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Abstract

For the space of gamma distributions with Fisher metric and exponential connec-
tions, natural coordinate systems, potential functions and an affine immersion
in R3 are provided.
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§1. Introduction.
Gamma manifolds provide Riemannian manifold representations of the space of

gamma probability density functions. Recent applications have used such geometrical
representations for models of clustering for galaxies [2] and communications [3], and
have relevance to the evaluation of encryption devices [4, 5]. An important feature of
gamma manifolds is the geometrization of departures from randomness, because the
exponential distributions, which represents Poisson processes, form a 1-dimensional
submanifold. Some features of the curvature properties of gamma manifolds were
known and numerical computations allowed graphical representations of geodesic
sprays. In the present paper, we summarise natural coordinate systems, potential
functions, and affine immersions of gamma manifolds.

§2. Natural coordinate systems and potential functions
Let M be the set of gamma distributions, that is,

M =
{

p(t; τ, ν)
∣

∣

∣

∣

p(t; τ, ν) =
(ν

τ

)ν tν−1

Γ(ν)
e−tν/τ , τ, ν ∈ R+

}

.

Identifying (τ, ν) as a local coordinate system, M can be regarded as a manifold, the
gamma manifold. We use (ξ1, ξ2) ∈ R+ × R+ to denote coordinates.

Set l(t; τ, ν) = log p(t; τ, ν); Then M , admits a Riemannian metric, the Fisher
metric g, with coordinate functions:

gij =
∫ ∞

0

∂l
∂ξi

∂l
∂ξj p(t; τ, ν) dt.
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For each α ∈ R , we have a torsion-free affine connection with components:

Γ(α)
ij,k =

∫ ∞

0

(

∂2l
∂ξi∂ξj

∂l
∂ξk −

1− α
2

∂l
∂ξi

∂l
∂ξj

∂l
∂ξk

)

p(t; τ, ν) dt,

where Γ(α)
ij,k = g(

∑2
l=1 Γ(α)l

ij
∂

∂ξl , ∂
∂ξk ). We call the affine connection an α (or a ∇(α))-

connection. In particular, the 1-connection is said to be an exponential connection, and
the (−1)-connection is said to be a mixture connection. We say that an α-connection
and the (−α)-connection are mutually dual with respect to the Fisher metric g (see
[1]).

Proposition 2.1 (cf. [7]) The Fisher metric and the connection coefficients of theb
α-connection on the gamma manifold with respect to (τ, ν) coordinate are given as
follows:

gττ =
µ
τ2 , gνν = φ′(ν)− 1

ν
,

Γ(α)τ
ττ = − (1 + α)

τ
, Γ(α)ν

ττ =
α− 1
2τ2

(

1
− 1

ν + φ′(ν)

)

,

Γ(α)τ
ντ = Γ(α)τ

τν =
α + 1
2ν

,

Γ(α)ν
νν =

1− α
2

(

1/ν2 + φ′′(ν)
−1/ν + φ′(ν)

)

,

where φ is the logarithmic derivative of the gamma function, i.e., φ = Γ′(ν)/Γ(ν),
and all the other Christoffel symbols vanish.

Moreover, the curvature tensor of the α-connection is given as

Rτµτµ =
(α2 − 1){φ(ν) + νφ(ν)}

4τ2νφ(ν)
.

So the 1 and (−1)-connections on the gamma manifold are flat.

We say that a coordinate system (θ1, θ2) is an affine coordinate system if all the
connection coefficients vanish and, in particular, an affine coordinate system which
represents the probability density as

p(x; θ1, θ2) = exp{C(x) + F1(x)θ1 + F2(x)θ2 − ψ(θ1, θ2)}(2.1)

is said to be a natural coordinate system. Here F1, F2 and C are randam variables
and ψ is a function on the parameter space. The distributions p(x; θ1, θ2) in (2.1)
are said to be an exponential family. For an affine coordinate system, there exists a
function ψ on M such that

∂2ψ
∂θi∂θj = gij ,

where gij is the Fisher metric with respect to the affine coordinate system. We call ψ
the θ-potential function. On an exponential family, the θ potential function coincides
with ψ in the formula (2.1).
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Proposition 2.2 Let M be the gamma manifold. Then we have:

1. Set β = ν/τ . Then (β, ν) is a natural coordinate system of the 1-connection.

2. The function ψ = log Γ(ν)− ν log β is the potential function with respect to the
natural coordinates (β, ν).

Proof. Set β = ν/τ . Then gamma distributions can be written as

p(t; β, ν) = βν tν−1

Γ(ν)
e−βt

= exp[− log t + (ν log t− βt)− (log Γ(ν)− ν log β)].(2.2)

Hence the set of all gamma distributions is an exponential family. Equality (2.2)
implies that (β, ν) is a natural coordinate system, and ψ = log Γ(ν) − ν log β is its
potential function.

For more details, see chapters 2 and 3 in [1].
Here we give the Fisher metric with respect to natural coordinates (β, ν).

Proposition 2.3 The Fisher metric with respect to (β, ν) coordinates is given by:

gββ =
ν
β

, gβν = gνβ = − 1
β

,

gνν = φ′(ν).

We remark that there exists also a (−1)-affine coordinate system since the con-
nection ∇(−1) is flat. Later in this section, we find such a (−1)-affine coordinate
system.

In general, for a manifold M with a Riemannian metric g, torsion-free affine
connections ∇ and ∇∗ mutually dual with respect to g, the tetrad {M, g,∇,∇∗}
is said to be a dually flat space if ∇ and ∇∗ are flat affine connections.

Proposition 2.4 [1, Theorem 3.6] Let {M, g,∇,∇∗} be a dually flat space. Denote
by (θi) a ∇-affine coordinate system, and by ψ the θ-potential function. Set ηi =
∂ψ/∂θi. Then we have

1. The Jacobian matrix of (ηi) with respect to (θj) is given by the Riemannian
metric g, i.e., ∂ηi/∂θj = gij.

2. (ηi) is a ∇∗-affine coordinate system, and (θi) and (ηi) are mutually dual with
respect to g, i.e., g(∂/∂θi, ∂/∂ηj) = δj

i .

3. λ =
∑

θiηi − ψ is the η-potential function.

Here we return to the geometry of the gamma manifold.
Since 1- and (−1)-connection on the gamma manifold M are both flat, the tetrad

{M, g,∇(1),∇(−1)} is a dually flat space, so there exist potential functions. As we
showed in Proposition 2.2, (β, ν) is a natural coordinate system and ψ = log Γ(ν) −
ν log β is its potential function. Hence we obtain a (−1)-affine coordinate system and
its potential function from Propositions 2.3 and 2.4.
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Proposition 2.5 Let a tetrad {M, g,∇(1),∇(−1)} be the gamma manifold. Denote by
(β, ν) a natural coordinate system on M . Then (−ν/β, φ(ν)− log β) is a (−1)-affine
coordinate system and

λ = −ν + φ(ν)− log Γ(ν)

is the potential function with respect to (−ν/β, φ(ν)− log β) coordinates.

We also show that the gamma manifold admits geodesic foliations.

Proposition 2.6 Let a tetrad {M, g,∇(1),∇(−1)} be the gamma manifold. Denote
by (β, ν) a natural coordinate system and by (−ν/β, φ(ν)− log β) its dual coordinate
system. Then, (−ν/β, ν) and (β, φ(ν)− log β) are dual geodesic foliations.

Proof. Since (β, ν) and (−ν/β, φ(ν)−log β) are affine coordinate systems, each coordi-
nate curve is a geodesic. From Propositions 2.4 and 2.5, (−ν/β, ν) and (β, φ(ν)−log β)
are orthogonal coordinate systems, and they are mutually dual. Then the gamma
manifold has geodesic foliations.

Further to Proposition 2.6, see also Section 3.7 in [1]. We remark that dual
geodesic foliations play an essential role in statistical estimation theory.

§3. Affine immersions

In this section, we give the affine immersion which realizes the gamma manifold
in R3.

Let M be an n-dimensional manifold, and f an immersion from M to Rn. Suppose
that ξ is a local vector field along f . We say that the pair {f, ξ} is an affine immersion
if the tangent space Tf(x) Rn = f∗(TxM) ⊕ R{ξx}, where x ∈ M and R{ξx} is the
one dimensional subspace spanned by ξ. We call ξ a transversal vector field.

Denote by D the standard flat affine connection of Rn. By the decomposition of
the tangent space, covariant derivatives appear as follows:

DXf∗Y = f∗(∇XY ) + g(X,Y )ξ,(3.3)

DXξ = −f∗(SX) + µ(X)ξ.(3.4)

Then, an affine immersion induces a torsion free affine connection ∇, a symmetric
(0, 2) tensor field g, a (1, 1) tensor field S and a 1-form µ on the given manifold M .

Proposition 3.7 Let M be the gamma manifold with the Fisher metrc g and the
exponential connection ∇(1). Denote by (θ1, θ2) = (β = ν/τ, ν) a natural coordinate
system. Then M can be realized in R3 by the graph of a θ-potential function, namely,
M can be realized by the affine immersion {f, ξ}:

f :
(

β
ν

)

7→





β
ν
ψ



 , ξ =





0
0
1



 ,

where ψ = log Γ(ν)− ν log β.
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For more details, see Chapter 2 in [10].

Remark. Note that the submanifold of exponential distributions, given by ν = 1,
is represented in this immersion by the curve

(0,∞) → R3 : β 7→
{

β, 1, log
1
β

}

.

§4. Divergences
Let {M, g,∇(1),∇(−1)} be a dually flat space. Denote by (θi) the natural coordi-

nate system (1-affine coordinate system) and by (ηi) its dual affine coordinate system.
For two points p and p′ in M , the function

D(p||p′) = ψ(p) + λ(p′)−
n

∑

i=1

θi(p)ηi(p′)(4.5)

is called a canonical divergence or geometric divergence (See [1], [6], [8] and [9]).
On the other hand, for two probability density functions p and p′ on an event

space Ω, the function

KL(p||p′) =
∫

Ω
log

p(x)
p′(x)

p(x)dx

is called a Kullback-Leibler divergence or relative entropy.
It turns out that we may identify the canonical divergence and the Kullback-

Leibler divergence on the gamma manifold.

Proposition 4.8 Let {M, g,∇(1),∇(−1)} be the gamma manifold with the Fisher
metric, and 1- and (−1)-connections. Then, the canonical divergence D and the
Kullback-Leibler divergence KL coincide. For two points p(t) = p(t; β, ν) and p′(t) =
p(t; b, a), they are given by

D(p||p′) = KL(p||p′)

= log
Γ(ν)
Γ(a)

− ν log
β
b

+ (a− ν)
Γ′(a)
Γ(a)

− a +
νa
b

.(4.6)

Proof. From Propositions 2.2 and 2.5, we have the canonical divergence (4.6) by
substituting the definition (4.5). On the other hand, by straightforward calculation,
using Mathematica, we have also the Kullback-Leibler divergence, and it coincides
with (4.6).

Remark.We remark that the entropy function S on the gamma manifold is given
by ([2])

S = ν + (1− ν)φ(ν) + log Γ(ν)− log β.

This entropy function contains −λ, the negative of the potential function 1. It may
be interesting to consider the statistical and geometrical meaning of the difference for
gamma manifolds S − (−λ) = φ(ν)− log β.

Acknowledgement. The authors would like to express their sincere gratitude for
Professor Takashi Kurose for his valuable comments for preparation of this paper.

1In the case of the manifold of Gaussian distributions, the entropy function is precisely the
negative of the η-potential function, i.e., S = −λ.
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