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Abstract

In this note, we consider two models: 1) a two-unit and a three-unit system with
a cold standby; 2) a two-unit as well as a k-unit system working in parallel; in
both the models, the failure and repair rates are exponentially distributed with
parameters λi, (i = 1, 2), µi(i = 1, 2) and µ with µ > max{µ1, µ2} respectively.
The MTSF is obtained for a k-unit system for model 2 and we obtain the MTSF
for a two-unit and three-unit system in model 1.Various reliability parameters
and the average regeneration cost have been derived and illustrated numerically
for a two-unit system of models 1 and 2 respectively using Graphical Evaluation
and Review Technique (GERT). Finally a concluding remark is given.
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§1. Introduction

The statistical properties of two-unit redundant system has been discussed since
last several decades by many authors using the techniques of Markov process, point
process and renewal theory. GERT (Graphical Evaluation and Review Technique)
is a new graphical procedure for the analysis of stochastic networks having nodes
and directed branches. GERT has been successfully applied by several authors like
Whitehouse, Ohta and Yin et al. for a few types of queueing and reliability problems.
The basic reason for the wide use of GERT network technique is the ease with which
the system can be modeled in the network form.

In this article, an attempt has been made to analyze through GERT, the dynamic
characteristics as well as the average cost of a two-unit system, one model with cold
standby and the other model working in parallel. Further, we have found the various
reliability characteristics of interest to system designers and operation managers.

Definition of Reliability: Reliability is the probability that a system will per-
form its function during a specified interval of time under the condition that the
system is used in a certain specified environment.

R(t) = Pr{system is up in (0, t]}
= Pr {ψ (u) = 1, ∀ u ∈ (0, t)}
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§2. Notations

s, θ real parameter

pij probability of realization of the activity (i, j)

λi(i = 1, 2) lifetime of units

µi(i = 1, 2) repair time of units

µ > Max{µ1, µ2} replacement rate when both the units have failed since
the down state of the system results in loss of revenue
the system should be replaced immediately.

πi steady-state probabilities of different states i(i = 1, 2, . . . , 5)
ER(c) average regeneration cost

cd(cs) cost of down-time (carrying a standby unit except model 2)

c1(c2) cost per unit for unit 1’s (unit 2’s) repair for both the models

Xi various states of model 1 (i = 1, 2, . . . , 5)

Yi various states of model 2 (i = 1, 2, 3, 4).

§3. Description of the system

The system consists of two independent units in cold standby configuration in
model 1 whereas in model 2, it comprises of two-units working in parallel. Initially
one unit is switched online and the other is kept as a cold standby for model 1 and in
model 2, it requires at least one-unit to operate successfully. In model 1 , whenever
an operating unit fails, the standby unit is switched online and the failed unit goes for
repair. The lifetime and repair time of the units are independent random variables
and the system fails when all the units have failed. The following general assumptions
are made for both model 1 and model 2 respectively.

1. A GERT network is to have exactly one source and at least one sink.

2. Each node of a GERT network must be reachable from the source and at least
one sink must be reachable from each node.

3. This paper consists of two models. In model 1, we consider a two-unit and a
three-unit system with cold standby which means that it will not fail in the
standby state. Some results are also given for a three-unit system. In the
case of two-unit system one will be operating online and the other will be in
standby state whereas in three-unit system two-units will be working in online
and one-unit will be in the cold standby state

4. In model 1, state 1 (state 3) represents that both the units are in working
condition.

5. In state 2 the online unit is under repair and the standby unit is operating.

6. In state 4 the standby unit operating online is under repair and the online unit
is operating whereas in state 5 both the units are under repair (down state).
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7. In model 2, we present a two-unit system working in parallel and we give some
results for a k-unit system.

8. In model 2, state 1 describes that both unit 1 and unit 2 are operating online
whereas in state 2 (state 3) unit 1 (unit 2) is under repair and unit 2 (unit 1)
is operating online. Finally in state 4 both the units 1 and 2 are under repair
(down state).

9. The units are completely new after each repair.

10. All the switch over times are negligible and switching is perfect.

11. The lifetime and repair time of units are exponentially distributed with parame-
ters λI(i = 1, 2) and µi(i = 1, 2) respectively whereas the replacement rate is µ
when both the units have failed where
µ > max{µ1, µ2}.

§4. GERT analysis of the system

A GERT network representation of the system for model 1 is shown in figure 1
whereas for model 2 it is shown in figure 2. For an activity drawn between two nodes
i and j, the moment generating function (m.g.f.) of time (tij) and cost (cij) are given
respectively by

Mij(s) = E[est] and
Mij(θ) = E[ecθ].(4.1)

where s and θ are real parameter. Now such multi-parameter functions may be
combined in the following way to result in a W-function

wij(s, θ) = pijMij(s)Mij(θ)(4.2)

where pij indicates the probability of realization of the activity (i, j). Once the
equivalent W-function is known, the probability of realization of the network is given
by

p = [w(s, θ)]s=0, θ=0.(4.3)

The mean-time and cost of realization of the network are respectively given by

E(t) = [d/dsMt(s)]s=0 and
E(c) = [d/dθMc(θ)]θ=0(4.4)

where

Mt(s) = w(s, 0)/p and
Mc(θ) = w(0, θ)/p(4.5)
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§5. Model 1

5.1 Determination of MTSF

The mean-time to system failure (MTSF) is defined as the time until the system is
completely inoperative. This is achieved by finding the W-function from the initial
node to the terminal node. Thus by applying Mason’s rule in figure 1, we have

w(s) =
w12(s)[w25(s) + w23(s)w34(s)w45(s)]

1− w12(s)w23(s)w34(s)w41(s)
(5.1.1)

where

w12(s) = (1− s/λ1)−1

w23(s) = (µ1/(λ2 + µ1))(1− s/λ2 + µ1)−1

w25(s) = (λ2/(λ2 + µ1))(1− s/λ2 + µ1)−1

w34(s) = (1− s/λ2)−1

w45(s) = (λ1/(λ1 + µ2))(1− s/λ1 + µ2)−1(5.1.2)
w41(s) = (µ2/(λ1 + µ2))(1− s/λ1 + µ2)−1

w51(s) = (1− s/µ)−1

with w(0) = 1. Hence one finds

MTSF =
1

w(0)

[
d

ds
[w(s)]

]

s=0

= Busy time + Idle time of service facility

=
(λ1 + λ2)(λ1 + µ2)(λ2 + µ1) + λ1µ1λ2

λ1λ2((λ1λ2 + λ2µ2 + µ1λ1)
(5.1.3)

Now for λ1 = λ2 = λ and µ1 = µ2 = µ

MTSF =
2(λ + µ)2 + λµ

λ2(λ + 2µ)
(5.1.4)

If no repair facility is available ie. µ1 = µ2 = 0, MTSF =
1
λ

+
1
λ2

= 2/λ for λ1 = λ2

which is a standard result. Now the MTSF for a three-unit system is given by

MTSF =
(4λ + µ)(3λ2 + 6λµ + 3µ2)

2λ2(4λ + 3µ)(2λ + µ)

and for this model we cannot generalize the MTSF for a k-unit system.
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5.2 Determination of steady-state probabilities

The steady-state probabilities for a given state is equal to expected time in the given
state during a regeneration of the system divided by the expected total time of the
regeneration. The expected time of regeneration is equal to the first moment of m.g.f.
representing the time to return to any node in the system. Thus the mean-recurrence
time from initial state to the same state is found from the representation in figure 1.
Now the W-function is given by

w(s) = w12(s)w25(s)w51(s) + w12(s)w23(s)w34(s)[w41(s) + w45(s)w51(s)]
(5.2.1)

Hence the time spent in any state can be obtained from equation (5.2.1) as follows.
Thus

mean-time spent in state 1 =
1
λ1

(5.2.2)

mean-time spent in state 2 =
1

λ2 + µ1
(5.2.3)

mean-time spent in state 3 =
µ1

λ2(λ2 + µ1
(5.2.4)

mean-time spent in state 4 =
µ1

(λ1 + µ2)(µ1 + λ2)
(5.2.5)

and mean-time spent in state 5 = [λ1µ1/(µ1 + λ2)(λ1 + µ2) +(5.2.6)
λ2/(µ1 + λ2)]/µ.

The steady-state probabilities of different states are defined as follows

πi =
Mean-time spent in state i

Expected total time of regeneration
, i = 1, 2, . . . , 5.

Therefore one has

πi =
(λ1 + µ2)(λ2 + µ1)µλ2

A

π2 =
(λ1 + µ2)λ2µλ1

A

π3 =
(λ1 + µ2)µ1λ1µ

A
(5.2.7)

π4 =
λ2µµ1λ1

A

and π5 =
λ1λ2(λ1λ2 + λ2µ2 + µ1λ1)

A

where

A = µ[λ2(λ1 + µ2)(λ2 + µ1) + (µ1 + λ1)λ1λ2) + λ1µ1(λ1 + µ2)(λ1λ2µ1]
+µ1µ2λ2λ1 + λ1λ

2
2(λ1 + µ2).
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5.3 Determination of average regeneration cost

Cost function is the total expenditure incurred per cycle. The average
regeneration cost ER(c) can be obtained by incorporating the following costs for
model 1.
cs : the cost of carrying a standby unit
c1 : cost per unit for unit 1’s repair
c2 : cost per unit for unit 2’s repair
cd : the cost of down-time

at paths w12, w23, w25, w34, w41 and w45 respectively. Now on taking

w12 = ecsθ

w23 =
µ1

λ2 + µ1
ec1θ

w25 =
λ2

λ2 + µ1
ec1θ

w34 = ecsθ(5.3.1)

w41 =
λ2

λ1 + µ2
ec1θ

w45 =
λ1

λ1 + µ2
ec2θ

and w51 = ecdθ

in equation (5.2.1), we get

ER(c) = [d/dθW (0, θ)]θ=0/W (0, 0)
= x(cs + c1 + cd) + ya(2cs + c1 + c2) + zy(2cs + c1 + c2 + cd)(5.3.2)

where

x = (λ2/(λ2 + µ1)), y = (µ1/(λ2 + µ1)),
z = (λ1/(λ1 + µ2)), and a = (µ2/(λ1 + µ2)).

5.4 Numerical example

As an illustration by taking λ1 = 0.3, λ2 = 0.4, µ1 = 0.6, µ2 = 0.8, cs = 3, c1 =
3.5, c2 = 4.5 the average cost ER(c) is tabulated for various values of down-time cost
cd in Table 1 for a two-unit system. Further for x = 0.4, y = 0.6, z = 3/11, a = 8/11
(defined in equation (5.3.2)) c1 = 3.5, c2 = 4 and cd = 6 and for various values of
cs, c1 and c2 the average cost ER(c) is shown in Tables 2, 3 and 4 respectively. In this
model, the average cost increases with variations in cs, c1,cd, and c2 respectively.
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Table 1 Table 2

cd ER(c) cd ER(c)
6.0 14.38182 3.0 13.58182
6.250 14.52273 3.25 13.83182
6.500 14.66364 3.5 14.08182
6.750 14.80455 3.75 14.33182
7.0 14.94545 4.0 14.58182
7.250 15.08636 4.25 14.83182
7.500 15.22727 4.5 15.08182
7.750 15.36818 4.75 15.33182
8.0 15.50909 5.0 15.58182
8.250 15.65000 5.25 15.83182
8.500 15.79091
8.750 15.93182
9.0 16.07273
9.250 16.21364
9.500 16.35455

Average cost versus cd Average cost versus c1

Table 3 Table 4

4.0 14.08182 3.0 14.08182
4.25 14.23182 3.25 14.48182
4.5 14.38182 3.5 14.88182
4.75 14.53182 3.75 15.28182
5.0 14.68182 4.0 15.68182
5.25 14.83182 4.25 16.08182
5.5 14.98182 4.5 16.48182
5.75 15.13182 4.75 16.88182
6.0 15.28182 5.0 17.28182
6.25 15.43182 5.25 17.60182

Average cost versus c2 Average cost versus cs

§6. Model 2

We give below the various results obtained for model 2, since the steps involved
in obtaining these results are the same as in model 1 (see figure 2).

MTSF =
(λ1 + µ2)(λ2 + µ1) + λ1(λ1 + µ2) + λ2(λ2 + µ1)

λ1λ2(λ1 + µ2 + λ2 + µ1)
(6.1)

Now, for λ1 = λ2 = λ, µ1 = µ2 = µ

MTSF = (3λ + µ)/2λ2.(6.2)
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In this model, we can obtain the MTSF for a k-unit system given by
MTSF = [(k − 1)λ + µ]/[k(k − 1)λ2] + 1/(k − 1)λ. Hence for k = 3 we have the
MTSF for a three-unit system as MTSF = (5λ+µ)/6λ2. If no repair facility is avail-
able, then MTSF = 3/2λ (for a two-unit system) which is again a standard result.
Further, the time spent in any state is given by

T1 =
1

(λ1 + λ2)

T2 =
λ1

(λ1 + λ2)(λ2 + µ1)

T3 =
λ2

(λ1 + µ2)(λ2 + λ1)
(6.3)

T4 =
1
µ

[
λ1λ2

(λ1 + λ2)(λ2 + µ1)
+

λ1λ2

(λ1 + λ2)(λ1 + µ)

]

where T = T1 + T2 + T3 + T4

Hence the steady-state probabilities are given by

π1 = T1/T, π2 = T2/T, π3 = T3/T, π4 = T4/T.(6.4)

Similarly, the average cost is given by

ER(c) = [ac1 + cc2 + cd(ab + cd)](6.5)

where

a = λ1/λ1 + λ2, b = λ2/λ2 + µ1, c = λ2/λ1 + λ2, d = λ1/λ1 + µ2

e = µ1/µ1 + λ2, f = µ2/µ2 + λ1.

By taking λ1 = 0.6, λ2 = 0.7, µ1 = 0.3, µ2 = 0.35, c2 = 0.75, cd = 0.8 and for
various values of c1 , the average cost is tabulated in Table 5 where

cd : cost of down-time

c1 : cost per unit for unit 1’s repair

c2 : cost per unit for unit 2’s repair

Again for various values of cd, c2, and equal failure rate λ1 = λ2 = λ, the average
cost is shown in Tables 6, 7 and 8 respectively. In this model also the average cost
increases with variations in cd, c1, c2 and λ1 = λ2 = λ respectively.
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Table 5 Table 6

c1 ER(c) cd ER(c)
0.5 1.165141 0.5 0.966194
0.6 1.211295 0.6 1.03251
0.7 1.257449 0.7 1.098826
0.8 1.303603 0.8 1.165142
0.9 1.349757 0.9 1.231452
1.0 1.395910 1.0 1.297773
1.1 1.442064 1.1 1.364089
1.2 1.488218 1.2 1.430405
1.3 1.534372 1.3 1.496721

1.4 1.563036

Average cost versus c1 Average cost versus cd

Table 7 Table 8

c2 ER(c) λ1 = λ2 ER(c)
0.75 1.165142 0.5 1.0
1.25 1.434372 0.6 1.033333
1.75 1.703603 0.7 1.06
2.25 1.972834 0.8 1.081828
2.75 2.242065 0.9 1.1
3.25 2.511296 1.0 1.115385
3.75 2.780526 1.1 1.128574
4.25 3.049757 1.2 1.14
4.75 3.318988 1.3 1.15
5.25 3.588219 1.4 1.158824

Average cost versus c2 Average cost versus λ1 = λ2

§7. Concluding remark for model 1 and model 2

In this paper, we have considered two models namely model 1 and model 2. In
model 1, we have a two-unit and a three –unit system with cold standby whereas in
model 2 we consider a k-unit system working in parallel and for numerical we have
taken k = 2. In model 1 the average cost ER ( c ) increases with the cost of carrying a
standby unit, cs, cost per unit for unit 1’s repair c1, cost per unit for unit 2’s repair c2

and the cost of down-time cd respectively. Similarly it is the case with model 2. We
have also found the MTSF for a k-unit system for model 2 and MTSF for a two-unit
as well as a three-unit system for model 1
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GERT network for model 2
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