[somorphisms of cyclic abelian covers
of symmetric digraphs II

Iwao Sato

Abstract

Let D be a connected symmetric digraph, I" a group of automorphisms of D,
and A a finite abelian group with some specified property. We give an algebraic
characterization for two A-covers of D to be I'-isomorphic, for any A. We give
the number of isomorphism classes of g-cycic F'5-covers of a connected bipartite
symmetric digraph D with respect to the trivial group I of automorphisms of
D, for g € F5, where F' is the r-dimesional vector space over the finite field F'a
with two elements. Furthermore, we enumerate the number of I-isomorphism
classes of g-cyclic Zam-covers of a connected bipartite symmetric digraph D for
the cyclic group Zaom of order 2.
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§1. Introduction

Graphs and digraphs treated here are finite and simple.

A graph H is called a covering of a graph G with projection 7 : H — G if there
is a surjection 7 : V(H) — V/(G) such that 7|y, : N(v') — N(v) is a bijection
for all vertices v € V(G) and v' € 7~ (v). The projection 7 : H — G is an n-fold
covering of G if 7 is n-to-one. A covering 7 : H — G is said to be regular if there is
a subgroup B of the automorphism group Aut H of H acting freely on H such that
the quotient graph H/B is isomorphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric
digraph corresponding to G. Then a mapping a : D(G) — A is called an ordinary
voltage assignment if a(v,u) = a(u,v)” " for each (u,v) € D(G). The ( ordinary )
derived graph G% derived from an ordinary voltage assignment « is defined as follows:

V(G*) =V (G) x A, and ((u, h), (v,k)) € D(G?) if and only if (u,v) €
D(G) and k = ha(u,v).

The graph G® is called an A-covering of G . The A-covering G® is an | A |-fold
regular covering of G. Every regular covering of G is an A-covering of G for some
group A (see [3]).
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Let D be a symmetric digraph and A a finite group. A function o : A(D) — A is
called alternating if a(y,z) = a(z,y)~* for each (z,y) € A(D). For g € A, a g-cyclic
A-cover Dy(a) of D is the digraph as follows:

V(Dy(a)) = V(D) x A, and ((u, h), (v,k)) € A(Dy(c)) if and only if
(u,v) € A(D) and k~tha(u,v) = g.

The natural projection m : Dg(o) — D is a function from V(Dg4(a)) onto V(D)
which erases the second coordinates. A digraph D’ is called a cyclic A-cover of D
if D' is a g-cyclic A-cover of D for some g € A. In the case that A is abelian, then
Dy (a) is called simply a cyclic abelian cover. Furthermore the 1-cyclic A-cover D1 (c)
of a symmetric digraph D can be considered as the A-covering G* of the underlying
graph G of D.

Let o and (3 be two alternating functions from A(D) into A4, and let I" be a subgroup
of the automorphism group Aut D of D, denoted I' < Aut D. Let g,h € A. Then two
cyclic A-covers Dy(a) and Dy(3) are called I'-isomorphic, denoted Dg,(a)=r Dy (),
if there exist an isomorphism @ : Dy(a) — D, (8) and a v € T such that 7® =
i.e., the diagram

P
Dg(a) Dy (B)
S
D D

commutes. Let I = {1} be the trivial group of automorphisms.

A general theory of graph coverings is developed in [4]. Zj-coverings (double
coverings) of graphs were dealed in [5] and [17]. Hofmeister [7] and, independently,
Kwak and Lee [11] enumerated the I-isomorphism classes of n-fold coverings of a
graph, for any n € N. Dresbach [2] obtained a formula for the number of strong
isomorphism classes of regular coverings of graphs with voltages in finite fields. The
I-isomorphism classes of regular coverings of graphs with voltages in finite dimensional
vector spaces over finite fields were enumerated by Hofmeister [6]. Hong, Kwak and
Lee [8] gave the number of I-isomorphism classes of Z,,-coverings, Z, € Z,-coverings
and D,,-coverings, n:odd, of graphs, respectively. Sato [16] counted the I'-isomorphism
classes of Z,-coverings of graphs for any prime p(> 2).

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-cyclic
Zs-covers) of a complete symmetric digraph. Furthermore, Mizuno and Sato [13] gave
a formula for the characteristic polynomial of a cyclic A-cover of a symmetric digraph,
for any finite group A. Mizuno and Sato [15] discussed the number of I'-isomorphism
classes of cyclic V-covers of a connected symmetric digraph for any finite dimensional
vector space V over the finite field GF(p)(p > 2). For a connected symmetric digraph
D, Mizuno and Sato [14] obtained a sufficient condition for two I'-isomorphism classes
of cyclic abelian covers of D to be of the same cardinality, and presented the number
of I-isomorphism classes of g-cyclic Zpm-covers of D for any prime p(> 2). For a
connected cyclic A-covers, Mizuno, Lee and Sato [12] enumerated the number of I-
isomorphism classes of connected g-cyclic A-covers of D, when A is the cyclic group
Z,m and the direct sum of m copies of Z, for any prime p(> 2).
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In Section 2, we give a necessary and sufficient condition for two cyclic A-covers of
a connected symmetric digraph to be I'-isomorphic for any finite abelian group A. As
a corollary, we present the number of I-isomorphism classes of g-cyclic Z5-covers of
a connected bipartite symmetric digraph D. In Section 3, we treat the enumeration
and the structure of I'-isomorphism classes of cyclic F'5-covers of D. In Section 4, we
count the number of I-isomorphism classes of g-cyclic Zom-covers of D.

§2. Isomorphisms of cyclic abelian covers

Let D be a symmetric digraph and A a finite group. The group I" of automorphisms
of D acts on the set C(D) of alternating functions from A(D) into A as follows:

a’(z,y) = a(y(2),7(y)) for all (z,y) € A(D),

where o € C(D) and v € I'. Any voltage g € A determines a permutation p(g) of the
symmetric group S4 on A which is given by p(g)(h) = hg, h € A.

Mizuno and Sato [15] gave a characterization for two cyclic A-covers of D to be
I'-isomorphic.

Theorem 1 [15, Theorem 8.1] Let D be a symmetric digraph, A a finite group,
g, heA apeC(D) andT < Aut D.

1. Dg(()é) = FDh(ﬁ)
2. There exist a family (Ty)uev (D) € SX(D) and v € I' such that

p(B7 (u,0)h ™) = mup(a(u,v)g~Hm b for each (u,v) € A(D),

where the multiplication of permutations is carried out from right to left.

From now on, assume that D is connected and A is abelian. Let G be the under-
lying graph, T be a spanning tree of G and w a root of T. For any a € C(D) and
any walk W in G, the net a-voltage of W, denoted a(W), is the sum of the voltages
of the edges of W. Then the T-voltage ar of « is defined as follows:

ar(u,v) = a(P,) + a(u,v) — a(P,) for each (u,v) € D(G) = A(D),

where P, and P, denote the unique walk from w to u and v in T, respectively. For a
function f : A(D) — A, the net f-value f(W) of any walk W is defined as the net
a-voltage of W.

Corollary 1 Let D be a connected symmetric digraph, G its underlying graph, T be
a spanning tree of G and o € C(D). Furthermore, let A be a finite abelian group and
g € A. Then

Dy(@) = 1Dy(ar).

Moreover, there exists a function s : V(D) — A such that

ar(u,v) = s(v) + a(u,v) — s(u) for each (u,v) € D(G) = A(D),
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Proof. Let s(v) = p(—a(P,)) for v € V(D). Then, by Theorem 1, the result
follows.
O

For a function f: C(D) — A, let Ay(v) denote the subgroup of A generated by
all net f-values of the closed walk based at v € V(D). Let ord(g) be the order of
g € A. For a subset B of A, let < B > denote the subgroup of A generated by B.

Theorem 2 Let D be a connected symmetric digraph, A a finite abelian group, g, h €
A and o, 8 € C(D). Furthermore, let G be the underlying graph of D, T a spanning
tree of G and I' < Aut G. Then the following are equivalent:

1. Dy(a) = v Dy(B).

2. There exist v € I' and an isomorphism
0 1< Aug—ey) U{29} >—< Agyn(3(w)) U {20} >
such that
B (u,v) — €'h = o(ar(u,v) — eg) for each (u,v) € A(D)

and
o(2g) = 2h,

where (ar — g)(u,v) = ar(u,v) — g, (u,v) € A(D), w e V(D) and

|1 difdr(u,v) is even,
10 otherwise,

Proof. At first, suppose that Dy(c) = p Dy (5). By Corollary 1, we have Dgy(ar) =
rDgy(Br). By Theorem 1, there exist a family (7, )yev(p) € SX(D) and v € I such
that

p(Blp(u,v) —h) = myp(ar(u,v) — g)m, b for each (u,v) € A(D).

Let (u,v) € D(T). Then we have 8];(u,v) = ar(u,v) = 0. Thus p(=h) =
mop(—g)m; L. Since (v,u) € D(T), we have p(—h) = m,p(—g)m, . Therefore it
follows that

o = p(h)mup(—=g) = p(—=h)mup(g).
Note that p(2h) = T.p(2g)7; L.
Let P : u,v,w be any path of length two in D. Then we have

(87 (P) = 2h) = myp(ar(P) - 2g)m, .

If (u,v),(v,w) € D(T), then we have 3).(P) = ar(P) = 0. Thus p(-2h) =
mwp(—2g)m, 1. Since Q : w,v,u is a path of length two in T, we have p(—2h) =
mup(—2g)7, . Therefore it follows that

Tw = p(2h)mup(—29) and my, = p(=2h)mup(2g),
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ie.,

Tw(k + 2g9) = mu (k) + 2h and 7, (k + 2g9) = 7w (k) + 2k fork € A.
Let ord(2g) = t. Then m,(k) = m,(k + 2tg) = m, (k) + 2th, i.e., ord(2h) | ord(2g).
Since the converse is clear, we have ord(2g) = ord(2h). Thus we have
(k) = mw(k + 2tg) = mu (k) + 2th = 7, (k),
ie.,
Ty = M-
Since D is connected, for any w € V(D), we have

| if dp(u,w) is even,
Tw p(—h)mup(g) otherwise,

where u € V(D) and dr(u,w) is the distance between v and w in T
Let (v,w) € A(D)\ D(T). If dr(v,w) is even, then we have 7, = 7, and so

p(Bp(v,w) = ) = moplar(v, w) — gy, .

Since m, = my, p(—h)mup(g), we have

(B (v,w) = h) = muplar(v,w) — g)m".

In the case that dr(v,w) is odd, we have 7, = p(—h)m,p(g), and so

p(Blp(v,w) = h) = p(=h)myp(g)par(v,w) — g)m, t.

- (B0, 0)) = moplar (v, W) .

Since m, = my, p(—h)myp(g), we have

(B (v,0)) = muplar (v, W)yt

Therefore it follows that p(3)r(u,v) — €'h) = mup(ar(u,v) — eg)m; b for each
(u,v) € A(D), where
[ 1 ifdp(u,v) is even,
€= { 0 otherwise.

Note that e = 0if (v,w) € D(T'). Hence there exists an isomorphism ¢ :< Ay, —eg(w)U
{29} >—< Ap,—en(y(w)) U{2h} > such that

B (u,v) — €'h = o(ar(z,y) — eg) for each (u,v) € A(D).
Since p(2h) = mup(2g)m; !, we have o(2g) = 2h.
Conversely, assume that there exist v € T" and a group isomorphism ¢ :< Agp—eq(w)U

{29} >—< Ap ;—en(v(w)) U {2} > such that

Bl (u,v) — €'h = o(ar(u,v) — eg) for each (u,v) € A(D)
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and
o(2g) = 2h.

Set X =< Aar—eg(w) U{2¢} > and Y =< Ag ;. cn(y(w)) U{2h} >. Let {a; =
1,---,am}and {by = 1,---, by} be the representatives of A/X and A/Y, respectively.
For any ¢ € A, there exist co € Anp—eq and i(c) € {1,...,m} such that

€= Co + Qi(c)-
For a distiguished vertex u € V (D), we define a mapping 7, : A — A by
mu(c) = o(ca) + bi(ey for each c € A.

Then m, is well-defined, and 7, is bijective.
Since 7, | x = o, for any ¢’ € X, we have

g/+C = (g/ +C)a + Qi(g'+c)
= g' + Ca + Qi(c)-
Futhermore, we have
7T'u(g/ + C) = T (g + Ca + a'z(c))

0(9 + Ca) -‘rb(c)
o(g") + o(ca) + bice)
= o(g) +mule)

for each ¢ € A. Since o(2g) = 2h,

p(M)mup(=g) = p(=h)Tup(g).

Now, let
| if dp(u,w) is even,
Tw p(—h)mup(g) otherwise,
Let (v,w) € D(T). Then we have §],(v,w) = ar(v,w) = 0. If 7, = my, 7y =
p(—h)mup(g), then we have

Twplar(v,w) — g)my ' = p(=h)mup(g)plar(v,w) — g)m, "

= p(=h)p(B]r(v,w))
= B (o.w) —h).
In the case that m, = 7y, ™, = p(—h)mup(g), the same formula also holds.

Let (v,w) € A(D)\ D(T). If dp(v,w) is even, then we have 7, = m,. If 7, =

Tw = Ty, then we have

mwplor(v,w) — )t = muplar(v,w) - g)m,

= p(Fr(v,w) = h).

In the case that 7, = my, = p(—h)m,p(g), the same formula also holds.
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If dr (v, w) is odd, then we have
Twp(ar(v,w) = g)m, ' = p(B)p(v,w) = h).
Therefore it follows that
p( JT(v,w) —h) = mup(ar(v,w) — g)m, t for each (v,w) € A(D).
Hence Dy(ar) = rDy(Br), which completes the proof. O

Corollary 2 ([14], Theorem 2) Let D be a connected symmetric digraph, A a finite
abelian group, g,h € A and a, 3 € C(D). Furthermore, let G be the underlying graph
of D, T a spanning tree of G and T' < Aut G. Assume that both ord(g) and ord(h)
are odd. Then the following are equivalent:

1. Dy(a) = rDp(B)-

2. There exist v € ' and an isomorphism o : Aa,—g(w) — Apg . —n(v(w)) such
that
B (u,v) = o(ar(u,v)) for each (u,v) € A(D)
and

o(g) = h.

Corollary 3 Let D be a connected symmetric digraph, A a finite abelian group, g, h €
A and o, 8 € C(D). Furthermore, let G be the underlying graph of D, T a spanning
tree of G and I’ < Aut G. If G is bipartite, then the following are equivalent:

1. Dg(a) = FDh(ﬂ)

2. There existy € T' and an isomorphism o :< A (w)U{2¢9} >—< A, (y(w))U
{2h} > such that

B (u,v) = o(ar(u,v)) for each (u,v) € A(D)

and
o(2g) = 2h.

Let D be a connected symmetric digraph, G its underlying graph and A a finite
abelian group. The set of ordinary voltage assignments of G with voltages in A is
denoted by C*(G; A). Note that C'(D) = C1(G; A). Furthremore, let C°(G; A) be the
set of functions from V(G) into A. We consider C°(G; A) and C'(G; A) as additive
groups. The homomorphism § : C°(G; A) — C(G; A) is defined by (ds)(z,y) =
s(z) — s(y) for s € C°(G; A) and (z,y) € A(D). For each o € C1(G; A), let [a] be
the element of C1(G; A)/Imd which contains a.

The automorphism group Aut A acts on CY(G; A) and C*(G; A) as follows:

(08)(z) = o(s(x)) for x € V(D),

(ca)(z,y) = oa(z,y)) for (z,y) € A(D),
where s € C°(G; A), a € C(G;A) and o € Aut A. An finite group B is said to
have the isomorphism extension property(IEP), if every isomorphism between any
two isomorphic subgroups £ and & of B can be extented to an automorphism of B
(see [8]). For example, the cyclic group Z,, for any n € N, the dihedral group D,, for
odd n > 3, and the direct sum of m copies of Z, have the IEP.
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Corollary 4 Let D be a connected symmetric digraph, G its underlying graph, A a
finite abelian group, a, 3 € C(D) and g,h € A. Suppose that A has the IEP. If G is
bipartite, then Dy(a) = rDy(B) if and only if B = 0a” +0s and 0(2g) = 2h for some
o € Aut A, some v € T and some s € C°(G; A).

Corollary 5 Let D be a connected symmetric digraph, G its underlying graph, A a
finite abelian group, o, 8 € C(D) and g € A. Suppose that A has the IEP. If G is
bipartite, then Dgy(a) = rDy(0) if and only if B = oa” + ds and 0(2g) = 2¢g for some
o € Aut A, some v € T and some s € C°(G; A).

Corollary 6 Let D,G, A and T be as in Corollary 5. If ord(2g) = 1, then the number
of T'-isomorphism classes of g-cyclic A-covers of D is equal to that of T'-isomorphism
classes of A-coverings of G.

Proof. Since ord(2g) =1, we have (Aut A)sy = Aut A. The rest is by Theorem 4
in [8]. a
Now we consider the number of I'-isomorphism classes of cyclic A-covers of a

connected bipartite symmetric digraph D. Let G be the underlying graph of D, A a
finite abelian group with the IEP and IT = Aut A. For any k € A, set

Iy ={cell|o(k) =k}.

Then IIj is a subgroup of II.
Let I' < Aut D and g € A. Set H(G; A) = CY(G; A)/Imé. A action of IIy, x T
on HY(G; A) are defined as follows:

(o,7)][a] = [oa?] = {oa” + s | s € C°(G; A)},

where o € Ilog, v € T' and a € C'(G;A). By Corollary 5, the number of I'-
isomorphism classes of g-cyclic A-covers of D is equal to that of IIy, x I'-orbits on
HY(G; A). Let Iso(D, A, g,T') be the number of I'-isomorphism classes of g-cyclic
A-covers of D.

Theorem 3 Let D be a connected bipartite symmetric digraph, G its underlying
graph, A a finite abelian group with the IEP, g,h € A and T' < Aut D. Assume
that k(2g) = 2h for some k € Aut A. Then

Iso(D, A, g,T) = 1Iso(D,A,h,T).
Proof. Similar to the proof of Theorem 3 in [14]. ad

Let D be a connected symmetric digraph, p prime and F,, = GF(p) the finite field
with p elements. Let I be the r-dimensional vector space over F},. Then the additive
group Fy has the IEP and the general linear group GL,(Fp) is the automorphism
group of F. Furthermore, G L, (F},) acts transitively on F\{0}.

Corollary 7 Let D be a connected bipartite symmetric digraph, G its underlying
graph and T' < Aut D. Let g, h be any two elements of FY\{0}. Then

Iso(D, F3,9,T') =Iso(D, F3,h,T).

Specially, isc(D, Fy,g,T) is equal to that of T-isomorphism classes of Fj-coverings of
G.
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Proof. Note that 2g = 2h = 0. By Theorem 3 and Corollary 6. ]

In the case of p > 2, the similar result to Corollary 7 is obtained by [14] and [15].

For a connected symmetric digraph D, let B(D) = m —n+ 1 be the Betti-number
of D, where m =| A(D) | /2 and n =| V(D) |. We give the enumeration of I-
isomorphism classes of g-cyclic F'5-covers of D for any g € F.

Corollary 8 Let D be a connected bipartite symmetric digraph and g € Fy. Then
the number of I-isomorphism classes of g-cyclic F'y-covers of D is

. 2B 1 1) . (2B—h+1 _ 1)
Iso(D,Fj,g,1) —1+Z T @

where B = B(D).
Proof. By Corollary 2 of [10]. O

§3. Isomorphisms of cyclic Fj-covers

Let D be a connected symmetric digraph and I' < Aut D. Let D, be the set of
all g-cyclic Fi-covers of D for each g € Fy, and let D = Ugng' D,. Then D is the set

of all cyclic Fj-covers of D. Let D/ = p and D,/ = p be the set of all I'-isomorphism
classes over D and Dy, respectively. Furthermore, let Iso(D, F3,T") be the number
of I'-isomorphism classes of cyclic F3-covers of D. The I'-isomorphism class of Dy
containing Dy () is denoted by [Dg4(a)].

Theorem 4 Let D be a connected bipartite symmetric digraph and T' < Aut D. Then
Iso(D,F5,T') =1so(D,Fy,g,T) for each g € Fy.

Proof. Let 0 = (00---0)! € Fy and Il = GL,(F,). For any g # 0 and any
a € C(D), let

B=Aa"—ds), AcIl, yeT, sc CG; Fy),

where G is the underlying graph of D. By Corollary 4, we have Dy (o) = rDo(8).
For each g # 0 € FJ, we define a map @, : Dy/ = — D,/ =1 by

@4 ([Do(p)]) = [Dyg(B)];

where Dy(p) = rDy(3). Since = r is an equivalence relation over D, ®, is injective.
By Corollary 7, we have

|DO/%F|:|Dg/gF|<OO'
Thus @, is a bijection. Therefore, it follows that Iso(D, F5,T") = Iso(D, Fy,¢,I'). O

Corollary 9 Let D be a connected bipartite symmetric digraph. Then the number of
I-isomorphism classes of cyclic F'y-covers of D is

QB 1 1) . (2B*h+1 _ 1)
Iso(D,Fy,I)=1
50( ) 27 +Z 2h1 1)...(2_1) ’
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Now, we state the structure of I'-isomorphism classes of cyclic Fj-covers of D.

Theorem 5 Let D be a connected bipartite symmetric digraph, G its underlying
graph, T' < Aut D and I = GL.(Fy). Then any T-isomorphism class of cyclic
F3-covers of D is of the form

U {Dy(8) | B=Aa" + 65, AcTL, y €T, s COG: F)},
geF,

where a € C(D).

Proof. Let p € C(D), h # 0 € Fj and [[Dn(p)]] the I'-isomorphism class of D
containing Dy (p). By the first half of the proof of Theorem 4, there exists a 0-cyclic
FJ-cover Dy(a) such that Dy (p) 2 rDg(8). Thus it follows that [[Dx(p)]] = [[Do(B)]]-

In the proof of Theorem 4, the map ®, is a bijection from Dy/ = p into D,/ =
for any g # 0 € F3. Thus there exists a g-cyclic Fj-cover Dy (/) such that Do(a) =
rDy(B) for any g # 0 € F5. We define a map ¥, : [Dy(a)] — [D4(B)] by

Wg(Do(en)) = Dg(B1), 1 = Aai + ds,

where A € II, v € I', s € CY(G; Fy) are fixed. By Corollary 4, ¥, is well-defined. It
is clear that ¥, is injective.

Now, let Dy(7) be any element of [Dy(5)]. Then we have Dy(1) = rDy(a). By
Corollary 4, there exist B € II, § € T and t € C°(G; Fy) such that 7 = Ba® +6t. Let

-1

n= A7'Ba® 4 5/171(157_1 —s7 ).
Then we have 7 = AnY + s, i.e.,
Wg(Do(n)) = Dy().

Therefore W, is surjective, i.e., bijective.
But, by Corollary 5, we have

a1 = Bia® +0sy, By €ll, keT, s; € C°(G; F),

and so
81 = Ba™ + §(As§ + s).
Hence it follows that
[Dy(B)] = {Dy(B1) | 1 = B'a* +4s', B'€1l, AeT, s’ € C°(G; F3)}.
By Theorem 4, the result follows. o

In the case of p > 2, the results corresponding to Theorems 4 and 5 were given by
[14] and [15].

§4. Isomorphisms of cyclic Zym-covers

Let Z,, be the cyclic group of order n. Then Z,, have the IEP.

Let D be a connected symmetric digraph and G its underlying graph. Let T be a
spanning tree of G and w a base vertex in G. Set Cr(D) = CH(G; Z,) = {ar | a €
C(D) = CHG; Zn)}-
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Lemma 1 Let D be a connected symmetric digraph, G the underlying graph of D, T
a spanning tree of G. Furthermore, let o € Aut Z,,, o, 3 € C(D) and g € Z,,. Then
the following are equivalent:

1. B=oca+ds and o(2g) = 2g for some s € C°(G; Z,,).
2. Br = oar and 0(2g) = 2g.

We shall consider the number of I-isomorphism classes of g-cyclic Zom-covers of
D, for any g € Zoym. Set Iy = {0 € Aut Zom | 0(29) = 2¢}. By Corollary 5 and
Lemma 1, the number of I-isomorphism classes of g-cyclic Zom-covers of D is equal
to that of Ilp,-orbits on CF(G; Zom ).

Theorem 6 Let D be a connected bipartite symmetric digraph and n = 2. Let
g € Zam and ord(2g) = 2m~#. Set B = B(D). Then the number of I-isomorphism
classes of g-cyclic Zam -covers of D is

omB=p 4 gm=mB=1(ou(B=1) _1)/(2B=1 1) if u#m and B > 1,

meufl(ﬂ+2) zfu;ém andel,
Iso(D, Zam, 9, 1) = 8 gm(s—1)11 _ { +(2m(B-1) _1)/(2B-1 1) if p=m and B > 1,
m+1 if p=m and B =1,

Proof. By the above note and Burnside’s Lemma, we have

1
Iso(D, Zym, g, 1) = [Ty | Z | Cr(D)”|.
91 pellyy,

Let F(p) ={h € Zom
F(p) | PP
But we have

p(h) = h}. Then, by Corollary 3 of [8], we have | Cr(D)? |=]|

My = {\ € Zgm | (A, 2™) = 1 and \2g = 2g}.
Then
Aellyy & 20\g =29 (mod2™) & 2g(A—1) =0 (mod 2™) & A—1 €< ord(2g) > .

Thus we have | IIy; |= n/ord(2g). That is, | IIy, |= 2" if 29 € K,(m), where
K (m)={k € Zom | k €< 2t > k ¢< 2T >} Let ord(2g) = 2™ H. If ord(2g) =
1, then 2g = 2™. Otherwise Iy, = {2 #v+1|v=0,1,---,2¢" 1},

By Lemma 3 of [8], | F(p) |= 2" if p— 1 € K, (m). Thus we have

[{A eIy | [ FO) =27 | = 277 (0<t<p-1),
[{relly [ [FON) =27 = L
Furthermore, we have
[{relly | [ F(N) [=1}[=0 ifp=m.

Therefore the result follows. Specially, the third and fourth parts of the formula are
given by Theorem 8 of [8]. O

In Table 1, we give some values of Iso(D, Zss, g, I).
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\B| 1 2 3 4 5 6
48 2560 147456 8912896 553648128 34896609280
32 1408 75776 4489216 277348352 17456693248
20 736 38144 2246656 138690560 8728477696
12376 19104 1123456 69345792 4364240896
7190 9556 561736 34672912 2182120480
7 190 9556 561736 34672912 2128120480

OO WINPT

Table 1
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