On α -distance in three dimensional space

Özcan Gelişgen - Rüstem Kaya

Abstract. In this study we extend the concept α -distance, which is a generalization of both of taxicab distance and chinese checker distance, to three dimensional space.

M.S.C. 2000: 51K05, 51K99.

Key words: metric, taxicab distance, CC-distance, α -distance.

1 Introduction

During the recent years, Taxicab geometry and Chinese Checker geometry have been studied and developed in many directions (see [1], [2], [3], [4], [5], [6]). Tian [5] gave a generalization of both of Taxicab and Chinese Checker distances in the plane, and named it as α -distance. In this work we extend α -distance to three dimensional case

Let $P_1 = (x_1, y_1, z_1)$ and $P_2 = (x_2, y_2, z_2)$ be two points in \mathbb{R}^3 . Denote

$$\Delta_{P_1P_2} = \max\{|x_1 - x_2|, |y_1 - y_2|, |z_1 - z_2|\}$$
 and

$$\delta_{P_1P_2} = \min\left\{ \left| x_1 - x_2 \right| + \left| y_1 - y_2 \right|, \left| x_1 - x_2 \right| + \left| z_1 - z_2 \right|, \left| y_1 - y_2 \right| + \left| z_1 - z_2 \right| \right\}.$$

The Taxicab distance and Chinese Checker distance between P_1 and P_2 are

$$d_T(P_1, P_2) = \Delta_{P_1 P_2} + \delta_{P_1 P_2}$$
 and $d_c(P_1, P_2) = \Delta_{P_1 P_2} + (\sqrt{2} - 1)\delta_{P_1 P_2}$

respectively. For each $\alpha \in [0, \pi/4]$, the α -distance between P_1 and P_2 is defined by

$$d_{\alpha}(P_1, P_2) = \Delta_{P_1 P_2} + (\sec \alpha - \tan \alpha) \delta_{P_1 P_2}.$$

Notice that $d_0(P_1, P_2) = d_T(P_1, P_2)$ and $d_{\frac{\pi}{4}}(P_1, P_2) = d_c(P_1, P_2)$. Also if $\delta_{P_1P_2} > 0$, then

$$d_E(P_1, P_2) < d_c(P_1, P_2) < d_\alpha(P_1, P_2) < d_T(P_1, P_2)$$
 for all $\alpha \in (0, \pi/4)$.

If $\delta_{P_1P_2} = 0$, then P_1 and P_2 lie on a line which is parallel to one of coordinate axes, and

Applied Sciences, Vol.8, 2006, pp. 65-69.

[©] Balkan Society of Geometers, Geometry Balkan Press 2006.

$$d_c(P_1, P_2) = d_\alpha(P_1, P_2) = d_T(P_1, P_2) = d_E(P_1, P_2)$$
 for all $\alpha \in [0, \pi/4]$

where d_E stands for the Euclidean distance.

Obviously $d_{\alpha}(P_1, P_2) = 0$ if and only if $P_1 = P_2$ and $d_{\alpha}(P_1, P_2) = d_{\alpha}(P_2, P_1)$ for all $P_1, P_2 \in \mathbb{R}^3$. Now, we try to prove that

$$d_{\alpha}(P_1, P_2) \le d_{\alpha}(P_1, P_3) + d_{\alpha}(P_3, P_2)$$

for all $P_1, P_2, P_3 \in \mathbb{R}^3$ and $\alpha \in [0, \pi/4]$. $S_{P_1P_2}$ denote the region bounded by rectangular prism with diagonal P_1P_2 for two points $P_1 = (x_1, y_1, z_1)$, $P_2 = (x_2, y_2, z_2) \in \mathbb{R}^3$. The next two propositions follow directly from the definition of the α -distance:

Proposition 1. The α -distance is invariant under all translation in R^3 . That is, $T: R^3 \to R^3 \ni T(x,y,z) = (x+a,y+b,z+c)$, $a,b,c \in R$ does not change the distance between two any points in R^3 .

Let P_1, P_2, P_3 and P_4 be four points in \mathbb{R}^3 . As a consequence of Proposition1, if $S_{P_1P_2}$ and $S_{P_3P_4}$ are congruent, then $d_{\alpha}(P_1, P_2) = d_{\alpha}(P_3, P_4)$ for all $\alpha \in [0, \pi/4]$.

Proposition 2. Let P_1 and P_2 be two points in R^3 . Then $d_{\alpha}(P_1, P_2) \geq d_{\alpha}(P_3, P_4)$ for all $P_3, P_4 \in S_{P_1P_2}$ and $\alpha \in [0, \pi/4]$.

Notice that, according to positions of P_1 and P_2 in \mathbb{R}^3 , the three cases of d_{α} are possible:

$$d_{\alpha}(P_1, P_2) = \begin{cases} |x_1 - x_2| + (\sec \alpha - \tan \alpha) (|y_1 - y_2| + |z_1 - z_2|) & \text{, if } |x_1 - x_2| \text{ is max} \\ |y_1 - y_2| + (\sec \alpha - \tan \alpha) (|x_1 - x_2| + |z_1 - z_2|) & \text{, if } |y_1 - y_2| \text{ is max} \\ |z_1 - z_2| + (\sec \alpha - \tan \alpha) (|x_1 - x_2| + |y_1 - y_2|) & \text{, if } |z_1 - z_2| \text{ is max} \end{cases}.$$

Proposition 3. Let P_1 and P_2 be any two points in \mathbb{R}^3 . a,b,c denote values of $d_{\alpha}(P_1,P_2)$ for $|x_1-x_2|$, $|y_1-y_2|$, $|z_1-z_2|$, respectively. Then

$$\begin{array}{ll} a \geq b \ \ and \ \ a \geq c & \quad \ \ \, if \ \ \Delta_{P_1P_2} = |x_1 - x_2| \ , \\ b \geq a \ \ and \ b \geq c & \quad \ \ \, if \ \ \Delta_{P_1P_2} = |y_1 - y_2| \ , \\ c \geq a \ \ and \ c \geq b & \quad \ \ \, if \ \ \Delta_{P_1P_2} = |z_1 - z_2| \ . \end{array}$$

Proof. Let $P_1=(x_1,y_1,z_1)$ and $P_2=(x_2,y_2,z_2)$. Denote $q=\sec \alpha - \tan \alpha$. If $\Delta_{P_1P_2}=|x_1-x_2|$, then

$$a = |x_1 - x_2| + q(|y_1 - y_2| + |z_1 - z_2|)$$

$$= |y_1 - y_2| + q(|x_1 - x_2| + |z_1 - z_2|) - (1 - q)|y_1 - y_2| + (1 - q)|x_1 - x_2|$$

$$= b + (1 - q)(|x_1 - x_2| - |y_1 - y_2|).$$

Notice that $(1-q) \ge 0$ for all $\alpha \in [0, \pi/4]$ and $(|x_1 - x_2| - |y_1 - y_2|) \ge 0$. Thus

$$|y_1 - y_2| + q(|x_1 - x_2| + |z_1 - z_2|) \le |x_1 - x_2| + q(|y_1 - y_2| + |z_1 - z_2|)$$
.

That is, $a \geq b$. Similarly $a \geq c$. Similar proofs can easily given for the remaining cases. \square

Theorem 4. Let P_1 and P_2 be any two points in \mathbb{R}^3 and $\alpha \in [0, \pi/4]$. Then,

$$d_{\alpha}(P_1, P_2) \le d_{\alpha}(P_1, P_3) + d_{\alpha}(P_3, P_2)$$

for all $P_3 \in \mathbb{R}^3$.

Proof. Clearly, the result holds when $\delta_{P_1P_2}=0$. Suppose that $\delta_{P_1P_2}>0$. By Proposition 1, without loss of generality, assume that P_1 lies on the origin, and $P_2=(x_2,y_2,z_2)$ with $x_2>y_2>z_2>0$. Let $A=(x_2-y_2,0,0), B=(x_2-\frac{z_2}{\sqrt{2}},y_2-\frac{z_2}{\sqrt{2}},0), C=(x_2-y_2\tan\alpha,0,0),$

$$D = (x_2 - \frac{z_2}{\sqrt{1 + \tan^2 \alpha}}, y_2 - \frac{\tan \alpha}{\sqrt{1 + \tan^2 \alpha}} z_2, 0),$$

$$E = (x_2, y_2, 0), F = (x_2, 0, 0) \text{ and } G = (x_2, 0, z_2).$$

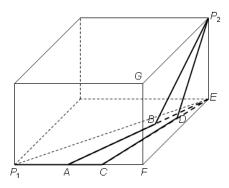


Figure 1

Now consider the triangular regions $R_1 = P_1 \stackrel{\triangle}{E} A$, $R_2 = A \stackrel{\triangle}{E} C$, $R_3 = C \stackrel{\triangle}{E} F$ and the region $R_4 = \{(x,y,0) : x \geq 0 \text{ and } y < 0, \text{ or } x > x_2 \text{ and } y \geq 0\}$ in xy-plane. Let $\mathcal P$ denote the plane which pass through the points P_1 , P_2 and G. Let K_1 , K_2 and K_3 be subset of $S_{P_1P_2}$ such that they lie in between the $\mathcal P$ and xy-plane; and the orthogonal projections of them to xy-plane are R_1 , R_2 and R_3 , respectively. Let K_4 denote the subset of points of $\mathbb R^3$ which are on the same side of the plane $\mathcal P$ such that orthogonal projection of K_4 is in R_4 (see Figure 1). Now, it suffices to prove the result for $P_3 \in K_1 \cup K_2 \cup K_3 \cup K_4$.

Case I. Assume that $P_3 = (x_3, y_3, z_3) \in K_1$. In this case, it is easily seen that $x_3 \ge y_3$, $x_3 \ge z_3$, $x_2 - x_3 \ge y_2 - y_3$ and $x_2 - x_3 \ge z_2 - z_3$ or $x_2 - x_3 < z_2 - z_3$. Thus,

$$d_{\alpha}(P_1, P_3) = x_3 + q(y_3 + z_3)$$

and

$$d_{\alpha}(P_3, P_2) = (x_2 - x_3) + q(y_2 - y_3 + z_2 - z_3)$$

or

$$d_{\alpha}(P_3, P_2) = (z_2 - z_3) + q(x_2 - x_3 + y_2 - y_3)$$
.

Thus,

i)
$$d_{\alpha}(P_1, P_3) + d_{\alpha}(P_3, P_2) = x_2 + q(y_2 + z_2) = d_{\alpha}(P_1, P_2)$$

$$\begin{array}{lll} \textbf{ii)} & d_{\alpha}(P_1,P_3) + d_{\alpha}(P_3,P_2) & = & x_3 + q(y_3 + z_3) + (z_2 - z_3) + q(x_2 - x_3 + y_2 - y_3) \\ & = & x_2 + q(y_2 + z_2) + (q-1)((x_2 - x_3) - (z_2 - z_3)) \\ & = & d_{\alpha}(P_1,P_2) + (q-1)((x_2 - x_3) - (z_2 - z_3)) \\ & \geq & d_{\alpha}(P_1,P_2) \end{array}$$

where $(1-q)((z_2-z_3)-(x_2-x_3)) \ge 0$. That is, $d_{\alpha}(P_1,P_3) + d_{\alpha}(P_3,P_2) \ge d_{\alpha}(P_1,P_2)$ by Proposition 3.

Case II. Assume that $P_3=(x_3,y_3,z_3)\in K_2$. Let $P_3^{\scriptscriptstyle |}$ be orthogonal projection of P_3 onto xy-plane. Consider the line segments through $P_3^{\scriptscriptstyle |}$ and parallel to the line \overrightarrow{CD} and x-axis, which intersect the lines $\overrightarrow{P_1C}$ and \overrightarrow{CD} at the points A_1,A_2 , respectively. Draw a line segment parallel to the DP_2 through P_3 which intersects the line segment $A_1P_3^{\scriptscriptstyle |}$ at A_3 . Now, consider the rectangle $P_3P_3^{\scriptscriptstyle |}A_2A_4$. Draw line segment parallel to the CD through A_4 which intersects line segment DP_2 at A_5 (see Figure 2). It is easily seen that $|A_1C|=|P_3^{\scriptscriptstyle |}A_2|=|P_3A_4|$ and $|A_2D|+|A_3P_3^{\scriptscriptstyle |}|=|A_4A_5|$. Also $d_{\alpha}(P_1,P_3)=|P_1A_1|+|A_1A_3|+|A_3P_3|$ and

$$\begin{array}{lll} d_{\alpha}(P_{1},P_{2}) & = & |\dot{P}_{1}C| + |\dot{C}D| + |\dot{D}P_{2}| \\ & = & |P_{1}A_{1}| + |A_{1}C| + |A_{1}A_{3}| + |A_{4}A_{5}| + |A_{3}P_{3}| + |A_{5}P_{2}| \\ & = & |P_{1}A_{1}| + |A_{1}A_{3}| + |A_{3}P_{3}| + |A_{1}C| + |A_{4}A_{5}| + |A_{5}P_{2}| \\ & = & d_{\alpha}(P_{1},P_{3}) + |P_{3}A_{4}| + |A_{4}A_{5}| + |A_{5}P_{2}| \end{array}$$

Thus, $|P_3A_4| + |A_4A_5| + |A_5P_2| \le d_{\alpha}(P_3, P_2)$ by proposition 3. Therefore $d_{\alpha}(P_1, P_2) \le d_{\alpha}(P_1, P_3) + d_{\alpha}(P_3, P_2)$.

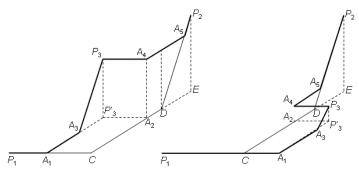


Figure 2 Figure 3

Case III. Assume that $P_3 = (x_3, y_3, z_3) \in K_3$. Similarly A_i (i = 1, 2, ..., 5) points can be obtained as in Case II (see Figure 3). Similarly, it follows that

$$\begin{array}{ll} d_{\alpha}(P_{1},P_{2}) & = & |P_{1}C| + |CD| + |DP_{2}| \\ & = & |P_{1}C| + |A_{1}P_{3}'| + |A_{4}A_{5}| + |A_{3}P_{3}| + |A_{5}P_{2}| \\ & \leq & |P_{1}C| + |CA_{1}| + |A_{1}A_{3}| + |A_{3}P_{3}| + |P_{3}A_{4}| + |A_{4}A_{5}| + |A_{5}P_{2}| \\ & \leq & d_{\alpha}(P_{1},P_{3}) + d_{\alpha}(P_{3},P_{2}) \ . \end{array}$$

Case IV. Assume that $P_3 = (x_3, y_3, z_3) \in K_4$. Let $P_4 = (\min\{x, x_2\}, \min\{\max\{0, y\}, y_2\}, 0)$. P_4 lies on the line segment P_1F and FE. By proposition 2,

$$d_{\alpha}(P_1, P_4) \le d_{\alpha}(P_1, P_3)$$
 and $d_{\alpha}(P_4, P_2) \le d_{\alpha}(P_3, P_2)$.

Based on the result from Case II and Case III,

$$d_{\alpha}(P_1, P_2) \leq d_{\alpha}(P_1, P_4) + d_{\alpha}(P_4, P_2) \leq d_{\alpha}(P_1, P_3) + d_{\alpha}(P_3, P_2)$$
.

References

- [1] Akca, Z., Kaya, R., On The Distance Formulae in Three Dimensional Taxicab Space, Hadronic Journal, Vol. 27, No. 5 (2004), 521-532.
- [2] Akca, Z., Kaya, R., On the Norm in Higher Dimensional Taxicab Spaces, Hadronic Journal Supplement, Vol. 19 (2004), 491-501.
- [3] Gelişgen, Ö., Kaya, R., Özcan, M., Distance Formulae in the Chinese Checker Space, Int. Jour. of Pure and Appl. Math. (IJPAM), To appear.
- [4] Kaya, R., Gelişgen, Ö., Ekmekci, S., Bayar, A., *Group of Isometries of CC-Plane*, Missouri Journal of Mathematical Sciences, To appear.
- [5] Tian, S., Alpha Distance-A Generalization of Chinese Checker Distance and Taxicab Distance, Missouri Journal of Mathematical Sciences, Vol. 17, No. 1 (2005), 35-40.
- [6] Turan, M., Özcan, M., Two-foci CC-Ellipses, Int. Jour. of Pure and Appl. Math. (IJPAM), Vol.16, No.1 (2004), 119-127 .

$Authors'\ address:$

Özcan Gelişgen and Rüstem Kaya Eskişehir Osmangazi University, Faculty of Arts and Sciences, Dep. of Math., 26480 Eskişehir, Turkey. email: gelişgen@ogu.edu.tr and rkaya@ogu.edu.tr