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Abstract. In this paper we consider some of the consequences of the
action of the symmetric group of degree n on the set of all block codes
of length n over a finite field. After that we study how to compute a
permutation between two equivalent codes, with respect to this action,
using a non-fully discriminant signature under some conditions.
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1 Introduction

This work deals with the action of the symmetric group of degree n on the set of
all codes of length n over a finite field. This action defines an equivalence relation
between two codes of length n, which is used to classify codes in equivalence classes.
This equivalence relation takes linear code onto linear code and preserves length,
cardinality, dimension, minimum distance and other parameters. The core of this
work is concerned with establishing that under certain conditions the permutation
between two codes can be computed. Here is a short guide to the contents of this
paper. The second and third sections give a concise introduction of the Theory of
error correcting codes and some consequences of the action of the symmetric group
on the set of codes. The results quoted in this section are well-known and they are
re-obtained by using properties of equivalence relations and bijections. In section 4 we
recall the notion of signature due to N. Sendrier [5, 6] and establish that under certain
conditions, when the signature is not fully discriminant, the permutation between two
codes can be computed.

2 Generalities and notations

Let Fq be the finite field of q elements and n be a positive integer. We consider the
n-dimensional vector space Fn

q over Fq (The direct product Fn
q of n copies of Fq).

The elements of Fn
q will be called words or vectors. The Hamming distance d(x, y)
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between two words x = (x1, x2, ..., xn) and y = (y1, y2, ...yn) is the number of positions
in which they differ. The weight of a word x is defined to be d(x, (0, 0, ..., 0)). A code
C of length n over Fq is a nonempty subset of Fn

q . Elements of a code are called
codewords. C is called a linear code if it is a vector subspace of Fn

q . The minimum
distance of a code C is the number d(C) = min {d(x, y) : x, y ∈ C and x ̸= y}. The

weight enumerator of a code C is the polynomial WC(X) =
i=n∑
i=0

AiX
i, where Ai is the

number of codewords of weight i.

3 The action of the symmetric group Sn

Let Sn be the symmetric group of degree n, that is the set of all permutations of the
set {1, 2, 3, ..., n} equipped with the operation of composition, and let C(n, q) denote
the set of all codes of length n over Fq. The group Sn acts on the set C(n, q) via the
mapping

Sn × C(n, q) → C(n, q), (σ,C) 7→ σ(C),

where σ(C) =
{
σ(x) = (xσ(1), xσ(2), ..., xσ(n)) |x = (x1, x2, ..., xn) ∈ C

}
Under these considerations, if C ∈ C(n, q), the orbit of C under Sn, denoted by

O(C), is the set O(C) = {σ(C) |σ ∈ Sn }.

Definition 3.1. Two codes C and D of the same length n are said to be equivalent
if they belong to the same orbit. i.e. if there exists a permutation σ ∈ Sn such that
σ(C) = D.

Definition 3.2. The permutation group of a code C of length n, denoted by Perm(C),
is the subgroup of all the elements σ ∈ Sn such that σ(C) = C.

Proposition 3.1. Let C be a code of length n over Fq. The number of equivalent

codes to C is
n!

|Perm(C)|
.

Proof. Denote by Sn�Perm(C) the set of all left cosets of Sn with respect to Perm(C).
Let us consider the mapping

f : O(C) −→ Sn�Perm(C) defined by σ(C) 7→ σPerm(C)
f is one-to-one and onto, therefore the sets O(C) and Sn�Perm(C) have the

same cardinality |O(C)| = |Sn�Perm(C)| = n!

|Perm(C)|
. �

If the codes C and D are equivalents, what is the number of permutations σ ∈ Sn

such that σ(C) = D? The next Proposition gives the answer of this question.

Proposition 3.2. Let C be a code of length n. The number of permutations in Sn

that produce the same equivalent code to C is |Perm(C)|.

Proof. On Sn let us define the equivalence relation : σ ∼ π if and only if σ(C) = π(C)
This means that the two permutations define the same equivalent code to C.

Denote by [σ] the equivalence class of σ modulo the relation ∼. Consider the mapping
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g : Perm(C) −→ [σ] defined by π 7−→ σπ−1. It is clear that g is one-to-one. It remains
to show that it is also onto.

Let τ ∈ [σ], we have τ(C) = σ(C), which means that τ−1σ(C) = C, so τ−1σ ∈
Perm(C). Finally g(τ−1σ) = σ(τ−1σ)−1 = σσ−1τ = σ. As g is bijective we have
|[σ]| = |Perm(C)| which completes the proof. �

4 Determination of the equivalence of two codes

In this section we recall the notion of signature due to N. Sendrier and we study a
case when the signature is not fully discriminant.

Let C be a code of length n and J ⊂ {1, 2, 3, ..., n}, then the code C punctured
in J is the code CJ which consists of all elements (x1, x2, ..., xn) ∈ C, where the
coordinates xi indexed by J are replaced by zeros. If J = {i} we will write Ci instead
of C{i}. we can easily see that if σ ∈ Sn, then σ(CJ) = σ(C)σ(J).

As in section 3, let C(n, q) denote the set of all codes of length n over Fq and let
C(q) =

∪
n≥1

C(n, q) to be the set of all codes over Fq.

Definition 4.1. Let E be a nonempty set. An invariant over E is a mapping

ν : C(q) −→ E

such that for all σ ∈ Sn and all C ∈ C(q) we have ν(σ(C)) = ν(C).

For instance the length, the cardinality or the minimum distance are invariants
over the integers. The weight enumerator is an invariant over the polynomials with
integer coefficients.

Definition 4.2. Let E to be a nonempty set. A signature over E is a mapping

S : C(q)× {1, 2, 3, ..., n} −→ E

such that for all σ ∈ Sn and all (C, i) ∈ C(q) × {1, 2, 3, ..., n}, the following equality
holds S(C, i) = S(σ(C), σ(i)).

For instance, if ν is an invariant then (C, i) −→ ν(Ci) is a signature.
A signature S is said to be fully discriminant for C if for all i and j distinct in

{1, 2, ..., 3} ,we have S(C, i) ̸= S(C, j).
The question we address here is to compute the permutation σ ∈ Sn which maps

a given code C to an equivalent code D = σ(C).
If D = σ(C) and if S is fully discriminant for C, then σ will be unique and, for

all i ∈ {1, 2, ..., n}, there exits a unique element j ∈ {1, 2, ..., n} such that S(C, i) =
S(D, j), and we have σ(i) = j. We can thus obtain the permutation σ. In the
remainder of this section we will restrict our attention to determine the permutation
σ, where the signature is not fully discriminant in a particular case.

From now on, let C and D be two equivalent codes of length n such that σ(C) = D
for a permutation σ ∈ Sn. Let S to be a signature defined by

(4.1) S(C, i) = ν(Ci),
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where ν is an invariant.
Suppose also that S satisfies the following condition:
There exist exactly s elements i1, i2, ..., is ∈ {1, 2, ..., n}, 2 ≤ s ≤ n− 2 such that:

(4.2)

{
S(C, i1) = S(C, i2) = ... = S(C, is), and
S(C, i) ̸= S(C, j) if i ̸= j both in {1, 2, ..., n} \ {i1, i2, ..., is}.

Proposition 4.1. If the condition (4.2) holds for a signature S, then the set {i1, i2, ..., is}
is stable under the action of Perm(C) the permutation group of C.

Proof. For a permutation σ ∈ Perm(C) and an element ik ∈ {i1, i2, ..., is}, we have
S(σ(C), σ(ik)) = S(C, ik) because S is a signature, and we have S(σ(C), σ(ik)) =
S(C, σ(ik)) because σ ∈ Perm(C), from the two equations above, we see that S(C, σ(ik)) =
S(C, ik). Because of the condition (4.2), we conclude that σ(ik) ∈ {i1, i2, ..., is} which
means that the set {i1, i2, ..., is} is stable under the action of Perm(C). �

Proposition 4.2. If D = σ(C) and the condition (4.2) holds for the triple (S,C, {i1,
i2, ..., is}), then it also holds for the triple (S,D, {σ(i1), σ(i2), ..., σ(is)}).

Proof. If σ(ik) and σ(il) are distinct, then

S(D,σ(ik)) = S(σ(C), σ(ik)) by definition of D

= S(C, ik) S is a signature

= S(C, il) from condition (4.2)

= S(σ(C), σ(il)) since S is a signature

= S(D,σ(il)) by the definition of D.

If i and j are distinct in{1, 2, ..., n} \ {σ(i1), σ(i2), ..., σ(is)}, then there exist a and b
distinct in {1, 2, ..., n} \ {i1, i2, ..., is} such that σ(a) = i and σ(b) = j. By (4.2), we
have S(D, i) = S(σ(C), σ(a)) = S(C, a) ̸= S(C, b) = S(σ(C), σ(b)) = S(D, j). �

Under the considerations of Proposition 4.2, we give below how to compute the
permutation σ, i.e. to compute σ(e) for all e ∈ {1, 2, ..., n}.

Because D = σ(C) we have

(4.3) {S(C, e) : e ∈ {1, 2, ..., n}} = {S(D, t) : t ∈ {1, 2, ..., n}}

Let i be an element in {1, 2, ..., n} \ {i1, i2, ..., is}. from the equality (4.3) we can
find an element j ∈ {1, 2, ..., n} \ {σ(i1), σ(i2), ..., σ(is)} such that S(σ(C), σ(i)) =
S(C, i) = S(D, j). Therefore σ(i) = j.

Now fix i in {1, 2, ..., n}\{i1, i2, ..., is} with σ(i) = j as above. In order to compute
σ(i1), σ(i2), ..., σ(is) we define the mapping

ΦC : {i1, i2, ..., is} −→ E by ΦC(α) = ν(C{i,α}),
where ν is the invariant over E defined by the condition (4.1) and C{i,α} is the code
C punctured in the positions i and α.

Proposition 4.3. Under the conditions of Proposition 4.2, if the mapping ΦC is
injective, then the images σ(i1), σ(i2), ..., σ(is) are completely determined.
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Proof. First we can see that is easy to show that the mapping ΦD, defined for D and
j = σ(i) in the same way as ΦC , is also injective if ΦC it is. Because D = σ(C) we
have the equality

ΦC {i1, i2, ..., is} = ΦD {σ(i1), σ(i2), ..., σ(is)} ,

so for an arbitrary element α ∈ {i1, i2, ..., is}, there exists some element β in {σ(i1),
σ(i2), ..., σ(is)} such that ΦC(α) = ΦD(β), and because

ΦC(α) = ν(C{i,α}) = ν(σ(C)σ({i,α})) = ν(D{j,σ(α)}) = ΦD(σ(α))

we have ΦD(σ(α)) = ΦD(β).And therefore we obtain σ(α) = β. �

Example 4.3. We consider, over F2, the codes

C = {10010, 10100, 10001, 01010, 00001} and D = {01001, 00101, 10001, 01010, 10000}
and as invariant we will take the weight enumerator polynomial. We get for C,

C1 = {00010, 00100, 00001, 01010}

C2 = {10010, 10100, 10001, 00010, 00001}

C3 = {10010, 10000, 10001, 01010, 00001}

C4 = {10000, 10100, 10001, 01000, 00001}

C5 = {10010, 10100, 10000, 01010, 00000}

, and



S(C, 1) = WC1(X) = 3X +X2

S(C, 2) = WC2(X) = 2X + 3X2

S(C, 3) = WC3(X) = 2X + 3X2

S(C, 4) = WC4(X) = 3X + 2X2

S(C, 5) = WC5(X) = 1 +X + 3X2.

For this example, we have s = 2, and {i1, i2} = {2, 3}. Now for D we get in the same
way,

D1 = {01001, 00101, 00001, 01010, 00000}

D2 = {00001, 00101, 10001, 00010, 10000}

D3 = {01001, 00001, 10001, 01010, 10000}

D4 = {01001, 00101, 10001, 01000, 10000}

D5 = {01000, 00100, 10000, 01010}

, and



S(D, 1) = WD1(X) = 1 +X + 3X2

S(D, 2) = WD2(X) = 3X + 2X2

S(D, 3) = WD3(X) = 2X + 3X2

S(D, 4) = WD4(X) = 2X + 3X2

S(D, 5) = WD5(X) = 3X +X2,

so we have σ{i1, i2} = σ{2, 3} = {3, 4}. The system of equalities S(C, 1) = S(D, 5)
S(C, 4) = S(D, 2)
S(C, 5) = S(D, 1)

gives σ(1) = 5, σ(4) = 2 and σ(5) = 1. If we choose i = 5 (then j = 1), we shall
obtain 

ΦC(2) = WC{5,2} = 1 + 2X + 2X2

ΦC(3) = WC{5,3} = 1 +X + 2X2

ΦD(3) = WD{1,3} = 1 +X + 2X2

ΦD(4) = WD{1,4} = 1 + 2X + 2X2.

The mappings ΦC and ΦD are injective, and therefore we get σ(2) = 4 and σ(3) = 3.

Thus the permutation is σ =

(
1 2 3 4 5
5 4 3 2 1

)
.



On the action of the symmetric group 65

5 Conclusions

The purpose of this paper was to study some of the consequences of the action of the
symmetric group of degree n on the set of all block codes of length n over a finite
field, and how to compute a permutation between two equivalent codes, with respect
to this action, using a non-fully discriminant signature under some conditions.
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Rocquencourt, March 2002.

Author’s address:

Lahcene Ladjelat
University of M’Sila 28000, Department of Mathematics,
P.O.Box 166, Ichbilia 28105 M’Sila, Algeria.
E-mail: ladjelat lahcene@yahoo.fr


