
On finite near-circular spaces
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Abstract

In this paper, we introduce the concept of a near-circular space, and show that
certain propositions holding in finite linear spaces or their similarization hold,
also, in finite circular spaces.
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§1. Introduction

The subject of finite near-linear spaces and finite linear spaces have been studied
in detail, and some combinatorial results have been obtained in ([1] , [2] , [3] and [4])
on this subject. In this paper, we define the concept of a near-circular space (circular
space) probably as an alternative to a near-linear space (linear space).

Then we give some propositions about finite circular spaces as the propositions
about finite near-linear spaces given in [2] .

Finally, we use a theorem which characterizes the connection between the finite
near-linear spaces and finite linear spaces to determine connection between finite
near-circular spaces and finite circular spaces.

The notations used in this paper are the same as those in [2] .
When we say there is one line (or there are two points), we always mean that

there is precisely one line(or there are precisely two points). Otherwise we shall add
”at least” or ”at most” or some equivalent expression.

Definition 1.(Batten[2]). A near-linear space is a space S = (P ,L) of points P
and lines L such that

NL1. any line has at least two points and

NL2. two points are on at most one line.

If P and L are finite then S is called finite.
If P and Q are distinct points which are on a line, then this line is unique by NL2.

This unique line is denoted by PQ. Then it should be clear that if R and S are any
distinct points on the line PQ, it must be the case, by NL2, that PQ = RS.

Definition 2. A near-circular space is a space C =(P , C) of points P and circles
C such that
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NC1. every circle contains at least three distinct points and

NC2. three distinct points are contained in at most one circle.

If P and C are finite then C is called finite.
If P, Q and R are distinct points which are on a circle, then this circle is unique

by NC2 and this unique circle is denoted by PQR. It should be clear that if S, T
and U are any distinct points on the circle PQR, it must be the case by NC2, that
PQR = STU.

§2. Near-circular Spaces

Now, we give two essential properties of a near-circular space by the following
propositions.

Proposition 1. Two distinct circles of a near-circular space intersect in at most
two points.

Proof: Suppose c1 and c2 are distinct circles. If |c1 ∩ c2| ≥ 3, we contradict NC2.
2

Proposition 2. Let c1 and c2 be any circles in C . If c1 ⊆ c2 then c1 = c2.

Proof: c1 contains at least three points by NC1. Then c1 = c2 by NC2. 2

Notation. For the number of points in a near-circular space we use v and for the
number of circles, b.

For a circle cj ,the number of points on cj is denoted by vj or |cj | ,
For a point Pi,the number of circles on Pi is denoted by bi or b(Pi).
Now, we give an important connection between near-circular spaces and near-

linear spaces as the connection between inversive planes and affine planes.
Proposition 3. Let C = (P, C) be a near-circular space andP ∈ P. Consider the

set of all circles on P . If P ′ = P\ {P} and L = {c | c ∪ {P} ∈ C} then CP = (P ′,L)
is a near-linear space.

Proof: Let c be any line of L . |c ∪ {P}| ≥ 3 since c ∪ {P} ∈ C, by NC1. So
|c| ≥ 2, that is , NL1 holds in CP . Let Q and R be any two distinct points. Q and R
are on at most one line in CP since P, Q and R are on at most one circle in C , that
is, NL2 holds. So CP is a near-linear space. 2

§3. New Near-circular Spaces from Old

In this section , we consider the construction of a new near-circular space from
the one given.

Let C = (P, C) be a near-circular space. We define a new near-circular space R =
(P ′, C′) as the following. P ′ is arbitrary subset of P and C′ is the set of intersections
c ∩ P ′ for any c in C with at least three points in P ′ . Then , it is easily shown that
R is indeed a near-circular space. R is called a restriction of C.

Let C = (P, C) be a near-circular space. We define the dual space R = (P ′, C′) of
C as the follows:

P ′ = C

and
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C′ = {c′ = {c1, c2, ..., cm} | m ≥ 3, ci ∈ C and every ci is incident with two fixed
points in P}.

Proposition 4. The dual of a near-circular space is a near-circular space.
Proof: Since any circle in the dual space has at least three points by definition,

NC1 is satisfied.
Consider three points of the dual space and let c1, c2 and c3 be the circles of

near-circular space C which correspond these three points. Each circle joining c1, c2

and c3 in the dual space corresponds a point of intersection of c1, c2 and c3 in C and
, since there are at most two such points of intersection by Proposition 2, there is at
most one circle on c1, c2 and c3 in the dual space. 2

A subspace of a near-circular space (P,L) is a set X of points of P such that
whenever P, Q and R are points of X which are on a circle PQR of C, then the entire
circle PQR is in X. The empty set, any point, any circle and the whole space itself
are always subspaces of a given space.

It is clear that a subspace is a near-circular space.
Proposition 5. Intersection of any two subspaces of a near-circular space is a

subspace.
Proof: Let C1 and C2 be any subspace and X = C1 ∩C2 . We must show that if

P, Q and R are points of X and P, Q and R are on a circle PQR, then PQR ⊆ X.
Since the circle PQR is in both subspaces, PQR is a subset of X. 2

§4. The Connection Number

Let C = (P, C) be a finite near-circular space and Pi be a point not on the circle
cj . We define the connection number c(Pi, cj) = cij as the number of circles on Pi

which intersect cj in exactly two points. If Pi ∈ cj then it is defined as cij = 1.

Proposition 6. For any point Pj and circle cj , cij ≤
(

vj

2

)
.

Proof: This is obtained from NC2 if Pi 6∈ cj . If Pi ∈ cj , it is obtained from NC1.
2

Proposition 7. If Pi 6∈ cj , the number of circles on Pi intersecting cj in one
point is at most bi − cij .

Proof: The result is obvious since bi is the total number of circles on Pi and cij

is the number of these circles which intersect cj in exactly two points. 2

We define a circular space as a near-circular space in which any three points are
on a circle.

It is trivial that in a circular space Pi ∈ cj implies cij =
(

vj

2

)

Proposition 8. If C is a near-circular space with b ≥ 1 and

if cil =
(

vl

2

)
for every Pi and cl such that Pi 6∈ cl , then C is a circular space.

Proof: Since b ≥ 1, there is a circle cl. We must show that any three points are
on a circle.

Let Pi, Pj and Pk be three points. If Pi, Pj , Pk ∈ cl the proof is finished. If

Pi 6∈ cl and Pj , Pk ∈ cl then , by assumption cil =
(

vl

2

)
so that Pi is joined to any

two points of cl by a circle. In particular, there is a circle through Pi, Pj and Pk.
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Let Pi 6∈ cl, Pj 6∈ cl and Pk ∈ cl. Then there is a circle through Pi, Pk and any
point of cl distinct from Pk by assumption.

Finally, let none of the Pi, Pj and Pk be on cl. Consider all circles through Pi

and intersecting cl in exactly two points. If both Pj and Pk are on one of these circles,
the proof is done. If one of the Pj and Pk says Pj is on one of mentioned circles,
then we have a circle through Pi, Pj and Pk by assumption. 2

Now we give our main result.
Theorem 9. Let C = (P, C) be a finite near-circular space with v points. Then

C is a circular space if and only if

b∑

j=1

vj(vj − 1)(vj − 2) ≥ v(v − 1)(v − 2).

Proof: Suppose that C is a circular space. We count the number of triples of
points in two different ways. First of all, there are(

v
3

)
= 1

6v(v− 1)(v− 2) triples of points (counting {Pi,Pj,Pk} as the same triple as

any permutation of {Pi,Pj,Pk}). Since any triples of points determine a unique circle,
total number of triples of points is total number of triples of points on each circle,
summed over all circles, namely,

b∑
j=1

vj(vj − 1)(vj − 2)/6. So
b∑

j=1

vj(vj − 1)(vj − 2) = v(v − 1)(v − 2). Thus we have

equality here. Conversely, suppose that
b∑

j=1

vj(vj − 1)(vj − 2) ≥ v(v − 1)(v − 2).

Let us prove that C is a circular space by induction on v. We may assume that
v ≥ 3, since empty set, a single point set and only set of two points are trivial circular
spaces. If v = 3, there are two possibilities: b = 0 or b = 1. However, the inequality
above only holds when b = 1 and so C is a circular space. If v = 4, b may be
0, 1, 2, 3, 4. Then the inequality above only holds for the cases b = 1, v1 = v = 4 and
b = 3, v1 = v2 = v3 = 3. Therefore C is a circular space in these cases. Now suppose
that if the inequality above holds for a near circular space C ′ with fewer than v points
then C ′ is a circular space. Consider the near circular space C with v points. We may

assume that the inequality
b∑

j=1

vj(vj − 1)(vj − 2) ≥ v(v − 1)(v − 2) holds, for v ≥ 5,

in C. Let P be a point in C. We consider the near circular space R = (P ′, C ′) with
P ′ = P\ {P}, where C ′ consists of all circles not through P and of all circles through
P with at least four points(except for P ). We will first show that R is a circular space
as |P ′| = v − 1 < v. For this we must show that the inequality above in C holds for
R, that is,∑
c′

j

v′j(v
′
j − 1)(v′j − 2) ≥ v′(v′ − 1)(v′ − 2), where c′j ∈ C ′ and v′j =

∣∣c′j
∣∣ the number of

points of c′j .

Its right hand side becomes 6
(

v − 1
3

)
. We have following combinatorial com-

putation in R,
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∑
c′

j

(
v′j
3

)
=

∑
cj 6∈P

(vj

3

)
+

∑
cj∈P

|cj |≥4

(
v′j
3

)

=
∑

cj 6∈P

(vj

3

)
+

∑
cj∈P

|cj |≥4

(
vj − 1

3

)

=
∑

cj 6∈P

(vj

3

)
+

∑
cj∈P

|cj |≥4

(
vj − 1

3

)
− 3(

∑
cj∈P

|cj |≥4

(
vj − 1

2

)
).

In C, ∑
cj

(vj

3

)
=

∑
cj 6∈P

(vj

3

)
+

∑
cj∈P

|cj |≥4

(vj

3

)
+

∑
cj∈P

|cj |=3

(vj

3

)

So, ∑
cj 6∈P

(vj

3

)
=

∑
cj

(vj

3

)
− ∑

cj∈P

|cj |≥4

(vj

3

)
− ∑

cj∈P

|cj |=3

(vj

3

)
.

Therefore,

∑
c′

j

(
v′j
3

)
=

∑
cj

(vj

3

)
− ∑

cj∈P

|cj |≥4

(vj

3

)
− ∑

cj∈P

|cj |=3

(vj

3

)

+
∑

cj∈P

|cj |≥4

(vj

3

)
− 2

∑
cj∈P

|cj |≥4

(
vj − 1

2

)

=
∑
cj

(vj

3

)
− ∑

cj∈P

|cj |=3

(vj

3

)
− 3

∑
cj∈P

|cj |≥4

(vj−1

2

)

=
∑
cj

(vj

3

)
− 3

∑
cj∈P

(
vj − 1

2

)
.

By the hypothesis,
∑
cj

vj(vj − 1)(vj − 2) ≥ v(v − 1)(v − 2).

On the other hand, by counting pairs of points on the circles on P , without the
point P , we can write that

∑

cj∈P

(vj − 1)(vj − 2) ≤ (v − 1)(v − 2)

and then,
−3

∑

cj∈P

(vj − 1)(vj − 2) ≥ −3(v − 1)(v − 2).

Therefore,
∑
c′

j

v′j(v
′
j − 1)(v′j − 2) ≥ v(v − 1)(v − 2)− 3(v − 1)(v − 2)

≥ (v − 1)(v − 2)(v − 3)
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is the desired inequality. Thus, R is a circular space by our induction hypothesis.
Now, it is sufficient to show that: P and any two points of R determine a circle.

Let Q and R be fixed points in R . We know that C\ {S} is a circular space while S
is an other fixed point in R . So the points P, Q and R determine a circle. 2

Corollary 10. C is a circular space if and only if
b∑

j=1

(vj

3

)
=

(v

3

)
.

Proof: It is straightforward. 2
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26480 Eskişehir-Türkiye
E-mail: agunaydi@ogu.edu.tr


