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Abstract. In this study we extend the concept α−distance, which is a
generalization of both of taxicab distance and chinese checker distance, to
three dimensional space.

M.S.C. 2000: 51K05, 51K99.
Key words: metric, taxicab distance, CC−distance, α−distance.

1 Introduction

During the recent years, Taxicab geometry and Chinese Checker geometry have been
studied and developed in many directions (see [1], [2], [3], [4], [5], [6]). Tian [5] gave
a generalization of both of Taxicab and Chinese Checker distances in the plane, and
named it as α−distance. In this work we extend α−distance to three dimensional
case.

Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in R3. Denote

∆P1P2 = max {|x1 − x2| , |y1 − y2| , |z1 − z2|} and

δP1P2 = min {|x1 − x2|+ |y1 − y2| , |x1 − x2|+ |z1 − z2| , |y1 − y2|+ |z1 − z2|} .

The Taxicab distance and Chinese Checker distance between P1 and P2 are

dT (P1, P2) = ∆P1P2 + δP1P2 and dc(P1, P2) = ∆P1P2 + (
√

2− 1)δP1P2

respectively.For each α∈ [0, π/4],the α-distance between P1 and P2 is defined by

dα(P1, P2) = ∆P1P2 + (sec α− tan α)δP1P2 .

Notice that d0(P1, P2)=dT (P1, P2) and dπ
4
(P1, P2)=dc(P1, P2). Also if

δP1P2 > 0, then

dE(P1, P2) < dc(P1, P2) < dα(P1, P2) < dT (P1, P2) for all α ∈ (0, π/4) .

If δP1P2 = 0, then P1 and P2 lie on a line which is parallel to one of coordinate axes,
and
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dc(P1, P2) = dα(P1, P2) = dT (P1, P2) = dE(P1, P2) for all α ∈ [0, π/4]

where dE stands for the Euclidean distance.
Obviously dα(P1, P2) = 0 if and only if P1 = P2 and dα(P1, P2) = dα(P2, P1) for

all P1, P2 ∈ R3. Now, we try to prove that

dα(P1, P2) ≤ dα(P1, P3) + dα(P3, P2)

for all P1, P2, P3 ∈ R3 and α ∈ [0, π/4]. SP1P2 denote the region bounded by rectangu-
lar prism with diagonal P1P2 for two points P1 = (x1, y1, z1) ,
P2 = (x2, y2, z2) ∈ R3. The next two propositions follow directly from the defini-
tion of the α−distance:

Proposition 1. The α−distance is invariant under all translation in R3. That
is, T : R3 → R3 3 T (x, y, z) = (x + a, y + b, z + c) , a, b, c ∈ R does not change the
distance between two any points in R3.

Let P1, P2, P3 and P4 be four points in R3. As a consequence of Proposition1, if
SP1P2 and SP3P4 are congruent, then dα(P1, P2)=dα(P3, P4) for all α ∈ [0, π/4].

Proposition 2. Let P1 and P2 be two points in R3. Then
dα(P1, P2) ≥ dα(P3, P4) for all P3, P4 ∈ SP1P2 and α ∈ [0, π/4] .

Notice that, according to positions of P1 and P2 in R3, the three cases of dα are
possible:

dα(P1, P2)=





|x1−x2|+(sec α-tan α) (|y1−y2|+ |z1−z2|) , if |x1−x2| is max
|y1−y2|+(sec α-tanα) (|x1−x2|+ |z1−z2|) , if |y1−y2| is max
|z1−z2|+(sec α-tan α) (|x1−x2|+ |y1−y2|) , if |z1−z2| is max .

Proposition 3. Let P1 and P2 be any two points in R3. a, b, c denote values of
dα(P1, P2) for |x1 − x2| , |y1 − y2| , |z1 − z2| , respectively. Then

a ≥ b and a ≥ c if ∆P1P2 = |x1 − x2| ,
b ≥ a and b ≥ c if ∆P1P2 = |y1 − y2| ,
c ≥ a and c ≥ b if ∆P1P2 = |z1 − z2| .

Proof. Let P1=(x1, y1, z1) and P2=(x2, y2, z2). Denote q=sec α − tan α. If
∆P1P2 = |x1 − x2|, then

a = |x1 − x2|+ q (|y1 − y2|+ |z1 − z2|)
= |y1 − y2|+ q (|x1 − x2|+ |z1 − z2|)− (1− q) |y1 − y2|+ (1− q) |x1 − x2|
= b + (1− q)(|x1 − x2| − |y1 − y2|) .

Notice that (1− q) ≥ 0 for all α ∈ [0, π/4] and (|x1 − x2| − |y1 − y2|) ≥ 0. Thus

|y1 − y2|+ q (|x1 − x2|+ |z1 − z2|) ≤ |x1 − x2|+ q (|y1 − y2|+ |z1 − z2|) .

That is, a ≥ b. Similarly a ≥ c. Similar proofs can easily given for the remaining
cases.¤

Theorem 4. Let P1 and P2 be any two points in R3 and α ∈ [0, π/4] . Then,

dα(P1, P2) ≤ dα(P1, P3) + dα(P3, P2)
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for all P3 ∈ R3.
Proof. Clearly, the result holds when δP1P2=0. Suppose that δP1P2>0. By Proposi-

tion 1, without loss of generality, assume that P1 lies on the origin, and P2=(x2, y2, z2)
with x2>y2>z2>0. Let A=(x2−y2, 0, 0), B=(x2− z2√

2
, y2− z2√

2
, 0), C = (x2−y2 tanα, 0, 0),

D = (x2− z2√
1 + tan2 α

, y2− tan α√
1 + tan2 α

z2, 0),

E=(x2, y2, 0), F=(x2, 0, 0) and G=(x2, 0, z2).

Now consider the triangular regions R1=
4

P1EA, R2=
4

AEC, R3=
4

CEF and the
region R4 = {(x, y, 0) : x ≥ 0 and y < 0, or x > x2 and y ≥ 0} in xy−plane. Let P
denote the plane which pass through the points P1, P2 and G. Let K1, K2 and K3 be
subset of SP1P2 such that they lie in between the P and xy−plane; and the orthogonal
projections of them to xy−plane are R1, R2 and R3, respectively. Let K4 denote the
subset of points of R3 which are on the same side of the plane P such that orthogonal
projection of K4 is in R4 (see Figure 1). Now, it suffices to prove the result for
P3 ∈ K1 ∪K2 ∪K3 ∪K4.

Case I. Assume that P3 = (x3, y3, z3) ∈ K1. In this case, it is easily seen that x3 ≥ y3,
x3 ≥ z3, x2 − x3 ≥ y2 − y3 and x2 − x3 ≥ z2 − z3 or x2 − x3 < z2 − z3. Thus,

dα(P1, P3) = x3 + q(y3 + z3)

and

dα(P3, P2) = (x2 − x3) + q(y2 − y3 + z2 − z3)

or

dα(P3, P2) = (z2 − z3) + q(x2 − x3 + y2 − y3) .

Thus,
i) dα(P1, P3)+dα(P3, P2) = x2+q(y2 + z2) = dα(P1, P2)
ii) dα(P1, P3)+dα(P3, P2) = x3+q(y3 + z3)+(z2−z3)+q(x2−x3+y2−y3)

= x2+q(y2+z2)+(q−1)((x2−x3)−(z2−z3))
= dα(P1, P2)+(q−1)((x2−x3)−(z2−z3))
≥ dα(P1, P2)
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where (1-q)((z2-z3)-(x2-x3)) ≥ 0. That is, dα(P1, P3) + dα(P3, P2) ≥ dα(P1, P2) by
Proposition 3.

Case II. Assume that P3 = (x3, y3, z3) ∈ K2. Let P p3 be orthogonal projection of P3

onto xy−plane. Consider the line segments through P p3 and parallel to the line ←→CD

and x−axis, which intersect the lines ←→P1C and ←→CD at the points A1, A2, respectively.
Draw a line segment parallel to the DP2 through P3 which intersects the line segment
A1P

p
3 at A3. Now, consider the rectangle P3P

p
3A2A4. Draw line segment parallel to

the CD through A4 which intersects line segment DP2 at A5 (see Figure 2). It is
easily seen that |A1C| =

∣∣P p3A2

∣∣ = |P3A4| and |A2D|+
∣∣A3P

p
3

∣∣ = |A4A5| . Also
dα(P1, P3) = |P1A1|+ |A1A3|+ |A3P3| and
dα(P1, P2) = |P1C|+ |CD|+ |DP2|

= |P1A1|+ |A1C|+ |A1A3|+ |A4A5|+ |A3P3|+ |A5P2|
= |P1A1|+ |A1A3|+ |A3P3|+ |A1C|+ |A4A5|+ |A5P2|
= dα(P1, P3) + |P3A4|+ |A4A5|+ |A5P2| .

Thus, |P3A4|+|A4A5|+|A5P2| ≤ dα(P3, P2) by proposition 3. Therefore dα(P1, P2) ≤
dα(P1, P3) + dα(P3, P2).

Case III. Assume that P3 = (x3, y3, z3) ∈ K3. Similarly Ai (i = 1, 2, . . . , 5) points
can be obtained as in Case II (see Figure 3). Similarly, it follows that
dα(P1, P2) = |P1C|+ |CD|+ |DP2|

= |P1C|+
∣∣A1P

p
3

∣∣ + |A4A5|+ |A3P3|+ |A5P2|
≤ |P1C|+ |CA1|+ |A1A3|+ |A3P3|+ |P3A4|+ |A4A5|+ |A5P2|
≤ dα(P1, P3) + dα(P3, P2) .

Case IV. Assume that P3 = (x3, y3, z3) ∈ K4. Let
P4 = (min {x, x2} , min {max {0, y} , y2} , 0) . P4 lies on the line segment P1F and FE.
By proposition 2,

dα(P1, P4) ≤ dα(P1, P3) and dα(P4, P2) ≤ dα(P3, P2) .

Based on the result from Case II and Case III,

dα(P1, P2) ≤ dα(P1, P4) + dα(P4, P2) ≤ dα(P1, P3) + dα(P3, P2) .

¤
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