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Abstract

In this study, a timelike ruled surface in the 3 - dimensional Lorentzian space
R3

1 which is called null scroll is generated by a null straight line which moves
along a null curve with respect to the null frame. In a null scroll, the central
point, the curve of striction, pseudo-orthogonal trajectory and some theorems
related to these structures are obtained in the 3-dimensional Lorentzian space
R3

1. Results about developable null scrolls are provided as well.
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§1. Introduction

R3
1 is by definition the 3-dimensional vector space R3 with the inner product of

signature (1, 2) given by

〈x, y〉 = −x1y1 + x2y2 + x3y3

for any colomn vectors x = t(x1, x2, x3), y = t(y1, y2, y3) ∈ R3. Let {e1, e2, e3} be the
standart orthonormal basis of R3

1 given by

e1 = t(1, 0, 0), e2 = t(0, 1, 0), e3 = t(0, 0, 1).

A basis F = {X, Y, Z} of R3
1 is called a (proper) null frame if it satisfies the following

conditions
〈X,X〉 = 〈Y, Y 〉 = 0, 〈X, Y 〉 = −1,

Z = X ∧ Y =
3

∑

i=1

εi det [X,Y, ei] ei,

where ε1 = −1, ε2 = ε3 = 1. Hence we obtain that

〈X, Z〉 = 〈Y, Z〉 = 0, 〈Z,Z〉 = 1.

A vector V in R3
1 is said to be null if 〈V, V 〉 = 0, [2, 4]. A surface in the 3-dimensional

Lorentzian space R3
1 is called a timelike surface if the induced metric on the surface
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is a Lorentzian metric. A ruled surface is a surface swept out by a straight line Y
moving along a curve α. The various positions of the generating line Y are called the
rulings of the surface. Such a surface, thus has a parametrization in ruled form as
follows:

ϕ(t, v) = α(t) + vY (t).

We call α to be the base curve and Y to be the director curve. If the tangent
plane is constant along a fixed ruling, then the ruled surface is called a developable
surface. The remaining ruled surfaces are called skew surfaces. If there exists a
common perpendicular to two preceding rulings in the skew surface, then the foot of
the common perpendicular on the main ruling is called a central point. The locus of
the central points is called the curve of striction [1, 5].

§2. Null Scrolls in R
3
1

Let α : M → R3
1 be a null curve, namely, a smooth curve whose tangent vectors

α′(t), ∀t ∈ I are null. For a given smooth positive function d = d(t) let us put

X = X(t) = d−1α′.(2.1)

Then X is a null vector field along α. Moreover, there exists a null vector field Y
along α satisfying 〈X,Y 〉 = −1. Here if we put Z = X ∧ Y then we can obtain a
(proper) null frame field F = {X,Y, Z} along α. In this case the pair (α, F ) is said
to be a (proper) framed null curve.

If the null vector Y moves along α, then the ruled surface is given by the parametriza-
tion (I × R , ϕ) where

ϕ : I × R → R3
1

is given by
(t, v) → ϕ(t, v) = α(t) + vY (t), t ∈ I, v ∈ J,

which can be obtained in the 3-dimensional Lorentzian space R3
1. Then the ruled

surface is called a null scroll and denoted by M . It is a timelike surface.
Let α be a (proper) framed null curve and ∇ be Levi-Civita connection on R3

1.
Then a framed null curve α satisfies the following Frenet equations







∇XX = aX + bZ
∇XY = −aY + cZ
∇XZ = cX + bY,

(2.2)

where






a = −〈∇XX, Y 〉
b = 〈∇XX,Z〉
c = 〈∇XY, Z〉

(2.3)

are smooth functions [3, 4].
If we fix the parameter v, then the curve ϕv : I × {v} → M sending (t, v) to

α(t) + vY (t) can be obtained on M , the tangent vector field of which is given by

A = dX − avY + cvZ.
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Theorem 2.1. Let M be a null scroll. Then the tangent planes along a ruling of
M coincide if and only if a = c = 0.

Proof. Straightforward computation. 2

Then we have following:

Corollary 2.2. The null scroll M is developable if and only if a = c = 0.

Lemma 2.3. For the null scroll M we have

a = − det(Y, Z,∇XX)(2.4)

c = −det(X, Y,∇XY ).(2.5)

Proof. The equations (2.2) infer the two equalities. 2

§3. Position vector of a central point and pseudo-orthogonal
trajectory for the null scrolls

If the distance between the central point and the base curve of a null scroll (which
is a skew timelike surface), is u, then the position vector α(t) can be expressed by
α(t, u) = α(t) + uY (t), where α(t) is the position vector of the base curve and Y (t)
is the directed vector belonging to the ruling. The parameter u can be expressed in
terms of position vector of the base curve and directed vector of the ruling. Consider
three preceding rulings of a null scroll such that the first one is Y (t), and the second
one is Y (t) + dY (t). Let P, P ′ and Q,Q′ be the feet on the rulings of the common
perpendicular to the two preceding rulings. The common perpendicular to Y (t) and
Y (t) + dY (t) is Y (t) ∧ dY (t).

The vector
−→
PQ coincides with the vector

−−→
PP ′ in the limiting position, and

−→
PQ

will be the tangent vector of the curve of striction. Thus, we have

〈∇XY,
−→
PQ〉 = 0.

Therefore, we get
u = −ad/c2.(3.6)

Hence the curve of striction is given by

α(t) = α(t)− 〈∇XY, dX〉
〈∇XY,∇XY 〉

Y (t),(3.7)

where 〈∇XY,∇XY 〉 6= 0 and ad/c2 is constant.

Theorem 3.1. The curve of striction α is independent on the choice of the base
curve α for the non-developable null scroll M .

Proof. Let β be a another base curve of the null scroll M , that is, let

ϕ(t, v) = α(t) + vY (t)
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and
ϕ(t, s) = β(t) + sY (t)

be two different base curve for the null scroll M . Then from (3.7) we obtain

α(t)− β(t) = 0,

thus the proof is complete.

Theorem 3.2. Let M be a nondevelopable null scroll. Then ϕ(t, v0) on the ruling
through the point α(t) is a central point if and only if ∇XY is a normal vector of the
tangent plane at ϕ(t, v0).

Proof. Let M be a nondevelopable null scroll and ∇XY be a normal of the tangent
plane at ϕ(t, v0) on the ruling through α(t). The tangent vector field of the curve

ϕv0 : I × {v0} → M

is A = dX−av0Y + cv0Z. Thus 〈∇XY, A〉 = 0. Then we get v0 = −ad/c2. Therefore
ϕ(t, v0) is a central point of M .

Conversely, let ϕ(t, v0) be a central point on the ruling through α(t). Then we
obtain 〈∇XY, Y 〉 = 0 and 〈∇XY, A〉 = ad + c2v = 0.

Thus ∇XY is a normal vector of the tangent plane at ϕ(t, v0).

Theorem 3.3. Let M be a nondevelopable null scroll. The curve of striction

α(t) = α(t)− ad
c2 Y (t)(3.8)

is a timelike curve in a null scroll M .

Proof. If we use the equation (3.8), we can show easily that the tangent vector
field of the curve of striction is a timelike vector field. 2

We know that, if there is a curve which meets perpendicularly each of the rulings,
then this curve is called an orthogonal trajectory of a ruled surface which base curve
is non-null. Hence we have

Definition 3.1. Let M be a null scroll in R3
1. If there exists a curve which makes

constant angle with each one of the rulings, the this curve is called a pseudo-orthogonal
trajectory of M .

Theorem 3.4. Let M be a null scroll in R3
1. Then there exists a unique pseudo-

orthogonal trajectory of M through each point of M .

Proof. Let ϕ : I × J → R3
1, defined by

ϕ(t, v) = α(t) + vY (t)

be a parametrization of M . A pseudo-orthogonal trajectory of M is given by β :
˜I →M, where

β(t) = α(t) + f(t)Y (t), t ∈ ˜I

and 〈β′, Y 〉 = const. We may assume that ˜I ⊂ I.
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Now we want to get a curve which passes through the point p0 = ϕ(t0, v0). Thus
we can write

p = α(t) + f(t)Y (t), p0 = α(t0) + v0Y (t0).

Therefore we get α(t) = α(t0) and f(t) = v0.
If we choose I such that it is one to one, then we have t = t0. Therefore the

pseudo-orthogonal trajectory of M through the point p0 is unique. Since this pseudo-
orthogonal trajectory of M makes a constant angle with each of the rulings of M , we
have ˜I = I. Thus the proof is complete. 2

Theorem 3.5. Let M be a null scroll in R3
1. The shortest distance between two

rulings is measured only on the curve of striction which is one of the pseudo-orthogonal
trajectories.

Proof. We consider two rulings which pass through the points α(t1) and α(t2),
where t1, t2 ∈ I and t1 < t2. We compute the length `(v) of an pseudo-orthogonal
trajectory between these two rulings

`(v) =
∫ t2

t1
‖A‖ dt =

∫ t2

t1
(2adv + c2v2)

1
2 dt.

To find the value of t which minimizes `(v), we notice that

∂`(v)
∂v

= 0,

which infers v = −ad/c2. This completes the proof. 2
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