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Abstract

This paper is devoted to the study of the asymptotic behaviour of the weighted
trace of the Schrödinger operator with operator coefficient.
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§1. Introduction

Let H be a separable Hilbert space with the inner product 〈·, ·〉. In the Hilbert
space H1 = L2

(
R

+
n ;H

)
we consider the differential operator L generated by the

expression
−∆u + Q (x)u, x ∈ R

+
n(1.1)

and the boundary condition

u (x1, x2, . . . , xn)|xn=0 = 0,(1.2)

where we denote by H1 the Hilbert space of H valued square integrable functions
with the scalar product

(f, g) =
∫

R
+
n

(f (x) , g (x))H dx, f (x) , g (x) ∈ H1.(1.3)

Denote by R
+
n the set of points x = (x1, x2, . . . , xn) ∈ Rn, xn ≥ 0. Here Q(x) is a

self-adjoint operator acting on H. We shall assume that Q(x) satisfies the following
conditions:

(10) The domain of definition D(Q(x)) = D of Q(x) is independent of x and
D = Hand Q∗ (x) = Q (x) ≥ I, where I is the identity operator on H. It is also
assumed that Q−1 (x)is completely continuous operator on H for each x ∈ R

+
n .

(20) Q−1 (x) ∈ σ1, ∀x ∈ R
+
n and

∫
R

+
n

∥∥Q−k (x)
∥∥

1
dx < ∞ for any k > 0, where

σ1 is the space of trace class operators and ‖ . ‖1 is the norm in σ1 [5].
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(30)
∥∥Qγ (s) e−ctQ(s)

∥∥
1
≤ C

∥∥Qγ (x) e−f(c)tQ(x)
∥∥

1
,

∥∥Qβ (x)Q−β (s)
∥∥ ≤ C, |x− s| ≤ 1,

where γ = 0, β f (c) > 0 and β is a real number.
(40)

∥∥Qγ (x) [Q (s)−Q (x)] Q−γ−b (s)
∥∥ < C |x− s|,

|x− s| ≤ 1 , 0 < b < 3/2.

(50)
∫

R
+
n

Tr
[
Qγ (x) e−qtQ(x)

]
dx = O (1)

∫

R
+
n

Tr
[
Qγ (x) e−tQ(x)

]
dx, t → 0, where

q is a positive constant.
(60) Let α1 (x) ≤ α2 (x) ≤ . . . ≤ αn (x) ≤ . . . be eigenvalues of the operator Q(x).
Denote

ρβ (λ) =
1

2nπ
n
2 Γ

(
n
2 + 1

)
∑

j

∫

αj(x)≤λ

αβ
j (x) [λ− αj (x)]n/2

dx,

and assume that lim
λ→∞

ρβ (λ) = ∞ and for large λ, the condition λρ
/
β (λ) < aρβ (λ)is

satisfied for any positive number a. In this paper we used one and the same symbol
C in order to denote any constant which may differ from each other.

Let ϕk (x)′ s be functions that have compact support, continuous second order
derivative and satisfying ϕk (x)|xn=0 = 0, fk ∈ D. Let us denote by D′ the summation
m∑

k=1

ϕk (x) fk. In the Hilbert space H1 we consider the operator L′ generated by

−∆u + Q (x)uwith the domain of definition D′. This operator is symmetric and
positive definite. The closure L of the operator L′ is self adjoint.

The spectrum of the operator L generated by the expression (1.1) and by the
boundary condition (1.2) consists of eigenvalues. Let λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . be
the eigenvalues of this operator, and ψ1 (x) , ψ2 (x) , . . . , ψn (x) , . . . the corresponding
complete vector-valued orthonormal eigenfunctions.

The aim of this paper is to find asymptotic behaviour of Nβ (λ) as λ → ∞. We
define Nβ (λ) as follows

Nβ (λ) =
∑

λk<λ

∫

R
+
n

(
Qβ (x)ψk (x) , ψk (x)

)
dx,(1.4)

and it is called weighted-trace of the operator L, where β is a real constant.

§2. Asymptotic behaviour of Green function

Let us consider the following boundary value problem:

∂u

∂t
= ∆u−Q (x) u, x ∈ R

+
n , t > 0,(2.1)

u (x, 0) = Ψ (x) , x ∈ R
+
n , Ψ(x) ∈ H1(2.2)
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u (t, x)|xn=0 = 0.(2.3)

Let G(t, x, s) be the Green function of this problem.The Green function for the prob-
lem (2.1)-(2.3) corresponding Q(x) = 0 is

G0 (t, x, s) =
(
2
√

πt
)−n

[
e−

|x−s|2
4t − e−

|x−s′|2
4t

]
I,(2.4)

where s = (s1, s2, s3) and s′ = (s1, s2,−s3), (s3 > 0). We shall seek, using the method
of E.E.Levi [4], the Green function of (1.1)-(1.3) in the form

G (t, x, s) = e−tQ(s)G0 (t, x, s)+(2.5)

+

t∫

0

dτ

∫

R
+
n

G0 (t− τ, x, ξ) e−(t−τ)Q(ξ)ϕ (τ, ξ, s) dξ,

where ϕ (t, x, s) is a operator valued function to be determined. In order that G(t,x,s)
shall be a solution of (2.1) it is necassery that ϕ (t, x, s) shall be a solution of the
integral equation

ϕ (t, x, s) = K (t, x, s) +

t∫

0

dτ

∫

R
+
n

K (t− τ, x, ξ)ϕ (τ, ξ, s) dξ,(2.6)

where

K (t, x, s) = [Q (s)−Q (x)] e−tQ(s)G0 (t, x, s)(2.7)

If we solve the equations by the method of successive approximation with the
initial approximation K1 (t, x, s) = K (t, x, s), the we obtain the iteration formula:

Kn+1 (t, x, s) =

t∫

0

dτ

∫

R
+
n

K (t− τ, x, ξ)Kn (τ, ξ, s) dξ, n = 1, 2, . . .(2.8)

If the conditions (10)-(40) are satisfied then it can be shown that the series
∞∑

k=1

‖Kn (t, x, s)‖1 is uniformly convergent, t > 0, x, s ∈ R
+
n . Therefore ϕ (t, x, s) =

∞∑
n=1

Kn (t, x, s) is a solution of the integral equation (2.6). Finding an estimate for

Kn (t, x, s) and Qγ (x) ϕ (t, x, s) we conclude our results with the following theorem.

Theorem 1. If Q(x) satisfies the conditions (10)-(40), then the following asymp-
totic formula holds

Qγ (x)G (t, x, s) = Qγ (x) e−tQ(s)G0 (t, x, s)+

+O (1) t−
n
2 +δe−

|x−s|2
t

[∥∥Q−k (s)
∥∥

1
+

∥∥∥Qγ (s) e−ctQ(s)
∥∥∥

1

]
,
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where δ is a positive number.

§3. Asymptotic behaviour of Nβ(λ)

Since the Green function of (2.1)-(2.2) is G(t, x, s), then

u (t, x) =
∫

R
+
n

G (t, x, s) Ψ (s) ds.(3.1)

On the other hand, since u (t, x) = e−tLψ (x), then we may write

e−tLΨ(x) =
∫

R
+
n

G (t, x, s)Ψ (s) ds.(3.2)

Therefore e−tL is an integral operator with the kernel G(t, x, s). Using the conditions
(50) and from the Theorem 1 we have

∫

R
+
n

Tr [QγG (t, x, x)] dx ∼
(
2
√

πt
)−n

∫

R
+
n

Tr
[
Qγe−tQ(x)

]
dx.(3.3)

Considering (3.3) we obtain

∞∫

0

TrG (t, x, x) dx < ∞.

Since e−tL is a positive operator we may write [1]

Tre−tL =
∫

R
+
n

TrG (t, x, x) dx.(3.4)

This implies that e−tL is the trace operator in H1 = L2

(
R

+
n ; H

)
and therefore the

spectrum of the operator L is discrete: λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . ., lim
n→∞

λn = ∞. It

can be shown that Qβe−tL is a trace operator in H1 and that

Tr
[
Qβe−tL

]
=

∫

R
+
n

Tr
[
QβG (t, x, x)

]
dx =

∞∫

0

e−λtNβ (λ)(3.5)

From (3.3) and (3.5) we have

∞∫

0

e−λtNβ (λ) ∼
(
2
√

πt
)−n

∫

R
+
n

Tr
[
Qβe−tQ(x)

]
dx.(3.6)
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As in [2] we write

(
2
√

πt
)−n

∫

R
+
n

αβ
j (x) e−tαj(x)dx =

∞∫

0

e−λtdρj (λ),(3.7)

where ρj (λ) = 1

2nπ
n
2 Γ(n

2 +1)
∑
j

∫
αj(x)≤λ

αβ
j (x) [λ− αj (x)]n/2

dx.

Using the inequality above we get

(
2
√

πt
)−n

∫

R
+
n

Tr
[
Qβe−tQ(x)

]
dx =

∞∫

0

e−λtdρβ (λ).(3.8)

Using (3.6) and (3.8) we obtain

∞∫

0

e−λtNβ (λ) =

∞∫

0

e−λtdρβ (λ) as t → 0.(3.9)

Using the condition (60) and application of a Tauberian theorem of Korenblum, B.I.,
(see [3]) to (3.9) we obtain that

Nβ (λ) ∼ 1
2nπ

n
2 Γ

(
n
2 + 1

)
∑

j

∫

αj(x)≤λ

αβ
j (x) [λ− αj (x)]n/2

dx(3.10)

as λ →∞.

Theorem2. If Q(x) satisfies the conditions (10)-(60), then the asymptotic for-
mula (3.10) holds for the weighted trace Nβ (λ) of the operator L.
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