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Abstract

In this study, a timelike ruled surface in the 3 - dimensional Lorentzian space
[Rif which is called null scroll is generated by a null straight line which moves
along a null curve with respect to the null frame. In a null scroll, the central
point, the curve of striction, pseudo-orthogonal trajectory and some theorems
related to these structures are obtained in the 3-dimensional Lorentzian space
[R?. Results about developable null scrolls are provided as well.
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§1. Introduction

[R? is by definition the 3-dimensional vector space R® with the inner product of
signature (1,2) given by

(T,y) = —T1y1 + T2y2 + T3Y3

for any colomn vectors x = (21,22, 23), y = (y1,¥2,y3) € R®. Let {e1, €2, e3} be the
standart orthonormal basis of [R‘f given by

er = (1,0,0), ea = *(0,1,0), e3 = (0,0,1).

A basis F ={X,Y, Z} of [Ri’ is called a (proper) null frame if it satisfies the following
conditions
(X, X)=YY)=0, (X,Y)=-1,

3
Z=XNY =) gdet[X,Y,e]e,
=1

where e; = —1, e5 = 3 = 1. Hence we obtain that
(X,2)=(Y,Z)=0, (Z,Z)=1.

A vector V in [R‘;’ is said to be null if (V,; V) =0, [2, 4]. A surface in the 3-dimensional
Lorentzian space [Ri’ is called a timelike surface if the induced metric on the surface
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is a Lorentzian metric. A ruled surface is a surface swept out by a straight line Y
moving along a curve a.. The various positions of the generating line Y are called the
rulings of the surface. Such a surface, thus has a parametrization in ruled form as
follows:

o(t,v) = a(t) +vY ().

We call o to be the base curve and Y to be the director curve. If the tangent
plane is constant along a fixed ruling, then the ruled surface is called a developable
surface. The remaining ruled surfaces are called skew surfaces. If there exists a
common perpendicular to two preceding rulings in the skew surface, then the foot of
the common perpendicular on the main ruling is called a central point. The locus of
the central points is called the curve of striction [1, 5].

§2. Null Scrolls in R

Let a: M — [R:l)’ be a null curve, namely, a smooth curve whose tangent vectors
o/ (t), Vt € I are null. For a given smooth positive function d = d(¢) let us put

(2.1) X=X(t)=d .

Then X is a null vector field along «. Moreover, there exists a null vector field Y
along « satisfying (X,Y) = —1. Here if we put Z = X AY then we can obtain a
(proper) null frame field F = {X,Y, Z} along «. In this case the pair (a, F) is said
to be a (proper) framed null curve.
If the null vector Y moves along «, then the ruled surface is given by the parametriza-
tion (I x R, ¢) where
p:IxR — [R?

is given by
(t,v) = (t,v) = a(t) + Y (t), t €I, v e J,

which can be obtained in the 3-dimensional Lorentzian space [R‘rls. Then the ruled
surface is called a null scroll and denoted by M. It is a timelike surface.

Let o be a (proper) framed null curve and V be Levi-Civita connection on [R:i.
Then a framed null curve « satisfies the following Frenet equations

VxX =aX +bZ
(2.2) VxY =—-aY +cZ
VxZ =cX +0bY,

where
a=—(VxX)Y)
(2.3) b=(VxX,Z)
c=(VxY,Z)

are smooth functions [3, 4].
If we fix the parameter v, then the curve ¢, : I x {v} — M sending (¢,v) to
a(t) + vY (t) can be obtained on M, the tangent vector field of which is given by

A=dX — avY + cvZ.
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Theorem 2.1. Let M be a null scroll. Then the tangent planes along a ruling of
M coincide if and only if a = c = 0.

Proof. Straightforward computation. O
Then we have following:
Corollary 2.2. The null scroll M is developable if and only if a = c = 0.

Lemma 2.3. For the null scroll M we have

(2.4) a=—det(Y,Z,VyxX)
(2.5) c=—det(X,Y,VxY).
Proof. The equations (2.2) infer the two equalities. O

§3. Position vector of a central point and pseudo-orthogonal
trajectory for the null scrolls

If the distance between the central point and the base curve of a null scroll (which
is a skew timelike surface), is uw, then the position vector @(t) can be expressed by
a(t, ) = a(t) + wY (t), where a(t) is the position vector of the base curve and Y (¢)
is the directed vector belonging to the ruling. The parameter @ can be expressed in
terms of position vector of the base curve and directed vector of the ruling. Consider
three preceding rulings of a null scroll such that the first one is Y (¢), and the second
one is Y (t) + dY (¢). Let P, P’ and @, Q" be the feet on the rulings of the common
perpendicular to the two preceding rulings. The common perpendicular to Y (¢) and
Y(t) +dY(t) is Y(t) A dY (¢).

The vector P(@) coincides with the vector PP’ in the limiting position, and P
will be the tangent vector of the curve of striction. Thus, we have

(VxY,PQ) = 0.
Therefore, we get
(3.6) U= —ad/c*.
Hence the curve of striction is given by
_ (VxY,dX)
3.7 t)=a(t) - ———Y(t
(37 (1) = ot) ~ 1 ey 0

where (VxY,VxY) # 0 and ad/c? is constant.

Theorem 3.1. The curve of striction @ is independent on the choice of the base
curve « for the non-developable null scroll M.

Proof. Let 3 be a another base curve of the null scroll M, that is, let

p(t,v) = at) + vY (t)
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and
p(t,s) = B(t) +sY (1)

be two different base curve for the null scroll M. Then from (3.7) we obtain
a(t) — B(t) =0,

thus the proof is complete.

Theorem 3.2. Let M be a nondevelopable null scroll. Then ¢(t,vg) on the ruling
through the point o(t) is a central point if and only if VxY is a normal vector of the
tangent plane at p(t,vo).

Proof. Let M be a nondevelopable null scroll and V xY be a normal of the tangent
plane at ¢(t,v9) on the ruling through «(t). The tangent vector field of the curve
Voo i I X {vo} — M

is A=dX —avgY +cvgZ. Thus (VxY, A) = 0. Then we get vg = —ad/c?. Therefore
©(t,vg) is a central point of M.

Conversely, let ¢(t,v9) be a central point on the ruling through «(t). Then we
obtain (VxY,Y) =0 and (VxY, A) = ad + c®v = 0.

Thus VxY is a normal vector of the tangent plane at o(t, vp).

Theorem 3.3. Let M be a nondevelopable null scroll. The curve of striction
(3.8) a(t) =a(t) — 5Y()

s a timelike curve in a null scroll M.
Proof. If we use the equation (3.8), we can show easily that the tangent vector

field of the curve of striction is a timelike vector field. O

We know that, if there is a curve which meets perpendicularly each of the rulings,
then this curve is called an orthogonal trajectory of a ruled surface which base curve
is non-null. Hence we have

Definition 3.1. Let M be a null scroll in [R?. If there exists a curve which makes
constant angle with each one of the rulings, the this curve is called a pseudo-orthogonal
trajectory of M.

Theorem 3.4. Let M be a null scroll in [R“Z’. Then there exists a unique pseudo-
orthogonal trajectory of M through each point of M.

Proof. Let ¢ : I x J — [R:f, defined by
o(t,v) = a(t) +vY (1)

be a parametrization of M. A pseudo-orthogonal trajectory of M is given by 3 :
I —M, where _
B(t) = alt) + f()Y (), tel

and (3',Y) = const. We may assume that IclI
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Now we want to get a curve which passes through the point pg = ¢(to,vp). Thus

we can write
p=at)+ fO)Y(), po = a(to) + voY (to)-
Therefore we get a(t) = a(ty) and f(t) = vo.

If we choose I such that it is one to one, then we have ¢t = ty. Therefore the
pseudo-orthogonal trajectory of M through the point pg is unique. Since this pseudo-
orthogonal trajectory of M makes a constant angle with each of the rulings of M, we
have I = I. Thus the proof is complete. O

Theorem 3.5. Let M be a null scroll in [Ri’. The shortest distance between two
rulings is measured only on the curve of striction which is one of the pseudo-orthogonal
trajectories.

Proof. We consider two rulings which pass through the points «(t1) and «(ts),
where ¢1,t2 € T and t; < t2. We compute the length £(v) of an pseudo-orthogonal
trajectory between these two rulings

to ta
() = / A dt = / (2adv + 2v?)¥ dt.
t1 (31
To find the value of t which minimizes ¢(v), we notice that

al(v)

Ov ’

which infers v = —ad/c?. This completes the proof. 0
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