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Abstract

In this paper, we show that an (n+1)-regular conditional linear space with two
consecutive line degrees is a projective plane of order n less two lines and all
their points, or is a linear space with 12 points, 19 lines, every point of degree
5 and each point lying on precisely one 4-line and four 3-lines.
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§1. Introduction

One of the most natural strictly numerical questions to ask is what can be said if
all the line degrees of a linear space S are known. Clearly, this problem will have a
reasonable answer only if the set of allowable line degrees is quite small. If there is
only one line degree, then S is a design, and in a sense, S is ”known”. We therefore
turn to the case of two line degrees. A non-trivial linear spaces with two consecutive
line degrees has been examined by several authors ([2],[3],[5],[9]).

A conditional linear space was firstly defined by İ.Günaltılı in [6]. In this paper,
first of all, we examined the relation between
an (n + 1)−regular linear space with two consecutive line degrees and conditional
linear spaces. Then, we classified an (n + 1)−regular conditional linear space with
two consecutive line degrees.

According to our determination, an (n + 1)−regular conditional linear space with
two consecutive line degrees is a projective plane of order n less two lines and all
their points, or is a linear space with 12 points, 19 lines, every point of degree 5 and
each point lying on precisely one 4-line and four 3-lines.

Definition 1.1 ([2]). A finite linear space is a pair S = (P,L ) consisting of a
set P of elements called points and a set L of distinguished subsets of points, called
lines satisfying the following axioms:

(L1) Any two distinct points of S belong to exactly one line of S.

(L2) Any line of S has at least two points of S.
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In talking about finite linear spaces we shall use a rather easy-going terminology
borrowed from classical geometry; for example, we shall use words such as ”collinear,”
”concurrent,” ”meeting,” ”joining,” and expressions such as ” a line ( passing) through
a point” or ” a point
( lying ) on a line.”

In a finite linear space S, v and b denote respectively the number of points and
of lines of S. The number v(l) of points on a line l is called the degree of l and the
number b(P ) of lines passing through a point P is called the degree of P. The terms
i−point or i−line may also used to refer respectively to a point or a line of degree i.
In addition; bk denotes the total number of k−lines, vk denotes the total number of
k−points and bk(P ) denotes the total number of k−lines passed through a point P.

An finite linear space is non-trivial if b > 1.
A matrix R = [rij ]vxb is called an incidence matrix of S if there are orders

P1, P2, ...., Pv and l1, l2, ...., lb of the points and lines such that rij = 1 if Pi is a
point of lj and rij = 0 if not.

Definition 1.2 ([4]). Let S be a non-trivial linear space. If every point of S lies
on exactly t lines of S then S is called a t−regular linear space. (t ≥ 1, t ∈ Z)

Definition 1.3 Let S be a non-trivial linear space. S is called a linear space with
A−line ranges, if A is complete set of degrees of all lines of S.

Definition 1.4 ([4]). The order of a non-trivial finite linear space is defined one
less than the highest degree of both points and lines.

Definition 1.5 ([4]). Let S be a non-trivial finite linear space of order n,
P ∈ P, l ∈ L. (P, l) is called a flag if P lies on l.

A finite affine plane of order n ≥ 2 is an finite linear space with n2 points in which
v(l) = n, b(P ) = n + 1 for every line l and point P. A finite projective plane of order
n ≥ 2 is an finite linear space with n2 + n + 1 points in which v(l) = b(P ) = n + 1 for
every line l and point P.

Definition 1.6 Let S be a non-trivial linear space of order n. S is called a con-
ditional linear space if the following condition is valid for every (P, l)−flag of S

bn(P ) ≤ b− v − (n + 1− v(l))

A conditional linear space of order n with bn = 0 is called a trivial conditional
linear space. It is clear that, max

l∈L
(n + 1 − v(l)) ≤ b − v for any line l of a trivial

conditional linear space.
In this paper, we will prove the following theorem.
Theorem (A). Let S be an (n + 1)−regular non-trivial conditional linear space

with two consecutive line degrees. Then, S is a projective plane of order n less two
lines and all their points, or is a linear space with 12 points, 19 lines, every point of
degree 5 and each point lying on precisely one 4-line and four 3-lines.

The following results are well known and are listed here for easy reference ([2],[4]).

T1
b∑

j=1

v(lj) =
v∑

i=1

b(Pi)
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T2 At each point Pi we have

v − 1 =
b∑

j=1

(v(lj)− 1)rij

Hence

v(v − 1) =
b∑

j=1

v(lj)(v(lj)− 1)

T3 If P does not lie on l, then b(P ) ≥ v(l). Equality holds iff all lines through P
meet l.

T4 If π(lj) is the number of lines that miss lj then

b− 1 = π(lj) +
v∑

i=1

(b(Pi)− 1)rij

Proposition 1.1 [2] Let S be a non-trivial linear space in which each line has k or
k + 1 points. (2 ≤ k ≤ n, k ∈ Z). For any point P we have

v − 1
k

≤ b(P ) ≤ v − 1
k − 1

Proof. Lines on P have at most k + 1 points and at least k points. Hence
kb(P ) ≥ v − 1 and (k − 1)b(P ) ≤ v − 1. The inequality follows. 2

Proposition 1.2 [2] Let S be a non-trivial linear space in which each line has k or
k + 1 points. (2 ≤ k ≤ n, k ∈ Z ). Any point P is on kb(P ) − v + 1 k−lines and
(1− k)b(P ) + v − 1 (k + 1)−lines.

Proof. Let a and c be the number of k− and (k + 1)−lines respectively on P.
Then a + c = b(P ). Also,

a(k − 1) + ck = v − 1

So (a + c)k − a = kb(P )− a = v − 1 implying a = kb(P )− v + 1. Then

c = b(P )− a = (1− k)b(P ) + v − 1

2

Proposition 1.3 [2] Let S be a non-trivial t−regular linear space with
{k, k + 1}−line ranges. Then;

kbk = v(kt− v + 1) and (k + 1)bk+1 = v((1− k)t + v − 1) (2 ≤ k, t ≤ n, k, n ∈ Z )

Proof. Every point of S is on exactly t lines, since S is a non-trivial
t− regular linear space with {k, k + 1}−line ranges. Also, from the Proposition 1.8,
every point P of S , bk(P ) = kt− v + 1 and
bk+1(P ) = (1− k)t + v − 1. Thus,

kbk = v(kt− v + 1) and (k + 1)bk+1 = v((1− k)t + v − 1).
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2

Theorem 1.1 (De Bruijn and Erdös, [2]). Let S be a finite non-trivial linear
space. Then b ≥ v. Moreover, equality holds if and only if S is a generalized projective
plane, i.e projective plane or a near-pencil.

The following result can be obtained similarly as Corollary 2.3.3, [2].

Proposition 1.4 [2] If S is a non-trivial (n + 1)−regular linear space with n2 − n
points, n2 + n − 1 lines and {n, n − 1}−lines ranges, n ≥ 3, then S is a projective
plane of order n less two lines and all their points, or is a linear space with 12 points,
19 lines, every point of degree 5 and each point lying on precisely one 4−line and four
3−lines.

§2. Main Results

We suppose that S is an (n+1)-regular finite non-trivial linear space with {k, k +
1}−line ranges. (2 ≤ k ≤ n, k, n ∈ Z). If k 6= n, n−1 then S does not contain n−lines.
Thus; from the Definition 1.6, if n+1−k ≤ b−v then S is a trivial conditional linear
space.

Proposition 2.1 An (n + 1)−regular non-trivial conditional linear space with two
consecutive line degrees, n ≥ 3, is a linear space with {n, n− 1} line ranges.

Proof. Let S be an (n + 1)−regular non-trivial conditional linear space with
{k, k + 1}−line ranges. S contains at least one n−line, since S is an (n + 1)−regular
non-trivial conditional linear space. Therefore; k ∈ {n, n − 1}. We must show that
k = n− 1.

We suppose that k = n. In this case, S is an (n+1)−regular non-trivial linear space
with {n, n + 1}−line ranges. Thus; S contains at least one n−line and (n + 1)−line.

Firstly, we show that bn+1 ≥ 2. We assume that S contains exactly one (n +
1)−line. S contains at least one point P not on (n + 1)−line, since S is an (n +
1)−regular non-trivial linear space. Since every line to be passed on P has degree n,
from T2, the total number of points of S is v = n2. In addition; since bn(P ) = n and
bn+1(P ) = 1, for every point P which is on (n + 1)−line, again using T2, the total
number of points of S is calculated v = n2 +1. Thus, we obtain v = n2 = n2 +1. This
is a contradiction and bn+1 ≥ 2. Since S is an (n+1)−regular, any two (n+1)−lines
intersect. From T4, b = n2 + n + 1. Using T2, we obtain bn(P ) = b − v, for each
point P. Since S is an (n + 1)−regular non-trivial conditional linear space, from the
Definition 1.6 we obtain 0 ≤ −1. This is a contradiction. Thus, k = n− 1. 2

Proposition 2.1 showed that the line degrees of an (n + 1)−regular non-trivial
conditional linear space with two consecutive line degrees are {n, n− 1}. By the way,
it is trivial that an (n + 1)−regular non-trivial conditional linear space is also an
(n + 1)−regular non-trivial linear space. Thus; any
(n+1)−regular non-trivial linear space with {n, n+1}−line ranges is not a conditional
linear space. Since we examined the relation between an
(n + 1)−regular linear space with two consecutive line degrees and an
(n + 1)−regular non-trivial conditional linear space; we assume that S is an (n +
1)−regular linear space with {n− 1, n}−line ranges.
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Proposition 2.2 Let S be an (n + 1)−regular linear space with
{n− 1, n}−line ranges. The total number of S is either n2 − n or n2 − 1.

Proof. We assume that S is an
(n + 1)−regular linear space with {n− 1, n}−line ranges. By the Proposition 1.7

v − 1
n− 1

≤ n + 1 ≤ v − 1
n− 2

Then we obtain from the above inequality; n2 − n − 1 ≤ v ≤ n2. On the other
hand, from the Proposition 1.8, we obtain bn(P ) = (n − 1)(n + 1) + 1 − v and
bn−1(P ) = (1− (n− 1))(n + 1) + v − 1 for every point P of S. Since the line degrees
are {n− 1, n}, bn(P ) > 0 and bn−1(P ) > 0. Thus, v 6= n2 − n− 1, v 6= n2.

Now we show that the total number of points of S is either n2 − 1 or n2 − n. We
assume that n2 − n + 1 ≤ v ≤ n2 − 2. Thus, we can write
v = n2 − m, 2 ≤ m ≤ n − 1, n,m ∈ Z. Since S is an (n + 1)−regular linear space,
bn(P ) = n+1−m and bn−1(P ) = m every point P of S. Using Proposition 1.9, gives
nbn = (n2 −m)(n + 1−m) and (n− 1)bn−1 = (n2 −m)m. Thus,

b = bn + bn−1 = n2 + n− m2 −m

n(n− 1)

Since 0 <
m(m− 1)
n(n− 1)

< 1, b = n2 + n− m(m− 1)
n(n− 1)

/∈ Z. This contradicts b ∈ Z. Thus

our assumption is false. Therefore; the total number of points of is either n2 − 1 or
n2. 2

Theorem (A). Let S be an (n + 1)−regular non-trivial conditional linear space
with two consecutive line degrees. Thus, S is a projective plane order n less two lines
and all their points, or is a linear space with 12 points, 19 lines, every point of degree
5 and each point lying on precisely one 4-line and four 3-lines.

Proof. S is an (n+1)−regular non-trivial linear space with line ranges {n−1, n},
from the Proposition 2.1, since S is an (n + 1)−regular non-trivial conditional linear
space with two consecutive line degrees. Also, from the Proposition 2.2, the total
number of points of S is either n2 − n or n2 − 1.

Now we must show that the total number of points of S is v = n2−n. We assume
that the total number of points of S is v = n2 − 1. Since S is an (n + 1)−regular
linear space with n2 − 1 points, from the
Proposition 1.8, bn(P ) = n and bn−1(P ) = 1, every point P of S . From the Propo-
sition 1.9, the number of n−lines is n2 − 1 and the number of (n− 1)−lines is n + 1.
Thus the total number of lines of S is

b = bn + bn−1 = n2 + n. In addition, n + 1 − v(l) ∈ {1, 2} for every l ∈ L, since the
line range is {n, n− 1}. In this case,

b− v −max
l∈L

{n + 1− v(l)} = n2 + n− n2 + 1− 2 = n− 1

Thus, from the Definition 1.6, we obtain n ≤ n − 1. This is a contradiction. Thus,
the total number of points of S is v = n2 − n.

From the Proposition 1.10, S is a projective plane of order n less two lines and
all their points, or a finite linear space with 12 points, 19 lines, every point of degree
5 and each point lying on precisely one 4-line and four 3-lines. 2
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