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Abstract. Using the geometrical methods of the Hamiltonian mechanics
and appropriate numerical methods we will make a study of the dynamics
for two of the mathematical models of the evolution of epidemics: the
Bailey 2D model and the classical Kermack-McKendrick 3D model. This
three dimensional dynamical system is also known as the SIR model, where
S is the number of individuals suspected of being infected, I is the number
of infected individuals and R denotes the number of individuals removed.
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1 Introduction

In many branches of physics, engineering and applied mathematics we find systems
described by coupled ordinary differential equations. The numerical methods are
widely used for the study of complicated temporal behavior of dynamical systems, in
order to approximate different types of invariants sets or invariant manifolds and also
to extract statistical information on the dynamical behavior in the computation of
natural invariant measures or almost invariants sets.

In 1927, Kermack and McKendrick ([6]) developed infectious disease models to
study the Great Plague of London for the period of 1665-1666. These models served
as the foundation of theoretical models in epidemiology ([2], [16]). The population
is divided into three categories as susceptible, infected, and recovered ([6]) and the
model is called the SIR model.

First of all, this study is a tribute to my best friend and colleague, Romulus
Militaru (26.08.1968-20.04.2015). Secondly, this paper is a natural continuation of
the work started together several years ago and materialized in papers [5], [8, 11].
Unfortunately, this collaboration could not be completed to the desired parameters.

The present study is interplay between dynamical systems geometrical theory and
computational calculus of dynamical systems, knowing that the theory provides a
framework for interpreting numerical observations and foundations for efficient nu-
merical algorithms. Therefore, this paper aims to present our results obtained in the
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study of the main sizes of the mathematical models of the multispecies interactions
which are important in determining long-time dynamics, based on the application of
various notions from the theory of dynamical systems to the numerical approxima-
tion of initial value problems over long-time intervals. The viewpoint is geometric
and we also compute and characterize objects of dynamical significance, in order
to understanding the mathematical properties observed in numerical computation for
dynamical models arising in many important theoretical and practical situations from
mathematics, science and engineering.

In first sections we present shortly the Hamiltonian structure for Bailey model
of the evolution of epidemics ([6], [6], [8, 11], [13]) and for the classical Kermack-
McKendrick model of the evolution of epidemics ([6], [8, 11], [13]). Also, we will
study the main size for dynamical systems associated to this mathematical models
and relationship between this in the geometric framework Hamilton-Poisson structures
([8, 11]). The analysis of the systems may be used, in particular, to study the dynamics
of many others models from ecology, molecular biology, ecosystems, and chemical
systems. For example a model for oxygen depletion in a system of sewage could be
developed ([16]).

We will present two very important examples, both represent so called variational

dynamical systems, that is dynamical systems which are described by a system of
ordinary differential equations which can be written as the Euler-Lagrange equations
associated to a Lagrangian L ([12, 14]),

d

dt

(

∂L

∂yi

)

−
∂L

∂xi
= 0 .

2 The Bailey model for the evolution of epidemics

In Bailey model for the evolution of epidemics ([2]) are considered two classes of hosts:
individuals suspected of being infected, whose number is denoted by x and individuals
infected carriers, whose number we denote by y. Assume that the latency and average
removal rate is zero and then remain carriers infected individuals during the entire
epidemic, with no death, healing and immunity. It is proposed that, in unit time,
increasing the number of individuals suspected of being infected to be proportional
to the product of the number of those infected them. These facts lead us to the
evolutionary dynamical system given by ([2], [13])

(2.1)

{

ẋ = −kxy

ẏ = kxy
, k > 0.

The model is suitable for diseases known animal and plant populations and also
corresponds quite well the characteristics of small populations spread runny noses,
dark, people such as students of a class team.

First of all, let us remark that we have a conservation law, x+y = n. That means
that n, the total number of individuals of a population, does not change during
the evolution of this epidemic. The equations (2.1) can be write as Euler-Lagrange
equations, where the Lagrangian L is

L =
1

2

(

ln y

x
ẋ−

lnx

y
ẏ

)

+ k(x+ y)
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and the corresponding Hamiltonian H is

H =
∂L

∂ẋ
ẋ+

∂L

∂ẏ
ẏ − L = −k(x+ y) .

This dynamical system has also a Hamilton-Poisson realization

(ẋ1, ẋ2)
t
= J∇H ,

where x1 = x, x2 = y, H = −k(x+ y) and J =

(

0 xy

−xy 0

)

.

The Bailey model for the evolution of epidemics is a simplified particular case of
the classical Kermack-McKendrick model.

3 The classical Kermack-McKendrick model of evo-

lution of epidemics

The classical model of evolution of epidemics was formulated by Kermack (1927)
and McKendrick (1932) as follows ([6]). Let us denote the numerical size of the
population with n and let us divide it into three classes: the number of individuals
suspected of x , the number of individuals infected carriers y , and the number of
isolate infected individuals (or removals) z. This model is also called SIR model of
epidemics evolution.

For simplicity, we take zero latency period, that all individuals are simultaneously
infected carriers that infect those suspected of being infected. Considering the pre-
vious example we note the constant rate k1 of disease transmission. Changing the
size of infected carriers depends on the rate k1 and also depend on k2, the rate that
carriers are isolated. In this way, we have the system ([6], [13]):

(3.1)







ẋ = −k1xy

ẏ = k1xy − k2y

ż = k2y

, k1, k2 > 0.

Let us note that x + y + z = n, i.e., the number of individuals of the population
does not change. This conservation law show us that this SIR model of evolution of
epidemics is without demography. The evolution of a dynamic epidemic begins with
a large population which is composed of a majority of individuals suspected of being
infected and in a small number of infected individuals. Initial number of isolated
infected people is considered to be zero. So, we can consider the subsystem ([13]):

(3.2)

{

ẋ = −k1xy

ẏ = k1xy − k2y
, k1, k2 > 0.

The Lagrange and Hamilton functions of the system (3.2) are

L = 1

2

(

ln y

x
ẋ−

ln x
y
ẏ
)

+ k1(x+ y)− k2 lnx ,

H = −k1(x+ y) + k2 lnx ,
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and so, we have a new conservation law of (3.2),

H = EL = −k1(x+ y) + k2 lnx .

If we get back to the Kermack-McKendrick model (3.1), then we have that the La-
grangian whose Euler-Lagrange equations are really (3.1) is L̄ = L + 1

2
(ż − k1y)

2 ,
where L is the Lagrangian of the subsystem (3.2).

4 Numerical study

Between dynamical systems theory and computation analysis of dynamical systems
there is a strong interplay. The theory provides a framework for interpreting numerical
observations and foundations for numerical algorithms implemented in practice by the
mean of a programming language ([1], [3], [7], [15], [17]).

In this section, constructing a Matlab-based numerical code, we are looking to
approximate and characterize different types of invariants and also to extract infor-
mations on the dynamical behavior and perform comparisons for both different initial
conditions associated to the considered problem and for different values of the param-
eters involved in the analysed problems. In the first stage we focus on the numerical
solving of the initial value problem given by the ordinary differential equations with a
prescribed initial conditions, by appropriate numerical methods, such as Runge-Kutta
methods. For the 2D case we use a fourth order Runge-Kutta method ([4]), and for
the 3D case we used a fifth order Runge-Kutta method ([18]).

Thus we obtain the numerical solution represented by the approximate values of
the solution function for a discrete set of data points. In the second stage, using this
approach we perform a numerical analysis of the conservation laws and main sizes, like
the Lagrangian and the Hamiltonian. Belonging to this type of systems, dynamical
systems are concerned primarily with making qualitative study about the behavior
of systems which evolve in time given knowledge about the initial state of the system
itself.

4.1 The Bailey model
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Figure 1: Graphical profile of the numerical solutions x-individuals suspected being infected
and y-individuals infected, for k = 1.5, initial conditions x0 = 0.55, y0 = 0.55.
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Figure 2: Graphical profile of the numerical solutions x-individuals suspected being infected
and y-individuals infected, for k = 0.15, initial conditions x0 = 0.55, y0 = 0.55.
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Figure 3: The phase space profile for k = 0.15, k = 1.5.
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Figure 4: The profile of the Hamiltonian H(t), for k = 0.15, k = 1.5 and initial conditions
x0 = 0.55, y0 = 0.55.
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Figure 5: The profile of H(x, y) for k = 0.15, k = 1.5 and initial conditions x0 = 0.55,
y0 = 0.55.
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Figure 6: The profile of Lagrangian L(t) for k = 0.15, k = 1.5 and initial conditions
x0 = 0.55, y0 = 0.55.
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Figure 7: The profile of L(x, y) for k = 0.15, k = 1.5 and initial conditions x0 = 0.55,
y0 = 0.55.
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4.2 The classical Kermack-McKendrick model
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Figure 8: Graphical profile of the numerical solutions x-individuals suspected being infected
and y-individuals infected carriers, for k1 = 0.15, k2 = 0.05, k1 = 0.15, k2 = 0.35, k1 = 1.15,
k2 = 3.05, k1 = 2.15, k2 = 1.05 and initial conditions x0 = 0.55, y0 = 0.55.
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Figure 9: The phase space profile for k1 = 0.15, k2 = 0.35, k1 = 1.15, k2 = 3.05.

4.3 Final remarks

For the Bailey model of epidemics, in the case when the rate k of disease transmission
is smaller than 1, we can observe a rapid stabilization of the two main sizes x and y,
while in the case when k is greater than 1 the variation is more pronounced (Figure
1 and Figure 2).
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Figure 10: The profile of the Hamiltonian H(t), for k1 = 0.15, k2 = 0.35, k1 = 1.81,
k2 = 1.5.
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Figure 11: The profile of the Hamiltonian H(x, y) for k1 = 1.81, k2 = 1.5, with initial
conditions x0 = 0.55, y0 = 0.55.
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Figure 12: The profile of the Lagrangian L(t) for k1 = 0.15, k2 = 0.35, k1 = 1.15, k2 = 3.05,
with initial conditions x0 = 0.55, y0 = 0.55.
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In the case of Kermack-McKendrick classical model we remark that in the correspond-
ing case when the ratio k1

k2

is greater than 1 the stabilization of the two main sizes x
and y became to appear after relative long interval, which contains a peak of infected
population y. For a smaller ratio k1

k2

the infected population y dramatically decreases
(see Figure 8), in agreement with [16].

5 Conclusions

We perform a computational analysis of these mathematical models, in order to ap-
proximate different types of invariants and main sizes, through numerical codes based
on appropriate numerical calculus techniques for numerical integration of these type
problems. Thus, starting from certain initial value problems associated to our mod-
els, we obtain the numerical solution and we develop the numerical characterization
of the main sizes previously analyzed from the geometrical point of view. Thus we
are able to make different comparisons between these studied quantities for different
values of parameters, for different initial conditions etc.
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