogously, an Emil’s strategy is called sub-
reactive if it is not Pareto maximal in the preorder space (E,≥e).

Example (of sub-reactive strategy). Let (e, f) be the game with strat-
egy spaces E = [−1, 2] and F = [−1, 1] and decision rules e : F → E and
f : E → F defined by

e(y) =


{−1} if y < 0

E if y = 0
{2} if y > 0

, f(x) =


{−1} if x < 1

F if x = 1
{1} if x > 1

.

We have before seen that the two Emil’s maximal strategies −1 and 2 are more
reactive than all the other Emil’s strategies x ∈ ]−1, 2[, with respect to the
rule e: therefore all Emil’s strategies, except the maximal, are sub-reactive.
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3.9 Elimination of sub-reactive strategies

Definition (of reduced game by elimination of sub-reactive strate-
gies). A game (e, f) is called reduced by elimination of sub-reactive
strategies if the maximal (Pareto) boundaries of the preorder spaces (E,≥e)
and (F,≥f ) coincide with the strategy sets E and F , respectively.

Example (of not reduced game). Let (e, f) be the game with strategy
spaces E = [−1, 2] and F = [−1, 1] and decision rules e : F → E and f : E →
F defined by

e(y) =


{−1} if y < 0

E if y = 0
{2} if y > 0

,

f(x) =


{−1} if x < 1

F if x = 1
{1} if x > 1

.

The maximal boundaries of the preorder spaces (E,≥e) and (F,≥f ) are the
sets {−1, 2} and {−1, 1}, therefore the game is not reduced by elimination of
sub-reactive strategies.

Before to proceed by the following definition, we recall the notion of sub-
game of a decision form game.

Definition (of subgame). Let (e, f) be a decision form game upon the
pair (E, F ) and let (E ′, F ′) be a sub-underlying pair of (E, F ), i.e. a pair
of subsets of E and F , respectively. We call subgame of (e, f) with un-
derlying pair (E ′, F ′) the pair (e′, f ′) having as components the restrictions
of the rules e and f to the pairs of sets (F ′, E ′) and (E ′, F ′), respectively.
We remember that, for example, e′ is the correspondence from F ′ to E ′ which
sends a strategy y′ of F ′ into the intersection e(y′) ∩ E ′. In other terms, e′

sends every strategy y′ of F ′ into all Emil’s reaction strategies to y′ which are
in E ′.

Definition (reduction of a game by elimination of sub-reactive
strategies). Let G = (e, f) be a decision form game with underlying pair
(E, F ). We call reduction of the game (e, f) by elimination of sub-
reactive strategies the subgame (e′, f ′) of G with underlying pair the pair of
the maximal Pareto boundaries ∂eE and ∂fF of the preorder spaces (E,≥e)
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and (F,≥f ). In other terms, the reduction of the game (e, f) by elim-
ination of the sub-reactive strategies is the game of decision rules the
restrictions e|(F ′,E′) and f|(E′,F ′), where E ′ and F ′ are the maximal Pareto

boundaries ∂eE and ∂fF of the preordered spaces (E,≥e) and (F,≥f ).

Example (of reduction). Let (e, f) be the game with strategy spaces
E = [−1, 2] and F = [−1, 1] and decision rules e : F → E and f : E → F
defined by

e(y) =


{−1} if y < 0

E if y = 0
{2} if y > 0

,

f(x) =


{−1} if x < 1

F if x = 1
{1} if x > 1

.

The maximal boundaries of the preordered spaces (E,≥e) and (F,≥f ) are
the sets E1 = {−1, 2} and F1 = {−1, 1}, therefore the game is not reduced
because they don’t coincide with respective spaces. The reduction of (e, f) by
elimination of sub-reactive strategies is the game with decision rules e1 : F1 →
E1 and f1 : E1 → F1 defined by

e1(y) =

{
−1 if y = −1
2 if y = 1

,

f1(x) =

{
−1 if x = −1
1 if x = 2

.

Example (of reduced game). We note that the game (e1, f1) of previous
example is reduced. In fact, the reciprocals of e1 and f1 are defined by

e−1 (x) =

{
{−1} if x = −1
{1} if x = 2

,

f−1 (y) =

{
{−1} if y = −1
{2} if y = 1

.

Maximal boundaries of the preordered spaces (E1,≥e1) and (F1,≥f1) are the
sets E2 = {−1, 2} and F2 = {−1, 1}, therefore the game is reduced because
E2 and F2 coincide with the respective spaces. For an easy determination of
the boundaries, we note that, for example, the preordered space (E1,≥e1) is
isomorphic to the preordered space with two elements ({{1} , {−1}} ,⊆).
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3.10 Iterated elimination of sub-reactivity

Definition (of reducing sequence of a game). Let G0 = (e0, f0) be a game
on a strategy base (E0, F0). We call reducing sequence by elimination of
sub-reactive strategies of G0 the sequence of subgames G = (Gk)

∞
k=0, with

first term the game G0 and with k-th term the game Gk = (ek, fk), such
that the strategy base (Ek, Fk) of Gk be the pair of maximal boundaries of the
preordered spaces (Ek−1,≥ek−1

) and (Fk−1,≥fk−1
), of (k − 1)-th subgame, for

each positive integer k. So, decision rules ek and fk are the restrictions to the
pairs (Fk, Ek) and (Ek, Fk) of decision rules ek−1 and fk−1, respectively.

Definition (of solubility by iterated elimination of sub-reactive
strategies). Let G0 = (e0, f0) be a decision form game, and let G be its
reducing sequence by elimination of sub-reactive strategies. The game G0 is
called solvable by iterated elimination of sub-reactive strategies if
there exists only one bistrategy common to all subgames of the sequence G. In
that case, that bistrategy is called the solution by iterated elimination of
sub-reactive strategies of the game G0.

Remark. The definition of solubility by iterated elimination of sub-
reactive strategies is so equivalent to contain the intersection

⋂∞
k=1 Ek × Fk

only one element.

Remark. If the game G0 is finite, it is solvable by iterated elimination of
sub-reactive strategies if and only if there exists a subgame of the sequence
G with only one bistrategy; in that case, that bistrategy is the solution by
iterated elimination of sub-reactive strategies of the game G0.

3.11 Relative super-reactivity

Definition (of relatively super-reactive strategy). Let (e, f) be a two
player game. Let E ′ be a set of Emil’s strategies to which Frances can react
and let y0 be a Frances’ strategy. The strategy y0 is called relatively super-
reactive to E ′ (with respect to the decision rule f) if is possible reaction
to all the Emil’s strategies in E ′. In other terms, a Frances’ strategy y0 is
called relatively super-reactive to E ′ if belongs to the set f(x), for each Emil’s
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strategy x in E ′. Analogously, let F ′ be a set of Frances’ strategies to which
Emil can react and x0 a Emil’s strategy. The strategy x0 is called relatively
super-reactive for F ′ (with respect to the decision rule e) if it is a
possible reaction to all the Frances’ strategies in F ′. In other terms, a Emil’s
strategy x0 is called relatively super-reactive to F ′ if belongs to the set e(y),
for each Frances’ strategy y in F ′.

Remark. So the sets of Emil and Frances’ relatively super-reactive to F ′

and to E ′ strategies are the two intersections ∩F ′e =
⋂

y∈F ′ e(y) and ∩E′f =⋂
x∈E′ f(x). Evidently these intersections can be empty.

Example (of relatively super-reactive strategies). Let (e, f) be the
game with strategy spaces E = [−1, 2] and F = [−1, 1] and decision rules
e : F → E and f : E → F defined by

e(y) =


−1 if y < 0
E if y = 0
2 if y > 0

,

f(x) =


−1 if x < 1
F if x = 1
1 if x > 1

.

Emil has only a relatively super-reactive strategy with respect to not negative
strategies and only relatively super-reactive strategy with respect to Frances’
not positive strategies. In fact⋂

y∈[0,1]

e(y) = E ∩ {2} = {2}

and ⋂
y∈[−1,0]

e(y) = {−1} ∩ E = {−1} .

Frances is in a situation similar with respect to Emil’s greater or equal to 1
strategies and less or equal 1 strategies, in fact⋂

x∈[1,2]

f(x) = F ∩ {1} = {1}

and ⋂
x∈[−1,1]

f(x) = F ∩ {−1} = {−1} .

Following theorem has an obvious proof.
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Theorem (on reactivity). Let x a Emil’s strategy, most great set of
Frances’s strategies F ′ such that x let be relatively super-reactive to F ′ is the
reactivity of x.

Example (of reactivity). Let (e, f) be the game of above example. The
reactivity of Emil’s strategy 2 is the interval [0, 1], the reactivity of Emil’s
strategy −1 is the interval [−1, 0]. Indeed, these intervals are the most big sets
to which the above strategies can react, respectively.

3.12 Dominant strategies

Definition (of dominant strategy). Let (u1,≥) be an Emil’s utility func-
tion on the bistrategy space E×F of a strategy base (E, F ). An Emil’s strategy
x0 in E is called dominant with respect to utility function u1 if, for
each x in E, the inequality

u1(x0, y) ≥ u1(x, y),

holds, for each strategy y in F . In other terms, an Emil’s strategy x0 in E is
called dominant if, for each other strategy x in E, the function inequality

u1(x0, .) ≥ u1(x, .)

holds true. Analogously, let (u2,≥) be a Frances’ utility function on the bis-
trategy space E × F of a strategy base (E, F ). A strategy y0 in F is called
dominant with respect to utility function u2 if, for each y in F , the
inequality

u2(x, y0) ≥ u2(x, y),

holds, for each strategy x in E. In other terms, a Frances’ strategy y0 in F is
called u2-dominant if, for each other strategy y in F , the function inequality

u2(., y0) ≥ u2(., y)

holds true.
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3.13 Dominant and super-reactive strategies

Let us see the first relationship between dominance and reactivity.

Theorem (characterization of dominant strategies). Let (u1,≥) and
(u2,≥) be respectively Emil’s and Frances’ utility functions and let B1 and B2

be the respective decision rules induced by the two functions u1 and u2. Then,
an Emil’s strategy x0 is u1-dominant if and only if it is B1-super-reactive
and, analogously, a Frances’ strategy y0 is u2-dominant if and only if it is
B2-super-reactive.

Proof. Let x0 be a super-reactive strategy with respect to the decision rule
B1. Then, the strategy x0 belongs to the reaction set B1(y), for each y in F .
So, for each y in F , we have the equality

u1(x0, y) = max u1(., y),

that means
u1(x0, y) ≥ u1(x, y),

for each x in E and for each y in F . The vice versa can be proved following
the preceding steps in opposite sense. �

3.14 The preorder of dominance

Definition (of dominance). Let (u,≥) be a normal-form game on the bis-
trategy space E×F of a strategy base (E, F ). We say that an Emil’s strat-
egy x0 dominates (in wide sense) an other Emil’s strategy x with
respect to the utility function u1 if the partial function u1(x0, ·) is greater
(in wide sense) of the partial function u1(x, ·). In this case we write x0 ≥u1 x.
We say that an Emil’s strategy x0 dominates strictly an other Emil’s
strategy x with respect to the utility function u1 if the partial function
u1(x0, ·) is strictly greater than the partial function u1(x, ·). In this case we
write x0 >u1 x. We say that an Emil’s strategy x0 dominates strongly
an other Emil’s strategy x with respect to the utility function u1
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if the partial function u1(x0, ·) is strongly greater than the partial function
u1(x, ·). In that case we will write x0 �u1 x.

Memento (usual order on F(X, R)). Let X be a non-empty set, we
remember that a real function f : X → R is called greater (in a wide sense)
than an other function g : X → R, and we will write it f ≥ g, if the inequality
(in a wide sense)

f(x) ≥ g(x),

holds for each x in X. The increase is called strict, and we will write it f > g
, if f è greater (in a wide sense) than g but different. The f is called strongly
greater than g, and we will write it f � g, if holds the strict inequality

f(x) > g(x),

for each x in X. The relation of majoring ≥ on the function’s space F(X, R)
is a order and is called usual order on F(X, R). We note that the relation
f ≥ g is equivalent to the inequality

inf (f − g) ≥ 0.

Remark. We easily prove that the relation of dominance ≥u1 is a preorder
on E. Actually, it is the reciprocal image of the usual order of the space
of real functionals on F (the space F(F, R)) with respect to the application
E → F(F, R) defined by x 7→ u1(x, .).

Theorem (Characterization of the strict dominance for Weier-
strass’ functions). Let f1 : E × F → R be a Weierstrass’ functional (that
is, assume that there are topologies t1 and t2 on E and F respectively such
that f1 is continuous and defined on a compact, with respect to the product
of the two topologies). Then, assuming the functional f1 represent the Emil’s
disutility, the condition x0 �f1 x is equivalent to the inequality

sup(f1(x0, .)− f1(x, .)) < 0.

Proof. Necessity. Let the strong dominance x0 �f1 x hold. Then the
difference function g = f1(x0, .)− f1(x, .) is negative and moreover there exists
(by the Weierstrass Theorem) a point y0 in F such that the real g(y0) is the
supremum of g, hence

sup g = g(y0) < 0.

Sufficiency (the Weierstrass’ hypotheses are not necessary). If the supremum
of g is negative, every value of g must be negative. �
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3.15 Dominance and reactivity

The following theorem explains the relationship between dominance and reac-
tivity comparison.

Theorem (on the preorder of reactivity). Let (u1,≥) and (u2,≥) be
,respectively, two Emil’s and Frances’ utility function, and let B1 and B2 be
the decision rules induced by the two functions u1 and u2 respectively. Then,
the reactivity preorder ≥Bi

is a refinement of the preorder of dominance ≥ui
.

Proof. We show before that the preorder of reactivity refines the preorder
of dominance. Let x0 ≥u1 x, then u1(x0, .) ≥ u1(x, .), from which, if y ∈ F
and x ∈ B1(y) we have x0 ∈ B1(y). In fact, x ∈ B1(y) means that

u1(x, y) = max u1(., y)

but, because u1(x0, y) ≥ u1(x, y), we have also

u1(x0, y) = max u1(., y),

i.e. x0 ∈ B1(y). �

The preorder of reactivity, in general, is at proper refinement of the preorder
of dominance, as shows following example.

Example. Let (B1, B2) be Cournot decision game with bistrategic space
[0, 1]2 and net cost functions f1 and f2 defined by

f1(x, y) = x (x + y − 1) ,

and, symmetrically,
f2(x, y) = y (x + y − 1) .

We easily see that every strategy in [0, 1/2] is strictly more reactive than any
strategy x > 1/2, in fact the reactivity of any strategy x > 1/2 is the empty
set (it is a non-reactive strategy). In particular, we have 0 >B1 3/4. On the
other hand, the function f1(0, .) is the zero real functional on [0, 1]; on the
contrary the partial function f1(3/4, .) is defined by

f1(3/4, .)(y) = (3/4)(y − 1/4),

for each y in [0, 1], since this last function has positive and negative values, it is
incomparable with the zero function, with respect to usual order of the space
of functions F(F, R). Consequently, the preorder ≥B1 is a proper refinement
of the preorder ≥f1 .

58



3.16 Non-reactivity and strong dominance

Another used concept in game theory is that of strongly dominated strategy
(often it is known in literature as strictly dominated strategy, that for us is
less demanding concept).

Definition (of strongly dominated strategy). Let (u,≥) be a multi-
utility function on the bistrategy space of a two player game. Let (E, F ) be
the pair of the strategy sets of the two players (a game base). We say that a
strategy x0 of E is an Emil’s strongly dominated strategy if there exists
an other strategy x1 in E such that the strict inequality

u1(x0, y) < u2(x1, y),

holds for each strategy y in F . In other terms, we say that a strategy x1 ∈ E
dominates strongly a strategy x0 ∈ E, and is written x1 �u1 x0, if the
partial function u1(x0, ·) is strongly less then the partial function u1(x1, ·).

The following theorem explains the relationships between the non-reactive
strategies and the strongly dominated strategy.

Theorem (strongly dominated strategies as never best response).
Let (u1,≥) and (u2,≥) be respectively Emil’s and Frances’ utility functions
and let B1 and B2 be the decision rules induced by two functions u1 and u2

respectively. Then, if a strategy is strongly dominated with respect to ui it is
non-reactive with respect to Bi.

Proof. Let x0 be an Emil’s u1-strongly dominated strategy, then there is at
least a strategy x in E such that u1(x0, y) < u1(x, y), for every y in F . Hence
the strategy x0 cannot be a best response to any strategy y in F , since x is a
response to y strictly better than x0, for every y in F ; so the reactivity B−

1 (x0)
is empty. �

To be a strongly dominated strategy is more restrictive than to be a never
best response strategy, as shows following example.

Example (an undominated and never-best response strategy). Let
E = {1, 2, 3} and F = {1, 2} be the strategy sets of a two players normal-form
games (u,≥), and let u1 be the Emil’s utility function defined by

u1(1, 1) = u1(1, 2) = 0

u1(2, 1) = u1(3, 2) = 1,

u1(2, 2) = u1(3, 1) = −1.
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We can summarize the function u1 in a utility matrix m1, as follows

m1 =

 0 0
1 −1
−1 1

 .

It is evident in m1 that Emil’s strategy 1 (leading to the first payoff-row) is u1-
incomparable with the other strategies 2 and 3, and then it cannot be strongly
dominated (neither strictly dominated). On the other hand, 1 is an Emil’s
never best response strategy (i.e., it is non-reactive with respect to the best
reply rule B1).
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Chapter 4

Mixed Extensions

4.1 Introduction

The Brouwer fixed point theorem and the Kakutani fixed point theorem rep-
resent, together with the separation theorems, the main instruments to prove
the existence of equilibria in decision form games. These theorems require the
convexity of the strategy sets. This hypothesis is hardly paid: it excludes, for
example, the quite natural situation of finite sets of strategies. In his famous
book written with O. Morgenstern, John Von Neumann, changing perspective,
conceived situations where the assumption of convexity becomes natural and
where it is needed to extend the finite context providing new sharp solutions.
This latter Von Neumann’s intuition leads to the canonical convexification of
a strategy space.

Definition (of canonical convexification). Let E be a finite set of m
elements. We identify the set E with the set m of the first m positive integers
and define canonical convexification of E, in the euclidean space Rm, or
canonical mixed extension of E, the set

Mm := {p ∈ Rm : p ≥ 0 et ‖p‖1 = Σp = 1},

i.e., the canonical (m− 1)-simplex of Rm.
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Remark. The canonical convexification of a strategy set E with m ele-
ments is clearly a compact and convex subset of Rm.

Remark (canonical immersion). We can imbed the finite strategy set
E in the canonical simplex Mm, through the function µ mapping the i-th
element of E (we mean the element corresponding with the integer i in the
chosen identification of E with m) into the i-th element µi of the canonical
basis µ of the vector space Rm, that is the mapping defined by

µ : E → Mm : i 7→ µ (i) := µi.

Obviously, the function µ is injective, and it is said the canonical immersion of
the finite set E into the canonical simplex Mm. There is no matter of confusion
in the identification of the immersion µ with the canonical basis (µi)

m
i=1 of the

vector space Rm, since this one is nothing but the family indexed by the set
m and defined by µ(i) := µi (recall that a family x of points of a set X is a
surjective function from an index set I onto a subset of X, and it is denoted
by (xi)i∈I).

Remark (canonical simplex as convex envelope of the canonical
basis). We note again, that the canonical simplex Mm is the convex envelope
of the canonical base µ of the vector space Rm, so we have in symbols Mm =
conv(µ).

Remark (canonical simplex as the maximal boundary of the unit
‖.‖1-ball). We note moreover, that the canonical simplex Mm is the maximal
boundary (with respect to the usual order of the space Rm) of the unit ball
with respect to the standard norm ‖.‖1 : x 7→ Σm

i=i |xi|, so we have Mm =
∂B‖.‖1 (0m, 1).

Interpretation (elements of the canonical simplex). John von Neu-
mann proposed to interpret the points of the canonical simplex p ∈ Mm as
mixed strategies. According to this interpretation, a player does not choose a
single strategy i ∈ E but he instead plays all the strategies of his strategy set
E, deciding only the probability distribution p ∈ Mm according to which any
strategy must be played.

Remark (mixed strategies to hide intentions). By adopting a mixed
strategy, a player hides his intentions to his opponents. Playing randomly the
strategies at his own disposal, by choosing only the probabilities associated to
each of them, he prevents his opponents by discovering the strategy that he is
going to play, since he himself does not know it.
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Remark (mixed strategies as beliefs about the actions of other
players). Even if the two players do not desire to hide their own strate-
gic intentions, Emil, for instance, does not know what strategy Frances will
adopt, and vice versa. Emil can assume only the probability whereby Frances
will play her strategies; so, actually, what Emil is going to face are not the
pure strategies adopted by Frances but his own probabilistic beliefs about the
Frances’ strategies, i.e. the mixed strategies generated by the Frances’ process
of convexification.

Remark (dynamic). By convexifying the sets of strategies, we are no
longer in the original static context, because this random game can be seen
as a repeated game. The convexification is a first step towards a dynamic
context.

Remark (cooperative game). This process of convexification can be
adopted also in the context of cooperative games, where we can convexify the
sets of player coalitions.

4.2 Mixed extension of vector correspon-

dences

After we have convexify the strategy space of a player, we should extend in
a consistent manner all the functions and correspondences defined on it. The
following definition is a first step in this direction and it extends the correspon-
dences defined on the strategy space of a player and with values in a vector
space.

Definition (of canonical extension). Let
→
X be a vector space (carried

by the set X), let m be the set of the first m natural numbers and let c : m → X
be a correspondence. We say canonical extension of the correspondence
c (to the vector space Rm) the multifunction exc : Rm → X defined by

exc(q) :=
m∑

i=1

qic(i),

for each vector q in Rm.

Remark. Note that the above definition works, since in a vector space we
can sum two subsets and multiply a subset by a scalar, obtaining other subsets
of the space.
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Example (extension of a function). Let E be the set of the first three
natural numbers and c : E → R4 the correspondence defined by c(i) = iµi+1,
for any element i in E, where µ is the canonical basis of the vector space R4.
For each triple q ∈ R3, we have

exc(q) =
3∑

i=1

qic(i) =

=
3∑

i=1

qi(iµi+1) =

= (0, q1, 2q2, 3q3).

Remark. If µ is the canonical immersion of the set E into the canonical
simplex Mm (defined above), the following diagram will commute

Rm
exc→ X

↑µ ↗c

E

.

We have the following obvious but interesting result.

Proposition. Let c : E → X be a function from the finite set E into a

vector space
→
X (i.e. assume that the correspondence c maps each element of

the set E into a unique element of X). Then, its canonical extension exc is a

linear function from the vector space Rm into the vector space
→
X.

Remark (the linearization process induced by a convexification).
The process that associates with the function c : E → X the linear function
exc : Rm → X can be thought as a process of linearization associated to
the convessification process which transforms the finite set E into the convex
compact set Mm.

4.3 Mixed extension of finite decision form

games

In this section we define the mixed extension of a finite decision-form game
(e, f). To this purpose, once convexified the strategy spaces of the players, we
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should extend in a consistent manner the decision rules defined between them.
The following definition provides the extension of a decision rule in this case.

Definition (canonical extension of a decision rule). Let G = (e, f)
be a game with a strategy carrier (E, F ), let E be the set of the first m natural
numbers and F the set of the first n natural numbers. We say canonical
extension of the decision rule e : F → E to the pair of spaces (Rn, Rm)
the correspondence exe : Rn → Rm defined by

exe(q) :=
n∑

j=1

qjµe(j),

for each q in Rn, where µ represents the canonical immersion of the set E
into the vector space Rm.

Remark. Note, for instance in the univocal case, that the vector exe(q) is
a linear combination of the canonical vectors µi of Rm. Therefore, if q is chosen
in the (n − 1)-canonical simplex of the space Rn, the vector exe(q) will be a
convex combination of the vectors of the canonical base of Rm and therefore,
it will belong to the (m − 1)-canonical simplex of Rm. In other words, if q
is a Frances’ mixed strategy then the vector exe(q) will be an Emil’s mixed
strategy.

Definition (mixed extension of a decision-form game). Let G =
(e, f) be a decision form game with a strategy carrier (E, F ), where E is set
of the first m natural numbers and F the set of the first n natural num-
bers. Assume Mm and Mn be the two convex spaces of mixed strategies of the
two players, respectively. We say mixed extension of the decision form
game G the decision form game exG := (exe,ex f), where the decision rules
are the multifunctions exe : Mn → Mm and exf : Mm → Mn defined by

exe(q) :=
n∑

j=1

qjµe(j),
exf(p) :=

m∑
i=1

piνf(i),

for each mixed strategy p in Mm and for each mixed strategy q in Mn, where µ
and ν are the canonical immersions of the Emil’s and Frances’ (finite) strategy
spaces into the two canonical simplexes Mm and Mn, respectively.

Interpretation in Decision Theory. If Emil assumes that Frances will
adopt the mixed strategy q ∈ Mn, he will capable to face all the Frances’ pure
strategies, i.e. the full strategy system ν (canonical base of Rn), weighed by
the system of weights q. Therefore, a rational move for Emil is to play all his
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own possible reactions to the strategies νj, i.e. to play the full reaction system
(µe(j))

n
j=1, using the same distribution of the weights q used by Frances ; in this

way Emil will obtain the mixed strategy exe(q) :=
∑n

j=1 qjµe(j).

4.4 Extension of finite univocal games

Before to proceed we define a useful tool that will allows us to construct
immediately the mixed extension of a decision rule between finite strategy
spaces.

Definition (the matrix of a function between finite sets). Let m
and n be two natural numbers and let f : m → n be a function from the set
m of the first m strictly positive natural numbers into the set n of the first
n strictly positive natural numbers. We say matrix of the function f the
matrix with m columns and two rows having as first row the vector (i)m

i=1, i.e.
the m-vector having for i-th component the integer number i, and as second
row the vector (f(i))m

i=1, i.e. the real m-vector having as i-th component the
image f(i) of the integer number i under the function f .

Example (with univocal rules). Let n be the set of the first n strictly
positive integers and let e : 3 → 2 and f : 2 → 3 the Emil’s and Frances’
decision rules, respectively, with corresponding matrices

Me =

(
1 2 3
1 1 2

)
, Mf =

(
1 2
3 2

)
.

Note that the game G = (e, f) has no equilibria, since the two elements of the
set 2 could not be equilibrium strategies for Emil. Indeed, we have for those
two strategies the two corresponding evolutionary paths

1 →f 3 →e 2, 2 →f 2 →e 1.

In order to obtain the mixed extension of the game G, we denote by b and
b′ the canonical bases of the spaces R2 and R3, respectively. By imbedding
the two finite strategy spaces into their respective euclidean spaces, we can
transform the two matrices Me and Mf , obtaining their formal extensions

exMe =

(
b′1 b′2 b′3
b1 b1 b2

)
, exMf =

(
b1 b2

b′3 b′2

)
.
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The mixed extensions of the decision rules are so defined, on the canonical
simplexes M2 and M3 of the two vector spaces R2 and R3, respectively, by

exe : M3 → M2 : q → q1b1 + q2b1 + q3b2,
exf : M2 → M3 : p → p1b

′
3 + p2b

′
2;

therefore we have

exe(q) = (q1 + q2, q3),
exf(p) = (0, p2, p1).

Now, by imposing the conditions of equilibrium (recall that a bistrategy (x, y)
of the game is an equilibrium if and only if x = e(y) et y = f(x)) to the pair
(p, q), we have

p =ex e(q) = (q1 + q2, q3), et q =ex f(p) = (0, p2, p1),

that is {
p1 = q1 + q2

p2 = q3
et


q1 = 0
q2 = p2

q3 = p1

;

from which we deduce immediately
p1 = q1 + q2

p2 = q3 = q2 = p1

q1 = 0
;

now, taking into account that the two vectors p and q are two probability
distributions, we have p = (1/2, 1/2) and q = (0, 1/2, 1/2), so we have found
the unique equilibrium (p.q) in mixed strategies of the decision form game G.

4.5 Other univocal examples

Example (morra Chinese). Let the strategies of the two players be 1, 2
and 3 respectively (corresponding with the three strategies scissors, stone
and paper). The decision rules of best reply of the two players in the morra
Chinese, i.e. the decision rules which impose to reply to the moves of the other
player in order to win, are the two decision rules e : 3 → 3 and f : 3 → 3 with
associated matrices

Me =

(
1 2 3
2 3 1

)
, Mf =

(
1 2 3
2 3 1

)
;
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according to the above rules a player must reply to the strategy scissors by
the strategy stone, to stone by the strategy paper and to paper by the strategy
scissors. Note that the decision form game (e, f) has no equilibria, because the
three Frances’ strategies could not be equilibrium strategies. Indeed, we have
the three evolutionary paths corresponding to any of the feasible strategies

1 →e 2 →f 3, 2 →e 3 →f 1, 3 →e 1 →f 2.

In order to obtain the mixed extension of the game, we denote by b the canon-
ical basis of the vector space R3. By imbedding the two finite strategy spaces
into their respective euclidean spaces, we can transform the two matrices Me

and Mf , obtaining their formal extensions

exMe =

(
b1 b2 b3

b2 b3 b1

)
, exMf =

(
b1 b2 b3

b2 b3 b1

)
.

The mixed extensions of the decision rules are defined on the canonical simplex
M3 of the space R3 by

exe : M3 → M3 : q → q1b2 + q2b3 + q3b1,
exf : M3 → M3 : p → p1b2 + p2b3 + p3b1;

therefore we have

exe(q) = (q3, q1, q2),
exf(p) = (p3, p1, p2),

for any two mixed strategies p and q in the simplex M3. By imposing the
condition of equilibrium to the pair (p, q), we have

p1 = q3

p2 = q1

p3 = q2

et


q1 = p3

q2 = p1

q3 = p2

,

from which we deduce 
p1 = q3 = p2

p2 = q1 = p3

p3 = q2 = p1

;

recalling that p and q are probability distributions (indeed they are elements
of the canonical simplex M3), we find that the pair (p, q), with p = q =
(1/3, 1/3, 1/3), is the unique equilibrium in mixed strategies of the game.

Example. Let n be the set of the first n positive integers (> 0) and let
e : 3 → 4 and f : 4 → 3 be the Emil’s and Frances’ decision rules corresponding
to the matrices

Me =

(
1 2 3
4 3 2

)
, Mf =

(
1 2 3 4
3 2 1 3

)
.
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Note that the game G = (e, f) has no equilibria, because the three Frances’
strategies could not be equilibrium strategies (for Frances). In fact, we have
the three evolutionary orbits corresponding with any of the Frances’ strategies

1 →e 4 →f 3, 2 →e 3 →f 1, 3 →e 2 →f 2.

To obtain the mixed extension of the game, we denote with b and b′ the canon-
ical bases of R4 and R3, respectively. By imbedding the two finite strategy
spaces into their respective euclidean spaces, we can transform the two matri-
ces Me and Mf , obtaining their formal extensions

exMe =

(
b′1 b′2 b′3
b4 b3 b2

)
, exMf =

(
b1 b2 b3 b4

b′3 b′2 b′1 b′3

)
.

The mixed extensions of the decision rules are defined on the canonical sim-
plexes M4 and M3 of the vector spaces R4 and R3, respectively, by what follows

exe : M3 → M4 : q → q1b4 + q2b3 + q3b2,
exf : M4 → M3 : p → p1b

′
3 + p2b

′
2 + p3b

′
1 + p4b

′
3;

therefore we have

exe(q) = (0, q3, q2, q1),
exf(p) = (p3, p2, p1 + p4).

By imposing the conditions of equilibrium to the pair (p, q), we have
p1 = 0
p2 = q3

p3 = q2

p4 = q1

et


q1 = p3

q2 = p2

q3 = p1 + p4

;

from which we deduce 
p1 = 0
p2 = q3 = p4 = q1

p3 = q2 = p2

;

now, recalling that p and q are probability distributions, we have p =
(0, 1/3, 1/3, 1/3) and q = (1/3, 1/3, 1/3), we thus have found the unique equi-
librium (p, q) in mixed strategies of the game G.

Example. Let n be the set of the first n positive integers (> 0) and let
e : 4 → 4 and f : 4 → 4 the Emil’s and Frances decision rules with matrices

Me =

(
1 2 3 4
1 2 1 2

)
, Mf =

(
1 2 3 4
3 4 3 4

)
.
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Note that the decision form game G = (e, f) has the two “pure” equilibria (1, 3)
and (2, 4). In fact, we have the following four evolutionary orbits corresponding
to the Frances’ strategies

1 →e 1 →f 3, 2 →e 2 →f 4, 3 →e 1 →f 3, 4 →e 2 →f 4.

Anyway, we desire to see if there are mixed equilibria that are not pure equi-
libria. To obtain the mixed extension of the game G, we denote with b the
canonical basis of R4. By imbedding the two finite strategy spaces into R4, we
can transform the two matrices Me and Mf into their formal extensions

exMe =

(
b1 b2 b3 b4

b1 b2 b1 b2

)
, exMf =

(
b1 b2 b3 b4

b3 b4 b3 b4

)
.

The mixed extensions of the decision rules are so defined on the simplex M4

of the space R4, by

exe : M4 → M4 : q → q1b1 + q2b1 + q3b1 + q4b2,
exf : M4 → M4 : p → p1b3 + p2b4 + p3b3 + p4b4;

therefore we have

exe(q) = (q1 + q3, q2 + q4, 0, 0), exf(p) = (0, 0, p1 + p3, p2 + p4).

Now, by imposing the conditions of equilibrium to the strategy pair (p, q), we
have 

p1 = q1 + q3

p2 = q2 + q4

p3 = 0
p4 = 0

et


q1 = 0
q2 = 0

q3 = p1 + p3

q4 = p2 + p4

,

from which we deduce 
p1 = q3

p2 = q4

p3 = 0
p4 = 0

et


q1 = 0
q2 = 0
q3 = p1

q4 = p2

;

recalling that p and q are probability distributions, we have p = (a, a′, 0, 0)
and q = (0, 0, a, a′), with a ∈ [0, 1] a probability coefficient and a′ := 1− a its
probability complement; we have thus finally found infinitely many equilibria
(pa, qa) in mixed strategies for the game G.
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4.6 Extension of the finite multivocal games

The useful concept of the matrix corresponding with a function between finite
sets can be extended immediately to the multivocal case since it is enough to
consider set valued matrices.

Definition (of matrix of a multifunction between finite sets). Let
f : m → n be a multifunction. We say matrix of f the set valued matrix with
m columns and two rows which have as first row the vector (i)m

i=1, i.e. the
m-vector having as i-th component the integer number i, and as second row
the vector (f(i))m

i=1 of subsets of n, i.e. the m-vector having as i-th component
the image f(i) (that is a set) of the number i under the correspondence f .

Example (with multivocal rule). Let n be the set of first n positive
integers (> 0) and let e : 2 → 3 and f : 3 → 2 be the Emil’s and Frances’
decision rules with associated matrices

Me =

(
1 2
2 {1, 3}

)
, Mf =

(
1 2 3
1 1 2

)
.

Note that the game G = (e, f) has two equilibria. In fact, we have the two
evolutionary chains

1 →e 2 →f 1, 2 →e 3 →f 2.

Therefore the game has the two equilibria (2, 1) and (3, 2). To obtain the
mixed extension of the game G, we denote by b and b′ the canonical bases of
R2 and R3, respectively. Imbedding the two finite strategy spaces into their
respective euclidean spaces, we can transform the two matrices, obtaining

exMe =

(
b1 b2

b′2 {b′1, b′3}

)
, exMf =

(
b′1 b′2 b′3
b1 b1 b2

)
.

the mixed extension of the decision rules are so defined on the two canonical
simplexes M2 and M3 of the vector spaces R2 and R3, respectively, by

exe : M2 → M3 : q 7→ q1b
′
2 + {q2b

′
1, q2b

′
3} ,

exf : M3 → M2 : p 7→ p1b1 + p2b1 + p3b2;

therefore we have

exe(q) = {(q2, q1, 0), (0, q1, q2)} ,
exf(p) = (p1 + p2, p3),
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for any two mixed strategies p and q. By imposing the conditions of equilibrium
to the pair (p, q), we have

p1 = q2

p2 = q1

p3 = 0
et

{
q1 = p1 + p2

q2 = p3
,

or 
p1 = 0
p2 = q1

p3 = q2

et

{
q1 = p1 + p2

q2 = p3
,

from which, recalling that p and q are probability distributions, we have p =
(0, 1, 0) and q = (0, 1), or p = (0, a, a′) and q = (a, a′), for each a ∈ [0, 1], where
a′ = 1− a. We have thus found infinite equilibria in mixed strategies, among
which there are the two equilibria in pure strategies (those already seen).
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Part II

Normal Form Games and
Applications
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Chapter 5

Payoff space for C1 games

5.1 Introduction

In the current literature the study of a game in normal form consists principally
in the determination of the Nash equilibria in mixed strategies and in the
analisys of their stability properties (see [17], [18] and [15]). This does not
give a complete and global view of the game, since, for instance, it should
be interesting to know the positions of the payoff profiles corresponding to
the Nash equilibria in the payoff space of the game: but, the knowledge of
these positions requires the knowledge of the entire payoff space. This need
becomes inevitable when the problem to solve in the game is a bargaining
one: in fact, the determination of a bargaining solution (or of compromise
solutions) needs the analytical determination of the Pareto boundaries. In our
paper we shall present a general method to find an explicit expression of the
Pareto boundaries, via the determination of the entire topological boundary of
the payoff space of the game. Resuming, the motivation of the paper resides
upon the fact that a complete and deep study of a game in normal form
requires the knowledge of the payoff space, or at least of its Pareto boundaries,
especially when one passes to the cooperative phase of the game, since to
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find bargaining solutions or other compromise solutions, the knowledge of the
Pareto boundaries is necessary.

Finally, we desire to note that this paper follows a general aim (we seek for
also in [17], [18], [19], [20]): to construct solid theoretical bases for Economics
and Finance by algebraic, topological and differentiable structures.

5.2 Preliminaries and notations

We shall consider n-person games in normal form. We give the definition used
in this work for ease of the reader. The form of definition we give is particularly
useful for our purpose.

Definition 1 (of game in normal form). Let E = (Ei)
n
i=1 be an ordered

family of non-empty sets. We call n-person game in normal form upon
the support E each function f :× E → Rn, where ×E denotes the cartesian
product ×n

i=1Ei of the family E. The set Ei is called the strategy set of
player i, for every index i of the family E, and the product ×E is called the
strategy profile space, or the n-strategy space, of the game.

Terminology. With this choice of definition for games in normal form, we
have to introduce some terminologies:

• the set {i}n
i=1 of the first n positive integers is said the set of the players

of the game;

• each element of the cartesian product ×E is said a strategy profile of the
game;

• the image of the function f , i.e., the set of all real n-vectors of type f(x),
with x in the strategy profile space ×E, is called the n-payoff space, or
simply the payoff space, of the game f .

We recall, further, for completeness (and ease of the reader), the definition
of Pareto boundary we shall use in the paper.

Definition 2 (of Pareto boundary). The Pareto maximal boundary
of a game f is the subset of the n-strategy space of those n-strategies x
such that the corresponding payoff f(x) is maximal in the n-payoff space, with
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respect to the usual order of the euclidean n-space Rn. We shall denote the
maximal boundary of the n-payoff space by ∂f(S) and the maximal boundary of
the game by ∂f (S) or by ∂(f). In other terms, the maximal boundary ∂f (S) of
the game is the reciprocal image (by the function f) of the maximal boundary
of the payoff space f(S). We shall use analogous terminologies and notations
for the minimal Pareto boundary.

5.3 The method

The context. We deal with a type of normal form game f defined on the
product of n compact non-degenerate intervals of the real line, and such that f
is the restriction to the n-strategy space of a C1 -function defined on an open
set of Rn containing the n-strategy space S (that, in this case, is a compact
non-degenerate n -interval of the n-space Rn).

Before to give the main result of the method, we recall some basic notions.

5.3.1 Topological boundary

We recall that the topological boundary of a subset S of a topological space
(X, T ) is the set defined by the following three equivalent propositions:

• it is the closure of S without the interior of S: ∂S = cl(S)\int(S);

• it is the intersection of the closure of S with the closure of its complement

∂S = cl(S) ∩ cl(X\S);

• it is the set of those points x of X such that every neighborhood of x
contains at least one point of S and at least one point in the complement
of S.

The key theorem of our method is the following one.

Theorem 1. Let f be a C1 function defined upon an open set O of the
euclidean space Rn and with values in Rn. Then, for every part S of the open
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O, the topological boundary of the image of S by the function f is contained
in the union f(∂S) ∪ f(C), where C is the critical set of f in S, that is the
set of the points x of S such that the Jacobian matrix Jf (x) is not invertible.

The full comprehension of the proof requires some important preliminary
notions.

5.3.2 Local diffeomorphism and the local inversion the-
orem

Let X and Y be two open subsets of the euclidean space Rn, let f : X → Y
be a function and let x0 be a point of X. The function f is said a local
homeomorphism (respectively, a local diffeomorphism) at the point x0 if there
is an open neighborhood U of x0 such that the restriction of f to the pair of
subsets (U, f(U)) is a homeomorphism (respectively diffeomorphism).

The following fundamental theorem is a consequence of the Dini’s theorem.

Theorem (local inversion theorem for C1-functions). Let X and
Y be two open subsets of the euclidean space Rn, and let f : X → Y be a
C1-function. Then, for every point x0 ∈ X such that the derivative f ′(x0) is
a bijective linear application, f is a local diffeomorphism at x0.

In the conditions of the above theorem, we shall say that a point x0 of X
is a regular point of the function f if the derivative f ′(x0) is a bijective linear
application.

Proof of theorem 1. The theorem derives from the local inversion theorem
for C1-functions, and it is based on the fact that a C1 function f is a local
diffeomorphism at every point (of its domain) in which f has invertible Jaco-
bian matrix. More precisely, since f is a local diffeomorphism at the points
not belonging to the critical part of f , it is also a local homeomorphism at
those points, and then it sends the neighborhoods of a regular point x0 onto
neighborhoods of the image f(x0) and, consequentely, regular interior points
to interior points of Y . So, let X be a payoff in the topological boundary of the
image f(S). The payoff X cannot be the transformation of a regular interior
point of S, so it must belong to the part f(∂S) or to the part f(C). �

To determine the payoff space of the game we have to do some further
topological remarks.
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Remark 1. Taking into account that f is a continuous function (since it
is C1), the set f(S) is compact since S is compact, and it is connected since
S is connected.

Remark 2. The critical part C is a closed set, since it is the level of a
continuous functional (the Jacobian functional det Jf ), so the complement of
C in S is relatively open in S.

Remark 3 (on the openness of local homeomorphisms). Let X and
Y be two open subsets of the euclidean n-space, let f : X → Y be a local
homeomorphism and let O be an open subset of X. Clearly, f(O) is open;
indeed, let y0 be a point of f(O), we must prove that y0 is an interior point.
Let x0 be a reciprocal image of y0, by definition of local homeomorphism, there
is a neighborhood U of x0, such that f(U) is an open neighborhood of y0.

Remark 4 (transformation of simply connected parts). Let A be a
relatively open and simply connected set in one of the connected components
of S\C, suppose that f is injective on A. Since the restriction to the pair
(S\C, f(S\C)) is an open mapping, the restriction to the pair (A, f(A)) is an
homeomorphism. Consequently, the image f(A) is simply connected.

Conclusions. So, it is enough to determine the critical part of the game
and transform it together with the sides of the n-strategy space, but it is
necessary to taking into account the above topological considerations.

5.4 Example in dimension 2

Description of the game. We consider a loss-game G = (f,≤), with strategy
sets E = F = [0, 1] and biloss (disutility) function defined by

f(x, y) = (−4xy, x + y),

for every bistrategy (x, y) of the game.

Remark 5. This game can be viewed as the mixed extension of the finite
bimatrix game

M =

(
(−4, 2) (0, 1)
(0, 1) (0, 0)

)
.
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Classification. The game is not linear, it is, utterly, bilinear. It is not
symmetric (with respect to the players), since f1(x, y) 6= f2(y, x), but it is
symmetric with respect to the bistrategies, since fi(x, y) = fi(y, x), for every
player i. It is not invertible, since there are two different equivalent bistrategies:
f(1, 0) = f(0, 1) = (0, 1).

5.4.1 The critical space of the game

In the following we shall denote by A, B, C and D the vertices of the square
E × F , starting from the origin and going anticlockwise.

Jacobian matrix. The Jacobian matrix is

Jf (x, y) =

(
−4y −4x
1 1

)
,

for every bistrategy (x, y). The Jacobian determinant is

det Jf (x, y) = −4y + 4x,

for every pair (x, y).

Critical space. The critical zone is the subset of the bistrategy space
of those bitrategies (x, y) verifying the equality −y + x = 0. In symbols, the
critical zone is the segment

C(f) =
{
(x, y) ∈ [0, 1]2 : x = y

}
= [A, C] .

Transformation of the critical space. Let us determine the image
f ([A, C]). The segment [A, C] is defined by the relations{

x = y
y ∈ [0, 1]

.

The value of the biloss function upon the generic point (y, y) is

f(y, y) = (−4y2, 2y).

Setting {
X = −4y2

Y = 2y
,
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we have {
X = −Y 2

Y ∈ [0, 2]
.

Thus, the image of the critical zone is the parabolic segment of equation X =
−Y 2 with end points A′ = (0, 0) and C ′ = (−4, 2).

5.4.2 The biloss (disutility) space

Transformation of the topological boundary of the bistrategy space.
We start from the image f ([A, B]). The segment [A, B] is defined by the
relations {

y = 0
x ∈ [0, 1]

.

The value of the biloss function upon the generic point of this segment is the
biloss f (x, 0) = (0, x). Setting {

X = 0
Y = x

,

we have {
X = 0
Y ∈ [0, 1]

.

Thus the image of the segment [A, B] is the segment of end points A′ = (0, 0)
and B′ = (0, 1). Image of f ([D, C]). The segment [D, C] is defined by the
relations {

y = 1
x ∈ [0, 1]

.

The image of the generic point is f (x, 1) = (−4x, x + 1). Setting{
X = −4x
Y = x + 1

,

we have {
X = 4− 4Y
Y ∈ [1, 2]

.

Thus the image is the segment of end points D′ = (0, 1) and C ′ = (−4, 2).
Transformation f ([C, B]). The segment [C, B] is defined by{

x = 1
y ∈ [0, 1]

.
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The image of the generic point is f(1, y) = (−4y, 1 + y). Setting{
X = −4y
Y = 1 + y

,

we obtain {
X = 4− 4Y
X ∈ [−4, 0]

.

So the image is the segment of end points C ′ = (−4, 2) and B′ = (0, 1). Finally,
let’s determine the image f ([A, D]). The segment [A, D] is defined by{

x = 0
y ∈ [0, 1]

.

The image of the generic point is f(0, y) = (0, y). Setting{
X = 0
Y = y

,

we obtain {
X = 0
Y ∈ [0, 1]

.

So the image is the segment of end points A′ = (0, 0) and D′ = (0, 1).

Extrema of the game. The extrema of the game are

α := inf G = (−4, 2) /∈ G,

and
β := sup G = (0, 2) /∈ G.

They are both shadow extremes.

Pareto boundaries. The Pareto boundaries of the biloss space are

∂f (E × F ) = f([A, C])

(the image of the critical zone of the game, that is a parabolic arc) and

∂f (E × F ) = [B′, C ′] ;

consequently the Pareto boundaries of the bistrategy space are

∂f (E × F ) = [A, C]

and
∂f (E × F ) = [B, C] ∪ [D, C] .
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5.4.3 Cooperative phase: Selection of Pareto bistrate-
gies

We shall examine the most common cooperative solutions.

Kalai Smorodinsky solution (elementary best compromise). The
elementary best compromise biloss (X, Y ) is the intersection of the segment
joining the threat biloss v# (see [2] and [3]) with the infimum of the game,
thus it satisfies the system 

Y = (1/4)X + 1
X = −Y 2

X ∈ [−4, 0]
Y ∈ [0, 2]

,

leading to the resolvent equation X2 +24X +16 = 0, its acceptable solution is
a =

√
128− 12, so the biloss K ′ = (a, a/4 + 1) is the best compromise biloss.

The Kalai Smorodinsky solution is the unique corresponding bistrategy solving
of the system {

−4xy = a
x + y = a + 1

,

i.e., the strategy profile

K =

(
a + 1

2
,
a + 1

2

)
.

Core best compromise. The core best compromise biloss is the inter-
section of the segment joining the threat biloss v# with the infimum of the
core, thus it satisfies the system

Y = X + 1
X = −Y 2

X, Y ∈ [0, 1]
,

putting γ =
(
−1 +

√
5
)
/2 the solution is the biloss P ′ = (−γ2, γ), it is the

unique core best compromise biloss. The core best compromise solution solves
the system {

−4xy = −γ2

x + y = γ
,
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taking into account that this solution must belong to the core, we known also
that x = y, and then x = y = γ/2.

Nash bargaining solution with v# as disagreement point. The
possible Nash bargaining bilosses, with disagreement point represented by the
conservative bivalue v#, are the possible solutions of the following optimization
problem: {

max
(
X − v#

1

) (
Y − v#

2

)
= max X(Y − 1)

sub X = −Y 2
.

The section of the objective Nash bargaining function upon the constraint is
defined by

g (Y ) = −Y 2 (Y − 1) = −Y 3 + Y 2,

for every Frances’ loss Y . The derivative

g′ (Y ) = −3Y 2 + 2Y,

is non-negative when
Y (3Y − 2) ≤ 0,

that is on the interval [0, 2/3], consequently the maximum point of g is the
loss Y = 2/3, with corresponding Emil’s loss X = −4/9 by the constraint.
Concluding the point F ′ = (−4/9, 2/3) is the unique Nash bargaining biloss.
The set of Nash bargaining solutions is the reciprocal image of this biloss by
the biloss function f .

Minimum aggregate loss (maximum collective utility). The possi-
ble bilosses with maximum collective utility are the possible solutions of the
following optimization problem:{

min (X + Y )
sub X = −Y 2 .

We immediately see that the unique biloss with these two properties is C ′ =
(−4, 2), with collective utility 2. The unique maximum utility solution of the
game is then the corresponding bistrategy C.
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5.5 Another example in dimension 2

We shall study the mixed extension of the finite game with payoff bimatrix

M =

(
(0, 0) (0, 1)
(1, 0) (a, b)

)
,

where a, b ∈ [0, 1] and a + b < 1.

Payoff functions. The payoff functions of the mixed extension are defined
on the biprobabilistic space [0, 1]2, by

f1(p, q) = p(1− q) + apq = p− (1− a)pq,

f2(p, q) = q(1− p) + bpq = q − (1− b)pq,

for every probabilistic profile (p, q). The payoff function of the game is defined
by

f(p, q) = (p− a′pq, q − b′pq) = (p(1− a′q), q(1− b′p)),

where a′ = 1 − a and b′ = 1 − b are the complements with respect to 1 of a
and b, respectively. The complements with respect to 1 cannot be zero since
a + b < 1.

Critical zone of the game. The Jacobian matrix of the function f at
the bistrategy (p, q) is

Jf (p, q) =

(
1− q + aq −p + ap
−q + bq 1− p + bp

)
,

i.e.,

Jf (p, q) =

(
1− (1− a)q −(1− a)p
−(1− b)q 1− (1− b)p

)
=

(
1− a′q −a′p
−b′q 1− b′p

)
.

The Jacobian determinant at (p, q) is

det Jf (p, q) = (1− a′q)(1− b′p)− a′b′pq =

= 1− a′q − b′p.

It vanishes upon the line r of equation

a′q + b′p = 1.
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This line r intersects the bistrategic space [0, 1]2 iff a/b′ ≤ 1, that is, iff a+ b ≤
1; since we assumed a + b < 1 this intersection must be non-empty, it shall
be a segment. The end points of this segment are the points H = (a/b′, 1)
and K = (1, b/a′) (note that the relation a/b′ ≤ 1 is equivalent to the relation
b/a′ ≤ 1). Consequently, the critical zone of the game is the segment [H, K],
and its first and second projections are, respectively, the interval [a/b′, 1] and
the interval [b/a′, 1].

Remark 6. If a/b′ > 1, that is a + b > 1, the critical zone of the game is
void.

Transformation of the critical zone. Let (p, q) be a bistrategy of the
critical zone [H, K], we have

f(p, q) = (p− a′pq, q − b′pq) =

= (p(1− a′q), q(1− b′p)) =

= (b′p2, a′q2).

Hence the first projection of the image of the critical zone is the interval

b′
[
(a/b′)2, 1

]
=

[
a2/b′, b′

]
.

The second projection is analogously [b2/a′, a′]. The image of the critical zone
is the set

f([H, K]) =
{
(X, Y ) ∈

[
a2/b′, b′

]
×

[
b2/a′, a′

]
: X = b′p2, Y = a′q2

}
.

Note that the images of the two points H and K are, respectively,

f(H) = f(a/b′, 1) =

= ((a/b′)(1− a′), (1− b′(a/b′))) =

= ((a/b′)a, (1− a)) =

= (a2/b′, a′),

and

f(K) = f(1, b/a′) =

= ((1− b), (b/a′)(1− b′)) =

= (b′, b2/a′).
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Explicit expression of the image of the critical zone. For a point
(b′p2, a′q2) of the image of the critical zone, we have

(b′p2, a′q2) = (b′p2, q(1− b′p)) =

=

(
b′p2,

1

a′
(1− b′p)2

)
=

=

(
X, (1/a′)

(
1−

√
b′X

)2
)

,

where we put X = b′p2. Hence the explicit equation of the image of the critical
zone is

Y =
1

a′

(
1− 2

√
b′X + b′X

)
,

where X is in the interval [a2/b′, b′].

Transformation of the sides of the bistrategic square. Let A, B, C
and D be the four vertices of the bistrategic square [0, 1]2 starting from the
origin and going anticlockwise. Let us transform the side [B, C]. The image
of the generic point (1, q) of the side [B, C] is

f(1, q) = (1− a′q, q − b′q) =

= (1− a′q, bq) =

=

(
1− a′

b
Y, Y

)
,

where we put Y = bq. One has Y ∈ [0, b] and X = 1− (a′/b)Y that is

Y = b/a′ − (b/a′)X.

Explicit equation of the Pareto boundary. The Pareto boundary, in
the case a/b′ ≤ 1 is the set of payments pairs (X, Y ) such that

Y =


1− (b′/a)X iff 0 ≤ X ≤ a2/b′

(1/a′)
(
1− 2

√
b′X + b′X

)
iff a2/b′ < X < b′

(b/a′)− (b/a′)X iff b′ ≤ X ≤ 1

.

If, on the contrary, a > b′, it is the union of the two segments [(0, 1), (a, b)]
and [(a, b), (1, 0)].

Remark 7. Resuming, the interesting cases are those for which a ≤ b′,
when the boundary is the union of the two segments [(0, 1), f(H)], [f(K), (1, 0)]
and of the arc Γ of equation

Y = (1/a′)
(
1−

√
b′X

)2

,

86



with end points f(H) = (a2/b′, a′) and f(K) = (b′, b2/a′).

Nash bargaining solutions. We have to maximize the function G :
R2 → R defined by

G(X, Y ) = (X − a)(Y − b),

for every pair (X, Y ) of the plane, constrained to payments space f
(
[0, 1]2

)
.

There are two cases. If a/b′ ≥ 1 the game-payment corresponding to the Nash
bargaining solution is C ′ = (a, b), since the cone of the upper bounds of (a, b)
intersects the payments space only in the point (a, b) itself. If a/b′ < 1 the
maximum is attained on the arc Γ - since, say A′ and B′ the payments (1, 0)
and (0, 1), the segments [A′, C ′] and [C ′, B′] are not contained in the cone of
the upper bounds of C ′ - and consequently the zone in which lies the maximum
of the function G is contained in the remaining part of Pareto boundary, that
is the arc Γ. Moreover, the function G vanishes on the frontier of the cone of
upper bounds of the point C ′, and so the maximum shall be in the interior of
the curve Γ (not at its end points) thus we can apply the Lagrange theorem.

Determination of the payments associated with Nash bargaining
solution in the case a/b′ < 1. The function G has the same values of the
function g defined by

g(p, q) = G(b′p2, a′q2),

for every pair (p, q) of the segment [H, K]. The Lagrange function is defined
by

L(p, q, λ) = g(p, q) + λ(b′p + a′q − 1) =

= (b′p2 − a)(a′q2 − b)− λ(b′p + a′q − 1).

Applying the Lagrange theorem, we can conclude that the maximum point
(p, q) of the g on the constraint must verify the system

2p(a′q2 − b)− λ = 0
2(b′p2 − a)q − λ = 0

b′p + a′q − 1 = 0
,

it conducts, at once, to a third degree equation in p or in q. Precisely, the
equation

2t3 − 3t2 + (1− b− a + 2ab)t + ab′ = 0,

with t = b′p.

Solution in the particular case a/b′ < 1 and a = b. If a = b, the Nash
bargaining solution (p, q) must be a stationary point of the Lagrange function

L(p, q, λ) = a′p2a′q2 − λ(a′p + a′q − 1),
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thus it solves the system 
2pa′q2 − λ = 0
2a′p2q − λ = 0

a′p + a′q − 1 = 0
,

that is, the system {
q = p

a′p + a′q − 1 = 0
,

so we immediately deduce the unique Nash bargaining solution

(p, q) =

(
1

2a′
,

1

2a′

)
,

with payment

f(p, q) =

(
1

4a′
,

1

4a′

)
.

Note that the payment 1/(4a′) is greater or equal to a, for each a ∈ [0, 1],
and it is strictly greater than a, if a 6= 1/2, in fact the relation 1/(4a′) > a
is equivalent to the inequality (2a − 1)2 > 0, and if a/a′ < 1, we have just
a < 1/2.

5.6 An example in dimension 3

The game. Let consider the three person game f : [−1, 1]3 → R3 defined by

f(x) = (x1x2, x2x3,−x3x1),

for every strategy triple x.

Critical part of the game. The Jacobian of the game at a strategy triple
x is

Jf (x) =

 x2 x1 0
0 x3 x2

−x3 0 −x1

 .

The Jacobian determinant is D(x) = −2x1x2x3, for each strategy triple x. The
functional D vanishes only upon the three coordinate planes.

88



Image of the critical part. The image of the critical part of the game
is “the star” union of the three segments [−ei, ei], with i = 1, 2, 3, where ei

is the i-th vector of the canonical basis of the 3-space R3. Image of the

topological boundary of the strategy space. The images of the six sides
of the strategy cube are pairwise coincident. The boundary of the n-payoff
space is the union of the three supports of the parametric surfaces

si : [−1, 1]2 → R3,

defined by s3(y) = (y1y2, y2,−y1), s2(y) = (y1, y2,−y1y2) and s1(y) =
(y1, y1y2,−y1) , for each y in the square [−1, 1]2.

We consider the game as a gain-game - rigorously we consider the function
f endowed with the usual majoring order ≥ of the euclidean space - so we are
interested in the part of the payoff in the first orthant.

Remark 8. It is evident that the payoff space is concave: for example,
the point (1/3)(1, 1, 1) does not belong to the payoff space, but it is convex
combination of the canonical basis e, whose elements are in the payoff space.

Remark 9. If the game is with transferable utility, being the maximum cu-
mulative utility of the game 1, the players can agree on the payoff (1/3)(1, 1, 1),
that is the barycentric payoff on the maximum utility triangle conv(e) (convex
envelope of the canonical basis) of equation u1 + u2 + u3 = 1.

Remark 10. If the game is without transferable utility, the players can
agree to use mixed correlated strategy profiles. The convex hull of the 3-
payoff space (which is the payoff space of the correlated mixed extension of
the game) has the same plane, of equation

∑
u = 1, as Pareto boundary, now

the Kalai-Smorodinsky payoff in this situation is evidently (1/3)(1, 1, 1).

89



Chapter 6

Study of a game with concave
utility space

6.1 Introduction

We recall that for the complete study of a game we shall follow the following
points of investigation, we shall:

0a) classify the game (linear, symmetric, invertible, symmetric in the strategies,
...);

0b) find the critical zone of the game and its image by f ;
0c) determine the biloss space f(E × F );
0d) determine inf and sup of the game and see if they are shadow optima;
0e) determine the Pareto boundaries ∂f (E ×F ) e ∂f (E ×F ) and their images

by f ;
1a) specify the control of each player upon the boundaries ∂(G) and ∂(G);
1b) specify the noncooperative reachability and controllability of the Pareto

boundaries;
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1c) find the possible Pareto solutions and crosses;
1d) find devotion correspondences and devotion equilibria;
1e) specify the efficiency and noncooperative reachability of devotion equilibria;
2a) find best reply correspondences and Nash equilibria;
2b) study the existence of Nash equilibria (Brouwer and Kakutany);
2c) evaluate Nash equilibria: noncooperative reachability, position with respect

to α and β, efficiency, devotion;
2d) find, if there are, dominant strategies;
2e) find strict and dominant equilibria, reduce the game by elimination of dom-

inated strategies;
3a) find conservative values and worst loss functions of the players;
3b) find conservative strategies and crosses;
3c) find all the conservative parts of the game (in the bistrategy and biloss

spaces);
3d) find core of the game and conservative knots;
3e) evaluate Nash equilibria by the core and the conservative bivalue;
4a) find the worst offensive correspondences and the offensive equilibria;
4b) specify noncooperative reachability of the offensive equilibria and their effi-

ciency;
4c) find the worst offensive strategies of each player and the corresponding loss

of the other;
4d) find the possible dominant offensive strategies;
4e) confront the possible non-cooperative solutions;
5a) find the elementary best compromises (Kalai-Smorodinsky solutions) and

corresponding biloss;
5b) find the elementary core best compromise and corresponding biloss;
5c) find the Nash bargaining solutions and corresponding bilosses;
5d) find the solutions with closest bilosses to the shadow minimum;
5e) find the maximum collective utility solutions;
5f) confront the possible cooperative solutions.

6.2 The game

Description of the game. We consider a loss-game G = (f,≤) with strategy
sets E = F = [0, 1] and biloss (disutility) function defined by

f(x, y) = (−4xy, x + y),

91



for every bistrategy (x, y) of the game.

Remark. This game can be viewed as the mixed extension of the finite
bimatrix game

M =

(
(−4, 2) (0, 1)
(0, 1) (0, 0)

)
.

The conservative bivalue of the matrix game M is the pair (0, 1), in fact

−4 0
max→ 0

0 0
max→ 0

min(0, 0) = 0

,
2 1
1 0

↓max 2 1 min(2, 1) = 1

0a) Classification. The game is not linear, it is, utterly, bilinear. It
is not symmetric (with respect to the players), since f1(x, y) 6= f2(y, x), but
it is symmetric with respect to the bistrategies, since fi(x, y) = fi(y, x), for
every player i. It is not invertible, since there are two different equivalent
bistrategies: f(1, 0) = f(0, 1) = (0, 1).

6.3 The critical space of the game

0b) Jacobian matrix. The Jacobian matrix is

Jf (x, y) =

(
−4y −4x
1 1

)
,

for every bistrategy (x, y). The Jacobian determinant is

det Jf (x, y) = −4y + 4x;

for every pair (x, y).

Critical space. The critical zone is the subset of the bistrategy space of
those bitrategies (x, y) verifying the equality −y + x = 0, that is x = y. In
symbols, the critical zone is

C(f) =
{
(x, y) ∈ [0, 1]2 : x = y

}
= [A, C]
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Transformation of the critical space. We must determine the image
f ([A, C]). The segment [A, C] is defined by the relations{

x = y
y ∈ [0, 1]

.

The value of the biloss function upon the generic point (y, y) is

f (y, y) =
(
−4y2, 2y

)
.

Setting {
X = −4y2

Y = 2y

we have {
y = Y/2
X = −4Y 2/4

↔
{

X = −Y 2

Y ∈ [0, 2]
.

Thus, the image of the critical zone is the parabolic segment of equation X =
−Y 2 with end points A′ = (0, 0) and C ′ = (−4, 2).

6.4 The biloss (disutility) space

0c) Transformation of the topological boundary of the bistrategy
space. We start from the image f ([A, B]). The segment [A, B] is defined by{

y = 0
x ∈ [0, 1]

.

The value of the biloss function upon the generic point is f (x, 0) = (0, x).
Setting {

X = 0
Y = x

,

we have {
X = 0
Y ∈ [0, 1]

.

Thus the image of the segment [A, B] is the segment of end points A′ = (0, 0)
and B′ = (0, 1) . Image of f ([D, C]). The segment [D, C] is defined by{

y = 1
x ∈ [0, 1]

.
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The image of the generic point is f (x, 1) = (−4x, x + 1). Setting{
X = −4x
Y = x + 1

,

we have {
x = Y − 1
X = −4Y + 4

↔
{

X = 4− 4Y
Y ∈ [1, 2]

.

Thus the image is the segment of end points D′ = (0, 1) and C ′ = (−4, 2).
Transformation f ([C, B]). The segment [C, B] is defined by{

x = 1
y ∈ [0, 1]

.

The image of the generic point is f(1, y) = (−4y, 1 + y). Setting{
X = −4y
Y = 1 + y

,

we obtain {
y = Y − 1
X = −4Y + 4

↔
{

X = 4− 4Y
Y ∈ [−4, 0]

.

So the image is the segment of end points C ′ = (−4, 2) and B′ = (0, 1). Finally,
let’s determine the image f ([A, D]). The segment [A, D] is defined by{

x = 0
y ∈ [0, 1]

.

The image of the generic point is f(0, y) = (0, y). Setting{
X = 0
Y = y

,

we obtain {
X = 0
Y ∈ [0, 1]

.

So the image is the segment of end points A′ = (0, 0) and D′ = (0, 1).

0d) Extrema of the game. The extrema of the game are

α := inf G = (−4, 2) /∈ G,

and
β := sup G = (0, 2) /∈ G.
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They are shadow extreme.

0e) Pareto boundaries. The Pareto boundaries are ∂f (E × F ) =
_

A′C ′

and ∂f (E × F ) = [B′, C ′] in the biloss space (where by
_

A′C ′ we denoted the
image of the critical zone of the game, that is a parabolic arc) and ∂f (E × F ) =

[A, C] and ∂f (E × F ) = [B, C] ∪ [D, C] in the bistrategy space.

6.5 I phase: non-cooperative friendly phase

1a) Pareto-controls. Both Emil and Frances do not control Pareto mini-
mal boundary. On the contrary, Emil controls part of the Pareto maximal
boundary, the segment [B, C], playing the strategy xP = 1. Frances controls
part of the Pareto maximal boundary, the segment [D, C], playing the strategy
yP = 1.

1b) Non-cooperative reachability of Pareto boundaries. Both play-
ers can reach non cooperatively the Pareto maximal boundary playing the
reaching-strategies xP = 1 and yP = 1, respectively. Neither Emil nor Frances
can reach non cooperatively the Pareto minimal boundary (regrettably).

1c) Non-cooperative Pareto solutions. Do not exist non-cooperative
minimal Pareto solutions. There is only a non-cooperative maximal Pareto
solution P = (1, 1) = C, that is a control-cross.

1d) Devotion correspondences. We have ∂2f1(x, y) = −4x, then there
are two cases: x = 0 and x > 0. If x = 0 then the function f1(x, .) is constant
and then all Frances’ strategies are devote to Emil’ strategy 0. If x > 0 then the
function f1(x, .) is strictly decreasing, and then the minimum point is reached
in the point 1. Concluding, the devotion correspondence of Frances is defined
by

L2 (x) =

{
F se x = 0
1 se x > 0

.

Concerning Emil’s devotion, we have ∂1f2(x, y) = 1, so the function f2(., y)
is strictly increasing for every y ∈ F and then it assumes its minimum at 0.
Concluding the Emil’s devotion correspondence is defined by L1(y) = 0, for
every y in the Frances’ strategy space.
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Devotion equilibria. The set of all the devotion equilibria is the segment
[A, D]: it is an infinite set.

1e) About the devotion equilibria. The devotion equilibria are non-
cooperatively reachable playing Emil the reaching-strategy x = 0. Concerning
the efficiency, the devotion equilibrium D is negatively inefficient, because it
lies upon the Pareto maximal boundary, on the contrary, the devotion equilib-
rium A is efficient, since it belongs to the Pareto minimal boundary.

6.6 II phase: properly non-cooperative (ego-

istic phase)

2a) Best reply correspondences. We have ∂1f1 (x, y) = −4y, so there are
two cases. I case. If y = 0, the section f1(., y) is constant and then B1(0) = E.
II case. If y > 0 then ∂1f1(x, y) < 0, the section f1(., y) is strictly decreasing
and the minimum point of the section is 1, thus B1(y) = 1. Resuming, the
Emil’s best-reply correspondence is defined by

B1(y) =

{
E iff y = 0
1 iff y > 0

.

Concerning the Frances’ best reply, we have ∂2f2(x, y) = 1, hence the section
f2(x, .) is strictly increasing and the best reply is defined by B2 (x) = 0 for
every x ∈ E.

Nash equilibria. The intersection of the graph of B2 with the reciprocal
graph of B1 is

gr (B2) ∩ gr
(
B−

1

)
= [A, B] ,

so there are infinitely many Nash equilibria. All these equilibria are equivalent
for Emil (Emil loss function is constantly equal zero on [A, B]) but not for
Frances, so they are not equivalent.

2b) Existence of Nash equilibria. Kakutany’s fixed point theorem
assures the existence of at least a Nash equilibrium, Brouwer’s fixed point
theorem does not.

2c) About Nash equilibria. The Nash equilibrium zone is reachable,
playing Frances the reaching-strategy yN = 0. The Nash equilibrium A is
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minimal, and it’s the unique minimal equilibrium (good equilibrium), on the
contrary, the Nash equilibrium B maximal (very bad equilibrium) the other
ones are neither minimal nor maximal. The Nash equilibrium A is also a
devotion equilibrium.

2d) Dominant strategies. Frances has one (and only one) dominant
strategy: yD = 0. Emil has one (and only one) dominant strategy: xD = 1.

2e) Dominant equilibria. The Nash equilibrium B is a dominant Nash
equilibrium.

6.7 III phase: defensive phase

3a) Emil’s conservative value. We have

v#
1 = inf

x∈E
sup
y∈F

(−4xy) = inf
x∈E

(
f#

1 (x)
)

= 0

Emil’s worst loss function. By definition,

f#
1 (x) = supx∈F (−4xy) .

Let’s compute the function: for the derivative ∂2 (−4xy) = −4x there are two
cases.

I case. If x = 0 then ∂2 (−4xy) = 0; and so the function f1(., y) is constant
on E. Then O2 (0) = [0, 1].

II case. If x > 0, then ∂2 (−4xy) < 0, and so the function f1(., y) is strictly
decreasing, consequently O2 (x) = 0, for every x in E different from 0. The
worst loss function is then defined by

f#
1 (x) =

{
0 se x = 0
0 se x > 0

,

for every x in E.

Frances’ conservative value. We have

v#
2 = inf

y∈F
sup
x∈E

(x + y) = inf
y∈F

(1 + y) = 1.
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Frances’ worst loss function. We deduce that: the Emil’s worst offen-
sive multifunction is defined by O1(y) = 1 for each y ∈ F . The Frances’ worst
loss function is defined by f#

2 (y) = 1 + y, for each y in F .

Conservative bivalue. The conservative bivalue is v# = (0, 1) = B
′
.

3b) Players’ conservative strategies. Thus all the Emil’s strategies
are conservative, in other terms E# = E. The unique Frances’ conservative
strategy is y# = 0.

Conservative crosses. And finally, the set of all conservative crosses
is the segment c# = [A, B], since all the bistrategies of the type (x, 0) is a
conservative cross.

3c) Conservative parts. The conservative part of the biloss space is

f (E × F )# = conv (K ′, B′, A′) .

The Emil’ conservative part is

(E × F )#
1 =

{
(x, y) ∈ E × F : f1 (x, y) ≤ v#

1

}
,

that is the set of bistrategies (x, y) verifying the system{
−4xy ≤ 0
x, y ∈ [0, 1]

,

that is the set of the bistrategies (x, y) such that xy ≥ 0, then all the bistrate-
gies are conservative for Emil:

(E × F )#
1 = conv (A, B, C,D) .

Concerning Frances, we have

(E × F )#
2 =

{
(x, y) ∈ E × F : f2(x, y) ≤ v#

2

}
,

and this part is defined by the two relations{
x + y ≤ 1
x, y ∈ [0, 1]

,

consequently
(E × F )#

2 = conv (A, B, D)
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and then
(E × F )# = conv (A, B, D) .

3d) Core. The core of the biloss space is the segment of parabola with
end points K ′ and A′:

core′(G) =
a

K ′A′,

where K ′ = (−1, 1). To determine the core of the game (in the bistrategy
space) we have

K ′ = f (K) ,

that is {
−4xy = −1
x + y = 1

,

the resolvent equation is
−4y + 4y2 + 1 = 0,

which gives the following feasible solution K =
(

1
2
, 1

2

)
, then the core is

core(G) = [A, K] .

Conservative knots. A possible conservative knot N# verify v# =
f(N#), that is, the system {

−4xy = 0
x + y = 1

,

which has the solutions N#
1 = (0, 1) = D and N#

2 = (1, 0) = B.

3e) About Nash equilibria. There are infinitely many Nash equilibria,
forming the segment [A, B]. All the equilibria are conservative but there is
only one core equilibrium: the point A.

6.8 IV phase: offensive phase

4a) Offensive correspondences and equilibria. We already saw that the
players’s worst offensive correspondences are defined by O1(y) = 1, for every
strategy y ∈ F , and

O2 (x) =

{
F se x = 0
0 se x > 0

,
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respectively. The intersection of the graph of O2 with the reciprocal graph of
O1 is the unique offensive equilibrium B.

4b) About the offensive equilibrium. The unique offensive equilibrium
is reachable non-cooperatively with the strategies xO = 1 and yO = 1, respec-
tively. It is negatively-efficient, since it lies on the Pareto maximal boundary.

4c) Confrontation of the equilibria. The unique Nash equilibrium that
is a devotion equilibrium too is A. The unique Nash equilibrium that is an
offensive equilibrium too is B.

4d) Dominant offensive strategies. Emil has the unique dominant
offensive strategy 1. Frances has the unique dominant offensive strategy 0.

4e) About the noncooperative solution. The set of all Nash equilibria
[A, B] is controlled by Frances through the strategy 0. The equilibrium A is a
focal point in the sense of Meyerson: it unique.

6.9 V phase (cooperative): Selection of Pareto

bistrategies

We shall examine the most common cooperative solutions.

5a) Kalai Smorodinsky solution (elementary best compromise).
The elementary best compromise biloss is the intersection of the segment join-
ing the threat biloss v# with the infimum of the game, thus it satisfies the
system 

Y = 1
4
X + 1

X = −Y 2

X ∈ [−4, 0]
Y ∈ [0, 2]

,

leading to the resolvent equation X2 +24X +16 = 0, its acceptable solution is
a = −12−

√
128, so the biloss K ′ =

(
a, a

4
+ 1

)
is the best compromise biloss.

The Kalai Smorodinsky solution is the unique corresponding bistrategy solving
of the system {

−4xy = a
x + y = a + 1

,
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i.e., the strategy profile K = (a+1
2

, a+1
2

).

5b) Core best compromise. The core best compromise biloss is the
intersection of the segment joining the threat biloss v# with the infimum of
the core, thus it satisfies the system

Y = X + 1
X = −Y 2

X, Y ∈ [0, 1]
,

putting γ = (−1 +
√

5)/2 the solution is the biloss P ′ = (−γ2, γ), it is the
unique core best compromise biloss. The core best compromise solution solves
the system {

−4xy = −γ2

x + y = γ
,

taking into account that this solution must belong to the core, we known also
that x = y, and then x = y = γ/2.

5c) Nash bargaining solution with v# as disagreement point. The
possible Nash bargaining bilosses, with disagreement point represented by the
conservative bivalue v#, are the possible solutions of the following optimization
problem: {

max
(
X − v#

1

) (
Y − v#

2

)
= max X(Y − 1)

sub X = −Y 2
.

The section of the objective Nash bargaining function upon the constraint is
defined by

g (Y ) = −Y 2 (Y − 1) = −Y 3 + Y 2,

for every Frances’ loss Y . The derivative

g′ (Y ) = −3Y 2 + 2Y,

is non-negative when
Y (3Y − 2) ≤ 0,

that is on the interval [0, 2/3], consequently the maximum point of g is the
loss Y = 2/3, with corresponding Emil’s loss X = −4/9 by the constraint.
Concluding the point F ′ =

(
−4

9
, 2

3

)
is the unique Nash bargaining biloss. The

set of Nash bargaining solutions is the reciprocal image of this biloss by the
biloss function f .
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5e) Minimum aggregate loss (maximum collective utility). The
possible bilosses with maximum collective utility are the possible solutions of
the following optimization problem:{

min (X + Y )
sub X = −Y 2 .

We immediately see that the unique biloss with these two properties is C ′ =
(−4, 2), with collective utility 2. The unique maximum utility solution of the
game is then the corresponding bistrategy C.

5f) About the cooperative solutions. The cooperative solutions we
found are different and not equivalent among themselves. Assuming the games
with transferable utility, certainly the maximum utility solution is a good
solution; but in this last case, the players must face the bargaining problem of
fair division of the maximum collective utility.
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Part III

Algorithms for Normal Form
Games
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Chapter 7

An Algorithm for Payoff Space
in C1-Games

7.1 Introduction

Often in Game Theory the study of a normal-form game consists principally in
the determination of the Nash equilibria in mixed strategies and in the anal-
ysis of their various stability properties (see for instance [17], [18] and [15]).
Others (see for instance the books of J. P. Aubin [2] and [3]) feel the need to
know the entire set of possibilities (consequences) of the players’actions, what
we call the payoff space of the game; and moreover they introduce other form
of non-cooperative solutions such as the pairs of conservative strategies. Nev-
ertheless, only recently D. Carf̀ı proposed a method to determine analytically
the topological boundary of the payoff space and consequently to handle more
consciously and precisely the entire payoff space. This method gives a com-
plete and global view of the game, since, for instance, it allows to know the
positions of the payoff profiles corresponding to the Nash equilibria in the pay-
off space of the game or the position of the conservative n-value of the game.
The knowledge of these positions requires, indeed, the knowledge of the en-
tire payoff space. Moreover, the knowledge of the entire payoff space becomes
indispensable when the problem to solve in the game is a bargaining one: in
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fact, the determination of a bargaining solution (or of compromise solutions)
needs the analytical determination of the Pareto boundaries or at least of the
topological one. In the cited paper D. Carf̀ı presented a general method to
find an explicit expression of the topological boundary of the payoff-space of
a Game and this latter boundary contains the two Pareto boundaries of the
game.

7.2 Preliminaries and notations.

For the ease of the reader we recall some basic notions of Game Theory. We
shall consider n-person games in normal form. The form of definition we will
give is particularly interesting since it is nothing but the definition of a specific
differentiable parametric ordered submanifold of the Euclidean space.

Games in normal form. Let E = (Ei)
n
i=1 be a finite ordered family of

non-empty sets. We call n-person game in normal form upon the support E
each pair G = (f,R), where f is a function of the cartesian product ×E of
the family E into the Euclidean space Rn and R is one of the two natural
orders (≤ or ≥) of the real n-dimensional Euclidean space Rn. By ×E we
mean the cartesian product ×n

i=1Ei of the finite family E. The set Ei is called
the strategy set of player i, for every index i of the family E, and the product
×E is called the strategy profile space, or the n-strategy space, of the game.
The set {i}n

i=1 of the first n positive integers is said the set of players of the
game G; each element of the cartesian product ×E is said a strategy profile of
the game; the image of the function f , i.e., the set of all real n-vectors of type
f(x), with x in the strategy profile space ×E, is called the n-payoff space, or
simply the payoff space, of the game f .

Pareto boundaries. The Pareto maximal boundary of a game G = (f,R)
is the subset of the n-strategy space of those n-strategies x such that the
corresponding payoff f(x) is maximal in the n-payoff space, with respect to
the usual order R of the euclidean n-space Rn. We shall denote the maximal
boundary of the n-payoff space by ∂f(S) and the maximal boundary of the
game by ∂f (S) or by ∂(G). In other terms, the maximal boundary ∂f (S) of
the game is the reciprocal image (by the function f) of the maximal boundary
of the payoff space f(S). We shall use analogous terminologies and notations
for the minimal Pareto boundary. (For an introduction to Pareto Boundaries
see [19].)

The method. We deal with a type of normal form game G = (f,R)
defined on the product of n compact non-degenerate intervals of the real line R,
and such that the payoff function f is the restriction to the n-strategy space of
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a C1 -function defined on an open set of the Euclidean space Rn containing the
n-strategy space S (that, in this case, is a compact non-degenerate n-interval
of the Euclidean n-space Rn). We recall that the topological boundary of a
subset S of a topological space (X, τ) is the set defined by the following three
equivalent propositions:

1. it is the closure of S without the interior of S: ∂(S) = cl(S)\int(S);

2. it is the intersection of the closure of S with the closure of its complement
∂(S) = cl(S) ∩ cl(X\S);

3. it is the set of those points x of X such that any neighborhood of x
contains at least one point of S and at least one point in the complement
of S.

The key theorem of the method proposed by D. Carf̀ı is the following one.

Theorem 7.2.1. teo1 Let f be a C1 function defined upon an open set O of the
euclidean space Rn and with values in Rn. Then, for every part S of the open
O, the topological boundary of the image of S by the function f is contained
in the union f(∂S) ∪ f(C), where C is the critical set of the function f in S,
that is the set of all points x of S such that the Jacobian matrix Jf (x) is not
invertible.

7.3 Algorithm

In this section we present the algorithm that we used to determine numerically
the payoff space of normal form C1-games in 2 dimensions.

Let A, B, C,D be the vertices of the initial rectangular domain. The inputs
are the coordinates of such vertices and the functions f1 (·) and f2 (·) that
define the game f , so that f (P ) = (f1(P ), f2(P )) con P ∈ R2.
Denote by xmin and xmax (ymin and ymax) the minimum and maximum of
vertex abscissae (ordinates).

STEP 1. TRANSFORMATION OF THE TOPOLOGICAL BOUNDARY.

Then the initial domain is the rectangle

RABCD = {(x, y) : xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax} .
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The transformation of the topological boundary, is a new quadrilateral, of
vertices (A′, B′, C ′, D′), where a point P ′ is the image of a point P , by means
the following transformation

P ′ = (f1(P ), f2(P )) ∀P ∈ {A, B, C, D}

STEP 2. PAYOFF SPACE AND CRITICAL ZONE.

We evaluate the Jacobian determinant of the game f .
If it is zero, then the payoff space agrees the transformation of topological
boundary.
Otherwise, the Jacobian determinant is a function of x or y.
In this case, we solve the jabobian in the depending variable. The critical
zone is defined by all the points of this transformation, that are in the initial
domain RABCD, too.

The payoff space is the area delimited by the topological boundary and the
critical zone. Note that, if the critical zone is void, the payoff space agrees the
transformation of the topological boundary.

STEP 3. PLOTS

The outputs of the algorithm are the graphics of transformation of topological
boundary,of critical zone (if it exists), of payoff space.

7.4 First game

Description of the game. We consider a loss-game G = (f, <), with strategy
sets E = F = [0, 1] and biloss (disutility) function defined by

f (x, y) = (−4xy, x + y)

for every bistrategy (x, y) of the game.
The critical space of the game. In the following, we shall denote by
A, B, C and D the vertices of the square E×F , starting from the origin and
going anticlockwise.
Jacobian matrix. The Jacobian matrix is

Jf =

(
−4y −4x
1 1

)
,
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Figure 7.1: Bistrategy square with critical zone.

for every bistrategy (x, y). The Jacobian determinant is

detJf (x, y) = −4y + 4x

for every pair (x, y).
The critical zone is the subset of the bistrategy space of those bistrategies
verifying the equality −y + x = 0. In symbols, the critical zone is the segment

C(f) =
{
(x, y) ∈ [0, 1]2 : x = y

}
= [A, C]

That, graphically, is
Transformation of the critical space. Let us determine the image
f ([A, C]). The value of the biloss function upon the generic point (y, y) of
the segment [A, C], is

f (y, y) =
(
−4y2, 2y

)
.

Thus the image of the critical zone is
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Figure 7.2: Plot of the transformation of the critical zone.

The biloss (disutility) space. Transformation of the topological
boundary of the bistrategy space. We start from the image f ([A, B]).
The segment [A, B] is defined by{

y = 0
x ∈ [0, 1]

The value of the biloss function upon the generic point is f (x, 0) = (0, x).
That, graphically, is
Now we consider the image f ([D, C]). The segment [D, C] is defined by{

y = 1
x ∈ [0, 1]

The value of the biloss function upon the generic point is f (x, 1) =
(−4x, x + 1). That, graphically, is

Let us determine the image f ([C, B]). The segment [C, B] is defined by{
x = 1

y ∈ [0, 1]

The value of the biloss function upon the generic point is f (1, y) =
(−4y, 1 + y). That, graphically, is
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Figure 7.3: Plot of the transformation of the segment [A,B].

Figure 7.4: Plot of the transformation of the segment [D,C].
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Figure 7.5: Plot of the transformation of the segment [C,B].

Finally, let us determine the image f ([A, D]). The segment [A, D] is defined
by {

x = 0
y ∈ [0, 1]

The value of the biloss function upon the generic point is f (0, y) = (0, y).
That, graphically, is
So the image of the transformation of the topological boundary of the bistrat-
egy space is
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Figure 7.6: Plot of the transformation of the segment [A,D].

Figure 7.7: Plot of the transformation of the topological boundary of the bistrategy space.

112



Figure 7.8: Plot of the payoff space.

At this point we can show the payoff space

7.5 Second game

Description of the game. We consider a loss-game G = (f, <), with strategy
sets E = F = [0, 1] and biloss (disutility) function defined by

f (x, y) =

(
x− 1

2
xy, y − 1

2
xy

)
for every bistrategy (x, y) of the game.
The critical space of the game. In the following we shall denote by A, B, C
and D the vertices of the square E × F , starting from the origin and going
anticlockwise.
Jacobian matrix. The Jacobian matrix is

Jf =

(
1− 1

2
y −1

2
x

−1
2
y 1− 1

2
x

)
,

for every bistrategy (x, y). The Jacobian determinant is

detJf (x, y) = 1− 1

2
x− 1

2
y
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Figure 7.9: Bistrategy square with critical zone.

for every pair (x, y).
The critical zone is the subset of the bistrategy space of those bistrategies
verifying the equality y = 2− x. In symbols, the critical zone is

C(f) =
{
(x, y) ∈ [0, 1]2 : y = 2− x

}
= (C)

That, graphically, is

Transformation of the critical space. Let us determine the transformation
of the critical zone . It is defined by the relations{

y = 2− x
x ∈ [0, 1]

The value of the biloss function upon he generic point (x, 2− x) is

f (x, 2− x) =
(
x− x2, 2− x− x2

)
.

Thus the image of the critical zone is

The biloss (disutility) space. Transformation of the topological
boundary of the bistrategy space. We start from the image f ([A, B]).
The segment [A, B] is defined by{

y = 0
x ∈ [0, 1]
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Figure 7.10: Plot of the transformation of the critical zone.

The value of the biloss function upon the generic point is f (x, 0) = (x, 0).
That, graphically, is

Now we consider the image f ([D, C]). The segment [D, C] is defined by{
y = 1

x ∈ [0, 1]

The value of the biloss function upon the generic point is f (x, 1) =(
1
2
x, 1− 1

2
x
)
. That, graphically, is

Let us determine the image f ([C, B]). The segment [C, B] is defined by{
x = 1

y ∈ [0, 1]

The value of the biloss function upon the generic point is f (1, y) =(
1− 1

2
y, 1

2
y
)
. That, graphically, is

Finally, let us determine the image f ([A, D]). The segment [A, D] is defined
by {

x = 0
y ∈ [0, 1]

The value of the biloss function upon the generic point is f (0, y) = (0, y).
That, graphically, is
So the image of the transformation of the topological boundary of the bistrat-
egy space is
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Figure 7.11: Plot of the transformation of the segment [A,B].

Figure 7.12: Plot of the transformation of the segment [D,C].
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Figure 7.13: Plot of the transformation of the segment [C,B].

Figure 7.14: Plot of the transformation of the segment [A,D].

117



Figure 7.15: Plot of the transformation of the topological boundary of the bistrategy space.

At this point we can show the payoff space

7.6 Third game

Description of the game. We consider a loss-game G = (f, <), with strategy
sets E = F = [0, 1] and biloss (disutility) function defined by

f (x, y) = (x, y + xy)

for every bistrategy (x, y) of the game.
The critical space of the game. In the following we shall denote by A, B, C
and D the vertices of the square E × F , starting from the origin and going
anticlockwise.
Jacobian matrix. The Jacobian matrix is

Jf =

(
1 0
y 1 + x

)
,

for every bistrategy (x, y). The Jacobian determinant is

detJf (x, y) = 1 + x
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Figure 7.16: Plot of the payoff space.

for every pair (x, y). The critical zone is the subset of the bistrategy space
of those bistrategies verifying the equality x = −1. So there are not points of
the critical zone in the strategy sets. That, graphically, is
The biloss (disutility) space. Transformation of the topological
boundary of the bistrategy space. We start from the image f ([A, B]).
The segment [A, B] is defined by y = 0 and x ∈ [0, 1] . The value of the biloss
function upon the generic point is f (x, 0) = (x, 0). That, graphically, is
Now we consider the image f ([D, C]). The segment [D, C] is defined by y = 1
and x ∈ [0, 1]. The value of the biloss function upon the generic point is
f (x, 1) = (x, 1 + x). That, graphically, is
Let us determine the image f ([C, B]). The segment [C, B] is defined by x = 1
and y ∈ [0, 1]. The value of the biloss function upon the generic point is
f (1, y) = (1, 2y). Setting X = 1 and Y = 2y, we have X = 1 and Y ∈ [0, 2].
That, graphically, is
Finally, let us determine the image f ([A, D]). The segment [A, D] is defined
by x = 0 and y ∈ [0, 1]. The value of the biloss function upon the generic
point is f (0, y) = (0, y). That, graphically, is
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Figure 7.17: Bistrategy square with critical zone.

Figure 7.18: Plot of the transformation of the segment [A,B].
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Figure 7.19: Plot of the transformation of the segment [D,C].

Figure 7.20: Plot of the transformation of the segment [C,B].
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Figure 7.21: Plot of the transformation of the segment [A,D].

So the image of the transformation of the topological boundary of the
bistrategy space is

At this point we can show the payoff space

7.7 Fourth game

Description of the game. We consider a loss-game G = (f, <), with strategy
sets E = F = [0, 1] and biloss (disutility) function defined by

f (x, y) =

(
x− 3

4
xy, y − 3

4
xy

)
for every bistrategy (x, y) of the game.
The critical space of the game. In the following we shall denote by A, B, C
and D the vertices of the square E × F , starting from the origin and going
anticlockwise.
Jacobian matrix. The Jacobian matrix is

Jf =

(
1− 3

4
y −3

4
x

−3
4
y 1− 3

4
x

)
,
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Figure 7.22: Plot of the transformation of the topological boundary of the bistrategy space.

Figure 7.23: Plot of the payoff space.
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Figure 7.24: Bistrategy square with critical zone.

for every bistrategy (x, y). The Jacobian determinant is

detJf (x, y) = 1− 3

4
x− 3

4
y

for every pair (x, y).
The critical zone is the subset of the bistrategy space of those bistrategies
verifying the equality y = 4

3
− x. In symbols, the critical zone is

C(f) =

{
(x, y) ∈ [0, 1]2 : y =

4

3
− x

}
That, graphically, is

Transformation of the critical space. Let us determine the transformation
of the critical zone . It is defined by the relations{

y = 4
3
− x

x ∈ [0, 1]

The value of the biloss function upon he generic point
(
x, 4

3
− x

)
is

f

(
x,

4

3
− x

)
=

(
x− x2,

4

3
− x− x2

)
.
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Figure 7.25: Plot of the transformation of the critical zone.

Thus the image of the critical zone is

The biloss (disutility) space. Transformation of the topological
boundary of the bistrategy space. We start from the image f ([A, B]).
The segment [A, B] is defined by y = 0 and x ∈ [0, 1]. The value of the biloss
function upon the generic point is f (x, 0) = (x, 0). That, graphically, is

Now we consider the image f ([D, C]). The segment [D, C] is defined by y = 1
and x ∈ [0, 1]. The value of the biloss function upon the generic point is
f (x, 1) =

(
1
4
x, 1− 3

4
x
)
. That, graphically, is

Let us determine the image f ([C, B]). The segment [C, B] is defined by x = 1
and y ∈ [0, 1]. The value of the biloss function upon the generic point is
f (1, y) =

(
1− 3

4
y, 1

4
y
)
. That, graphically, is

Finally, let us determine the image f ([A, D]). The segment [A, D] is defined
by x = 0 and y ∈ [0, 1]. The value of the biloss function upon the generic
point is f (0, y) = (0, y). That, graphically, is

So the image of the transformation of the topological boundary of the
bistrategy space is
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Figure 7.26: Plot of the transformation of the segment [A,B].

Figure 7.27: Plot of the transformation of the segment [D,C].
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Figure 7.28: Plot of the transformation of the segment [C,B].

Figure 7.29: Plot of the transformation of the segment [A,D].
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Figure 7.30: Plot of the transformation of the topological boundary of the bistrategy space.

At this point we can show the payoff space
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Figure 7.31: Plot of the payoff space.
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Chapter 8

The payoff trajectories in C1

parametric games

8.1 Introduction

The great achievement of the game theory arises form the wide variety of fields
in which it has been applied, in order to model and analyze a large collection
of human and animal behavior, but economic, political, sociological and psy-
chological ones as well.
Our study pertain to normal-form C1-games inn−dimensions that is n−players
normal form games whose payoff functions are at least of class C1 in a com-
pact interval of the real line. This study includes also games depending on a
parameter in a one dimensional set. In [5, 6, 8, 9, 10, 11], the authors analyze
parametric games, where the parameter set is the coopetitive strategy one. It
allows us to pass from the standard normal-form games to their coopetitive
extension as illustrated in [3, 2, 17, 18].
In particular, in [17], a new procedure to determine the payoff space of such
kind of games has been presented and it has been applied in [1] to numeric-
caly determine the payoff space for normal-form C1 parametric games in two
dimensions.
In this work, the method in [17] has been pointed out and assumed with the
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aim of realizing an algorithm for the computational representation of the pay-
off trajectory in the case of normal-form C1-parametric games.
To ease the reader, in the first section of the paper we bring to mind termi-
nology and some definitions, while in the second part, the method proposed in
[17] and applied in the development of our algorithm, is presented. Moreover,
the particular case of two parametric games is shown in the third section.
The application of our algorithm to several examples concludes the paper.

8.2 Preliminaries on normal-form C1 games

In order to help the reader and increase the level of readability of the paper, we
recall some notations and definitions about n−person games in normal-form,
presented yet in [17, 1].

Definition 1 (of game in normal-form). Let E = (Ei)
n
i=1 be an ordered

family of non-empty sets. We call n-person game in normal-form upon
the support E each function

f : ×E → Rn,

where ×E denotes the Cartesian product ×n
i=1Ei of the family E. The set Ei

is called the strategy set of player i, for every index i of the family E, and
the product ×E is called the strategy profile space, or the n-strategy space,
of the game.

Terminology. Together with the previous definition of game in normal
form, we have to introduce some terminologies:

• the set {i}n
i=1 of the first n positive integers is said the set of the players

of the game;

• each element of the Cartesian product ×E is said a strategy profile of
the game;

• the image of the function f , i.e., the set f(×E) of all real n-vectors of
type f(x), with x in the strategy profile space ×E, is called the n-payoff
space, or simply the payoff space, of the game f .

Moreover, we recall the definition of Pareto boundary whose main proper-
ties have been presented in [19].
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Definition 2 (of Pareto boundary). The Pareto maximal boundary
of a game f is the subset of the n-strategy space of those n-strategies x
such that the corresponding payoff f(x) is maximal in the n-payoff space, with
respect to the usual order of the euclidean n-space Rn. If S denote the strategy
space ×E, we shall denote the maximal boundary of the n-payoff space by
∂f(S) and the maximal boundary of the game by ∂f (S) or by ∂(f). In other
terms, the maximal boundary ∂f (S) of the game is the reciprocal image (by the
function f) of the maximal boundary of the payoff space f(S). We shall use
analogous terminologies and notations for the minimal Pareto boundary.

8.3 The method for C1 games

In this paper, we deal with a type of normal-form game f defined on the
product of n compact non-degenerate intervals of the real line, and such that
f is the restriction to the n-strategy space of a C1 function defined on an open
set of Rn containing the n-strategy space S (which, in this case, is a compact
non-degenerate n-interval of the n-space Rn). Details are in [17, 18, 7], but in
the following we recall some basic notations.

8.3.1 Topological boundary

We recall that the topological boundary of a subset S of a topological space
(X, τ) is the set defined by the following three equivalent propositions:

• it is the closure of S minus the interior of S:

∂S = cl(S)\int(S);

• it is the intersection of the closure of S with the closure of its complement

∂S = cl(S) ∩ cl(X\S);

• it is the set of those points x of X such that every neighborhood of x
contains at least one point of S and at least one point in the complement
of S.
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The key theorem of our method is the following one.

Theorem 1. Let f be a C1 function defined upon an open set O of the
euclidean space Rn and with values in Rn. Then, for every part S of the open
O, the topological boundary of the image of S by the function f is contained
in the union

f(∂S) ∪ f(C),

where C is the critical set of f in S, that is the set of the points x of S such
that the Jacobian matrix Jf (x) is not invertible. If, more, the function f is
not continuous over a part H of O and C1 elsewhere in O, the topological
boundary of the image of S by the function f is contained in the union

f(∂S) ∪ f(C) ∪ f(H),

where C is (again) the critical set of f in S.

8.4 Two players parametric games

In this section we introduce the definitions of parametric games.

Definition 3. Let E = (Et)t∈T and F = (Ft)t∈T be two families of non
empty sets and let

f = (ft)t∈T

be a family of functions
ft : Et × Ft → R2.

We define parametric game over the strategy pair (E, F ) and with family of
payoff functions f the pair

G = (f, >),

where > is the usual strict upper order of the Euclidean plane R2. We define
payoff space of the parametric game G the union of all the payoff spaces of
the game family

g = ((ft, >))t∈T ,

that is the union of the payoff family

P = (ft(Et × Ft))t∈T .

We will refer to the above family as the (parametric) trajectory of the game
G. Our algorithm allows us to represent both the dynamical evolution of P ,
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in the sense of the dynamical evolution in time of our representation of P by
the algorithm. Moreover, we numerically obtain the trace of this trajectory,
i.e. the payoff space of the game G. We note also that the family P can be
identified with the multi-valued path

p : T → R2 : t 7→ ft(Et × Ft),

and that the graph of this path p is a subset of the Cartesian product T ×R2,
precisely, the trace of the curve p.

In particular we are concentrated on the following specific kind of paramet-
ric game:

• parametric games in which the families E and F consist of only one set,
respectively.

In the latter case we can identify a parametric game with a pair (f, >),
where f is a function from a Cartesian product T ×E × F into the plane R2,
where T , E and F are three non-empty sets.

Definition 4. When the triple (T,E, F ) is a triple of subsets of normed
spaces, we define the parametric game (f, >) of class C1 if the function f is
of class C1.

8.5 Numerical Results

In [1], a representation of the payoff space via disjoint union of each payoff
space is given. In this work, we depicts the payoff trajectory or rather the
dynamical evolution in time of the payoff family.

In order to compare the two algorithms, in the following we will analyze
the same games illustrated in [1]. In details, we consider a (loss) parametric
game (h,<), with strategy sets E = F = [0, 1], parameter set T = [0, 1]2 and
biloss (disutility) function

h : ×(T,E, F ) → R2

whose section
h(a,b) : ×(E, F ) → R2

is defined by

h(a,b) (x, y) = (x− (1− a)xy, y − (1− b)xy) ,
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for all (x, y) ∈ E × F and (a, b) ∈ [0, 1]2.

The above game is the von Neuman convexification of the finite game rep-
resented by the following array

(a, b) (1, 0)
(0, 1) (0, 0)

.

Assume, now, that the parameter points (a, b) belong also to the 1-sphere
S1

p, with respect to the p-norm, in the Euclidean plane R2, for some positive
real p; that is, let us assume

ap + bp = 1,

for some positive real p. Consider, then, the restriction

g : S × E × F → R2

of the function h to the parameter set

S = S1
p ∩ T.

By projecting on the first factor of the product S × E × F , we can consider,
instead of the parametric game g, with parameter set S1

p ∩ T , the equivalent
parametric game (f, <), with parameter set [0, 1] and a-payoff function fa

defined by

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− ap)1/p)xy

)
,

for all (x, y) ∈ E × F and a ∈ [0, 1]. Here, by equivalent parametric game, we
mean the existence of the bijection

j : S → [0, 1] : (a, b) 7→ a

whose inverse is the bijection

j−1 : [0, 1] → S : a 7→ (a, (1− ap)1/p).

In the following sections we shall consider the following sub-cases:

1. p = 1:
fa (x, y) = (x− (1− a)xy, y − axy) ,

for all x, y and a in [0, 1].
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2. p = 0.1:

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a0.1)10)xy

)
,

for all x, y and a in [0, 1].

3. p = 0.5:

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a0.5)2)xy

)
,

for all x, y and a in [0, 1].

4. p = 2:

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a2)0.5)xy

)
,

for all x, y and a in [0, 1].

5. p = 10:

fa (x, y) =
(
x− (1− xy), y − (1− (1− a10)0.1)xy

)
,

for all x, y and a in [0, 1].

Moreover, we shall present the following games:

start=6
fa (x, y) =

(
x + y + a, x− y + a2

)
,

for all x, y ∈ [0, 2] and a ∈ [0, 1].

stbrt=6
fa (x, y) = (x + y + a, x− y + |a|),

for all x, y ∈ [0, 2] and a ∈ [−1, 1].

stcrt=6

fa (x, y) = (x(1− x− y) + a, y(1− x− y)− (1/6)(a− 3)2 + 3/2),

for all x, y ∈ [0, 1] and a ∈ [0, 6].
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8.6 First game p = 1

Let E = F = [0, 1] be the strategy sets and let a be a real number fixed in
the interval [0, 1]. Consider the a-biloss (disutility) function of the parametric
game (f, <), defined by

fa(x, y) = (x− (1− a)xy, y − axy),

for all (x, y) in [0, 1].
The critical zone of the function fa for every a in [0, 1]) is the set

C(fa) =
{
(x, y) ∈ [0, 1]2 : 1− ax− (1− a)y = 0

}
.

The transformation of the topological boundary is given by the disjoint
union of the family

(fa(∂(E × F )))a∈T ,

We obtain the representation of the Payoff Space of the parametric game
as disjoint union of the family

(fa(E × F ))a∈T , (8.1)

that is the disjoint union of the transformations of the payoff spaces, with
respect to the parameter set. In this work we present a new numerical ap-
proach. Our algorithm does not represent the above disjoint union (see [1]
for this representation), but it represent the simple union of the family 8.1,
that is the genuine payoff space of the game G. In the figure 8.1, we show
the obtained payoff space of the family 8.1. In particular, we can distinguish
the transformation of the topological boundary in 8.1(a), the transformation
of the critical zone in 8.1(b) and the entire payoff in 8.1(c).

8.7 Second game p = 0.1

Let E = F = [0, 1] be the strategy sets and let fa be the a-biloss (disutility)
function

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a0.1)10)xy

)
,

for all x, y a in [0, 1]. The critical zone of the a-biloss function is

C(fa) =
{
(x, y) ∈ [0, 1]2 : 1− (1− (1− a0.1)10)x− (1− a)y = 0

}
.

In the figure 8.2, the payoff space of the family 8.1 is depicted. In particular,
we can distinguish the transformation of the topological boundary in 8.2(a),
the transformation of the critical zone in 8.2(b) and the entire payoff in 8.2(c).
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(a) Transformation of the topological
boundary

(b) Transformation of the critical zone

(c) Payoff Space

Figure 8.1: The first game.

8.8 Third game p = 0.5

Let the strategy sets of the parametric game G = (f, <) be E = F = [0, 1]
and let the a-biloss (disutility) function of G be defined by

fa(x, y) =
(
x− (1− a)xy, y − (1− (1− a0.5)2)xy

)
,

for all x, y and a in [0, 1]. The critical zones, in Figure ??, are the sets

C(fa) =
{
(x, y) ∈ [0, 1]2 : 1− (1− (1− a0.5)2)x− (1− a)y = 0

}
,
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(a) Transformation of the topological
boundary

(b) Transformation of the critical zone

(c) Payoff Space

Figure 8.2: The second game.

with a varying in T . Also in this case, in the figure 8.3, we illustrate the
obtained payoff space of the family 8.1, where the transformation of the topo-
logical boundary is given in 8.3(a), the transformation of the critical zone in
8.3(b) and the entire payoff in 8.3(c).
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(a) Transformation of the topological
boundary

(b) Transformation of the critical zone

(c) Payoff Space

Figure 8.3: The third game.

8.9 Forth game p = 2

Let the strategy sets of the parametric game G = (f, <) be E = F = [0, 1]
and let the a-biloss (disutility) function of G be defined by

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a2)0.5)xy

)
,

for all x, y and a in [0, 1].
The a-critical zone is
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C(fa) =
{
(x, y) ∈ [0, 1]2 : 1− (1− (1− a2)0.5)x− (1− a)y = 0

}
.

In the figure 8.4, we show the payoff space of the family 8.1. We can distinguish
the transformation of the topological boundary in 8.4(a), the transformation
of the critical zone in 8.4(b) and the entire payoff in 8.4(c).

(a) Transformation of the topological
boundary

(b) Transformation of the critical zone

(c) Payoff Space

Figure 8.4: The forth game.
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8.10 Fifth game p = 10

Let strategy sets be E = F = [0, 1] and biloss (disutility) function be

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a10)0.1)xy

)
,

for all (x, y) and a in [0, 1]. The critical zones, in Figure 8.5(b), are

C(fa) =
{
(x, y) ∈ [0, 1]2 : 1− (1− (1− a10)0.1)x− (1− a)y = 0

}
,

with a varying in T . Together with the transformation of the topological
boundary 8.5(a), we obtain the payoff space 8.5(c).

8.11 Sixth game

In this section we present a new game, where strategy sets are E = F = [0, 2],
the parameter set is T = [0, 1] and the a-biloss (disutility) function is defined
by

fa (x, y) =
(
x + y + a, x− y + a2

)
,

for all x, y in [0, 2] and a in [0, 1].
The critical zone is void, so the payoff spaces overlap the transformations

of the topological boundary, in Figure 8.6.

8.12 Seventh game

In this section we present a new game, where strategy sets are E = F = [0, 2],
the parameter set is T = [−1, 1] and the a-biloss (disutility) function is

fa (x, y) = (x + y + a, x− y + |a|),

for all x, y, a in [−1, 1].
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(a) Transformation of the topological
boundary

(b) Transformation of the critical zone

(c) Payoff Space

Figure 8.5: The fifth game.

8.13 Eight game

In this section we present a new game, where strategy sets are E = F = [0, 1],
the parameter set is T = [−1, 1] and the a-biloss (disutility) function is

fa (x, y) = (x(1− x− y) + a, y(1− x− y)− (1/6)(a− 3)2 + 3/2),

for all x, y in [0, 1], a in [0, 6]. In the figure 8.8, we show the obtained payoff
space of the family 8.1. In particular, we can distinguish the transformation
of the topological boundary in 8.8(a), the transformation of the critical zone
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Figure 8.6: Payoff Space of the sixth game.

Figure 8.7: Payoff Space of the seventh game.

in 8.8(b) and the entire payoff in 8.8(c).
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(a) Transformation of the topological
boundary

(b) Transformation of the critical zone

(c) Payoff Space

Figure 8.8: The eighth game.
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