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Abstract. The strong connection of the Physics and Geometry is well-
known, beginning with the roots in the geometrical similitude of the im-
portant method of the Physics similarity, up to the recent development of
the theory of physical fractal structures following the elaboration by the
geometers Benoit Mandelbrot et al. of the foundations of Fractals theory.

This work aims to point out the presence of some elements of Dynamic
Geometry and Optimization in themselves foundations of the modern
Physics, as well as to emphasize their presence in frame of some new
formalisms of Physics, in the Complexity theory, particularly.
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1 Introduction

As it is well-known, the United Nations (UN) General Assembly has adopted the res-
olution A/58/L.62, declaring 2005 as the International Year of Physics, and invited
the United Nations Educational, Scientific and Cultural Organization (UNESCO) to
organize activities celebrating this Year (see also the web page: http://www.un.org/
Depts/dhl/resguide/r58.htm). In frame of the UN press release GA/10243 it was
shown: “ . . . In 1905, Albert Einstein had published several scientific articles that
profoundly influenced understanding of the Universe. He had introduced utterly revo-
lutionary ideas on fundamental questions, including the existence of atoms, the nature
of light and the concepts of SPACE, energy and matter. The aim of the International
Year went beyond the mere celebration of one of the greatest minds in Physics in the
twentieth century. The Year would provide an opportunity for the largest possible
audiences to acknowledge the progress and importance of the great field of science“.

The most important scientific articles published by Albert Einstein in 1905 remain
those referring to the Special Relativity Theory, which led to the discovery of the
nuclear reactions, to the design and building of the elementary particles accelerators,
of the nuclear reactors, etc [unfortunately also to the obtainment (as a undesired
consequence, by A. Einstein and the largest part of scientists) of the nuclear weapons].
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We have to underline here that the most important results obtained in following
(1907-1920) by Albert Einstein refer to the General Relativity Theory, in fact an
absolutely outstanding Gravitation Theory, in strong connection with the modern
(physical) meaning of Geometry.

2 Elements of Dynamic Geometry in foundations of
modern Physics

Presently, the definitions of the space and time in domains without matter and intense
gravitational fields start from the propagation equation of electromagnetic pulses in
free spaces [1]:
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is the transposed (row) 4-dimensional “nabla” operator.
As it is well-known, the light beams passing in proximity of some stars (of Sun,

particularly) of mass Mand radius Rare deflected. Assuming that the inertial mass is
equal to the gravitational one (for photons, inclusively), the expression of the deviation
angle corresponding to the Newton’s gravitation theory is [2]:
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In the classical physics, such deviations of the light beams are met for the light
propagation in dielectric (optical) media, when the light beam trajectory between 2
arbitrary points A and B is given by the Fermat’s principle:

δ

B∫

A

n · dl = 0 ,(2.3)

where the symbol δ stands for the variation around the light beam real (physical)
trajectory, n is the optical refraction index, and dl is the differential element of length
of the considered trajectory.

The integral expression [equivalent to equation (2.3) of Fermat’s principle states
that the electromagnetic signal (pulse) propagation (of the light beam, particularly)
accomplishes along that trajectory for which the optical path, defined by means of

relation: ∆AB =
B∫
A

n · dl has the minimal value (the most frequent case), the maximal

value (possible situation, but rarely met), or a constant value, independent on tra-
jectory (a situation valid for 2 conjugated points A,B relative to an optical lens). It
results that – usually in optics – the electromagnetic (of the light beam, particularly)
propagation produces along the space geodesics for which the classical geometry path
is replaced by the so-called optical path:

d∆ = n · dl(2.4)
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We have to underline also that in expression (2.4) the optical refraction index
n multiplies only the component of geometrical path along the tangent to the light
beam trajectory.

Because the intense gravitational fields act also on the duration of the electromag-
netic signals propagation, the modern gravity theories adopt the ideas concerning: a)
the physical space curvature [analogous to equation (2.4)] by means of a “metrical”
tensor gij of the coefficients of the space-time interval expression:

ds2 =
∑

i,j=1,4

gijdxidxj = dr̄T
4 · ¯̄g · dr̄4(2.5)

(where: x1 = x, x2 = y, x3 = z, x4 = ict), b) the geodesics character (
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of the trajectory of electromagnetic signals.
Starting from the expression of the d’alembertian operator corresponding to the

metric tensor ¯̄g:
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and taking into account that the expressions of the space-time interval (2.5), and of
the d’alembertian operator corresponding to the metric tensor ¯̄g (2.6), respectively,

are invariant (see [3]) to the accomplishment of a unitary transform ( ¯̄U
−1

= ¯̄U
T
,

therefore: det ¯̄U = ±1):

dr̄,
4 = ¯̄U · dr̄4 ,(2.7)

it results that the space coordinates and the time are defined in the Einstein’s grav-
itation theory starting from the equation of electromagnetic signals propagation (of
the light, particularly):

∇2
¯̄gĒ = 0 .(2.8)

As a particular example, we will mention that in the proximity of a spherical grav-
itation source of mass Mand radius R, the space-time interval can be expressed by
means of Schwarzschild’s relation:

ds2 =
dr2

1− 2kM
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+ r2dθ2 + r2 sin2 θ · dϕ2 − c2

(
1− 2kM

c2r

)
· dt2(2.9)

where r, θ, φ are the usual spherical coordinates, t is the time, and k is the Newton’s
constant of the universal gravitation.

In the general case, the metric tensor ¯̄g will be time-dependent, which indicates
that even the modern Physics foundations are related to some problems of Dynamic
Geometry.

Finally, we have to underline the absolutely outstanding character of the grav-
itational interaction, relative to the other 3 known (and recognized) fundamental
physical interactions (see Diagram 1), which indicates the real possibilities of some
future improvements of the present (modern) definitions of the space and time (see
also [4], [5]).
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Diagram 1. Classification of fundamental interactions

3 Elements of optimization in foundations of mod-
ern Physics

Due to the huge volume of the experimental results, it is wanted to synthesize them
(for beginning) by means of some semi-empirical relations, in order to derive finally
some specific laws. Because – due to the presence of fluctuations - any physical re-
lations and (even) laws represent really only some approximations of the empirical
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truth, for increasing accuracy measurements, all these relations will be denied, the
basic decision in the statistical studies of the experimental results being so the re-
jection of the compatibility of some relations (or theoretical models) relative to the
studied experimental results. As to any statistical hypothesis, it is associated to the
hypothesis of compatibility rejection a certain error risk, that has to be always known,
but which is . . . rarely studied!

In order to advance in this direction, we will remark that – as it is well-known: a)
to each set of experimental results concerning Ndifferent parameters corresponding
to the same state of the studied system (let x1mp, ...xNmp - the most probable values
of these parameters) it is associated a confidence domain, that has – in the most
frequent case of a normal distribution – the shape of a N-dimensional ellipsoid:

εT Γ−1ε = fN (Ni)(3.1)

where ε is the “column” vector of errors (εi = xi−xi,cmp), εT is its transposed (“row”)
vector, Γ is the matrix of co-variances (each element of Γ being equal to the statistical
average of the product of the corresponding errors: Γij =<εiεj >), and fN (Ni)is a
certain function on the confidence level Ni corresponding to the considered confidence
domain, b) in the frequent case of the study of a pair of physical parameters (Xand
Y ), the confidence domain associated to the normal 2-dimensional distribution will
correspond to the internal part of the ellipse:
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where s(xk) and s(yk) are the square mean deviations corresponding to the values
of parameters X and Y for the state k, and rk is the correlation coefficient of these
parameters values for the studied state

rk =
Γ(xk, yk)

s(xk) · s(yk)
=

< (xk − xk,cmp)(yk − yk,cmp) >

s(xk) · s(yk)
,(3.3)

and

f2(Nik) = −2
(
1− r2

k

) · ln (1−Nik) .(3.4)

One finds so, that the fundamental problem of the definition of physical states is
reduced to an optimization problem corresponding to the minimum value of the sums of
weighted squares (3.1) [in the general case], or (3.2) [in the case of only 2 parameters].

Usually, the correlation coefficient rk is considered as the main criterion in order
to appreciate the compatibility of some relations y = f(x)relative to certain sets of
experimental data. In fact, this coefficient ”measures” only the neighborhood degree
of the centers of the confidence domains relative to the studied regression line (or
curve, generally); for instance, even that |ra| > |rb|, the ensemble of experimental
values from Fig.1a is not compatible to relation y = f(x), while the ensemble from
Fig.1b is compatible with this relation, because the corresponding confidence domains
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are crossed by the regression line (function) y = f(x). Of course, the solution of such
problems, very important for the experimental data processing can be accomplished
only using the computers. Particularly, some too small values (e.g., less than 0.01)
of qk = 1−Nik (obtained from relations (3.2) or (3.4) for xk = xtk, yk = ytk, where
xtk, ytk are the coordinates of the tangency point of the confidence ellipse tangent to
the regression line (function) y = f(x) (see the broken line ellipse from Fig.1b), can
justify the hypothesis of incompatibility of the studied relation y = f(x) relative to
the considered ensembles of experimental results [6].

As the error risk qk = 1−Nik at the rejection of the compatibility of the experi-
mental results corresponding to the physical state k relative to the studied theoretical
relation y = f(x) is less or it is larger than a certain threshold (chosen usually between
0.001 and 0,2), the respective compatibility is rejected, or it has to be accepted, re-
spectively [7] - [10]. One finds so that – not only the definition of physical states – but
even the decision about the compatibility/incompatibility of some physical theoretical
models relative to the experimental data reduces to some problems of optimization
and (implicitly, dynamic) geometry.

Fig. 1a Fig. 1b

4 Dynamic Geometry in fluids flows descriptions
and fractal structures

We have to answer in following to the question: is it involved also the Geometry
in the general theory of Complexity? As it is well-known, the Complexity theory
involves many fields of Mathematics, Physics, Chemistry, Biology, Electrical Engi-
neering, Computer Science, Economics, Social Sciences, Cognition theory, etc. (see
e.g. [11]). The most important general features of Complexity refer to the: a) (auto-
catalytic) growth and accommodation, b) features of strong or weak chaos, c) power
laws (and fractals, particularly), d) limit laws (and the auto-organizing criticality
states, particularly), etc. Could we identify such features in frame of problems de-
scribed by (dynamic) geometry?

In the particular case of fluids flows, the trajectories of fluid particles form (ex-
press) a certain (dynamic, for non-steady flows) geometry. For low speed (laminar)
flows, the trajectories could be parallel, but for quicker flows appear some vortices
(curved trajectories), at beginning of rather large dimensions. In order to explain the
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rather strange similitude indices (analogous in Physics to the power exponents from
the geometrical similitude relations) intervening in the description of turbulent flows
parameters, Kolmogorov [12] proposed a hierarchical structure of vortices, the energy
being injected firstly in the largest vortices and transferred in a cascade from the
larger to the smaller vortices, up to the smallest ones, where the energy is dissipated.
This hypothesis was strengthened by the contributions of Mandelbrot [13]. Taking
into account that (for samples of different sizes) it is difficult to have exactly equal
values of all uniqueness parameters (excepting the sample size), in order to fulfill the
classical relation: P = C · LD (with a non-rational similitude index D, called the
fractal dimension) of the fractal theory [14], it results that the physical applications
of the fractal theory correspond to the prevalence (dominance) of the size (length)
uniqueness parameter. If for different size domains, the values of D belong to a set
(discrete or continuous) of real numbers, the corresponding physical structure is called
multi (poly)fractal.

In the last years, there were published several identifications of multi
(poly)fractal structures, as those corresponding to: (i) the fracture surfaces of metals
[15], (ii) fracture surfaces of concrete specimen [16], (iii) several parameters of dis-
ordered and porous media, aggregates, polymers and membranes [17], (iv) electrode
surfaces (of fractal dimension Ds ≈ 2.6) of some super-capacitors [18], [19], etc.

5 Dynamic Geometry in descriptions of growth /
accommodation processes

A typical plot of the growth/accommodation processes is that presented by fig.2, p.
807 [20] for the relationship between the force generated by the skeletal muscle con-
traction and the myoplasmic Ca2+ concentration. For an arbitrary parameter p of the
growing system, the growth/ accommodation plot is that from Fig.1 (below), where
p0 and p∞ are the initial and final values, respectively, of the considered parameter.

Fig. 2. The typical dependence of physical parameters for growth/accommodation
processes
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A possible quantitative model of the growth/accommodation phenomena is given
by the differential equation:

dp
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= a · p (p− p∞) , where : a · p∞ =

1
τ

(5.1)

with the solution:
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For p << p∞, the equation (5.1) becomes: dp
dt
∼= p

τ , with the solution:

p(t) = po exp
t

τ
.(5.3)

Because the dynamics of a quantity is said to be auto-catalytic if the time variations
of that quantity are proportional (via stochastic factors) to its current value [11], it
results that the validity domain of equations (5.3) represents the auto-catalytic growth
domain of the growth/ accommodation processes.

Conversely, if: p∞ − p << p∞, then the equation (1) becomes:
dp
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= −p− p∞

τ
,

with the solution:

p(t) = p∞
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(
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τ

)]
,(5.4)

which corresponds to the “relaxation” domain of the growth/accommodation processes.
Because the characteristic growth/accommodation or relaxation times correspond-

ing to different physical (as those corresponding to the strain τσ and stress τε re-
laxation, resp. (23a, b) or biophysical (e.g. as those corresponding to the head
and lungs growth, resp. of a child) parameters are different, it results that during
the auto-catalytic growth/accommodation – according to relations (3) – we have:
ln p1

p01
= t

τ1
= τ2

τ1
ln p2

p02
, and:

p1
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=

(
p2

po2

)ν

, with : ν =
τ2

τ1
∈ R(5.5)

i.e. the auto-catalytic growth leads to some specific (fractal) power laws between the
different parameters p1, p2 of the growing system.

Conclusions

The accomplished analysis points out the total interdependence of Physics, Geom-
etry and Optimization theory, starting with the definitions of the main notions of
Physics and Geometry, as: a) geodesics, b) space coordinates, c) true values of physi-
cal parameters, etc., as well as the strong dependence of these notions on the features
of the specific existing physical interactions.
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One finds also the common features of Geometry and Physics, related to the
modern theory of complexity, as those referring to the: (i) power laws and fractals,
particularly, (ii) growth theory and equations, (iii) symmetries in the different specific
physical spaces, etc.

Because all these features are related (via physical interactions) also to time evo-
lutions, one finds that the Geometry problems met in Physics are essentially Dynamic
Geometry problems.
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