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Abstract. Estimating the risk that a certain river flow will exceed a given
threshold in the short term is an important problem in statistical hydrol-
ogy. Using two stochastic processes with jumps, the author and Bensalma
were able to derive formulas to estimate that risk. In an application
to the Delaware River, both models proposed by the authors performed
quite well. However, in order to obtain even more accurate estimates of
the probability of threshold exceedance, exogenous variables, such as the
amount of precipitation observed and forecast, should be incorporated into
the models. One possible way to determine how to incorporate exogenous
variables is to make use of linear regression. Using this technique, much
more precise estimates are obtained.
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1 Introduction

A basic problem in statistical hydrology is to forecast the flow of a river for the
next day or the next few days. These forecasts are important, in particular, for dam
managers who must decide whether to keep the water to produce electricity, or to
release some water in order to avoid possible flooding. Examples of real hydrographs
are presented in Fig. 1.

In previous papers, the author and Bensalma used a filtered Poisson process (see
[7]) to model the flow X(t) of a river at time t:

(1.1) X(t) =

N(t)∑
n=1

Yn e
−(t−τn)/c (X(t) = 0 if N(t) = 0),

where the τn’s are the arrival times of the events of the Poisson process N(t). The
times Tn = τn − τn−1 between the successive events are i.i.d. exponential random
variables. Moreover, Y1, Y2, . . . are i.i.d. random variables, and are also independent
of N(t). Here, the Yn’s are taken to be exponentially distributed. See Fig. 2. This
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Figure 1: Examples of real hydrographs.

Figure 2: Example of a trajectory of a filtered Poisson process having the response
function defined in (1.1).

type of stochastic process has also been used, in particular, by Kelman [2], Koch [3]
and Konecny [4].

Next, in mathematical finance, diffusion processes with jumps have been widely
used to model asset prices. A diffusion process with jumps XD(t) is defined by (see
[1])

(1.2) XD(t) = D(t) +

N(t)∑
n=1

Yn for t ≥ 0,

in which D(t) is a diffusion process and N(t) is a Poisson process (independent of
D(t)), and where the Yn’s are defined as above. Thus, a compound Poisson process is
added to a diffusion process. Fig. 3 presents an example of a (simplified) trajectory
of a diffusion process with (positive) jumps.

Now, another important problem in statistical hydrology consists in estimating
the probability that a certain flow will exceed a given threshold, either in the short
or long term. This probability of threshold exceedance is needed, in particular, in
hydrological risk analysis and in engineering design. In the case of the long-term
probability of exceedance, people often estimate such a probability from historical
data, making using of the concept of return period. However, according to some
authors, this concept of return period must be reconsidered because of climate change
(see [8]).



78 M. Lefebvre

Figure 3: Simplified example of a trajectory of a diffusion process with positive jumps.

In Lefebvre and Bensalma [5], the objective was to estimate the short-term prob-
ability of threshold exceedance, namely, the probability of exceedance on the day fol-
lowing the current observed flow. They obtained estimates based on the two stochas-
tic processes with jumps defined above. It turned out that the jump part of these
processes was essential to obtain accurate forecasts.

2 Probability of exceeding a given threshold

2.1 Filtered Poisson process

In Lefebvre and Bensalma [5], the following formula for the value of the river flow at
time t + 1, given the observed flow at time t, based on the filtered Poisson process
X(t), was derived:

(2.1) X(t+ 1) | {X(t) = x} = xe−1/c +

N(t+1)∑
n=N(t+)

Yn e
−(t+1−τn)/c.

Next, the authors obtained an approximate formula for

(2.2) p(x, y) := P [X(t+ 1) ≥ x+ y | X(t) = x].

They wanted to estimate this probability when x is large, so that if y too is large then
there is a high risk of flooding. They found that

p(x, y) ≃ λe−λ

∫ 1

0

exp
{
−µ

[
x
(
1− e−1/c

)
+ y

]
e(1−u)/c

}
du.(2.3)

The various parameters that appear in the previous formula will be estimated in
Section 3 in the case of the Delaware River. Moreover, the probabilities derived from
Eq. (2.3) will be compared with the corresponding frequencies observed over an 11-
year period, when the current flow x is (approximately) equal 10000 cubic feet per
second. We fixed the value of x because, in particular, the parameter λ (the rate of
the Poisson process) is likely to depend on x
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2.2 Wiener process with jumps

Next, assume that D(t) is a Wiener process with (negative) drift parameter θ and
dispersion parameter σ2. We can write that D(t) | D(0) has a Gaussian distribution
with mean D(0) + θ t and variance σ2 t.

Let

(2.4) pD(x, y) := P [XD(t+ 1) ≥ x+ y | XD(t) = x].

We find that

(2.5) pD(x, y) = e−λQ

(
y − θ

σ

)
+ λe−λ e−µy

∫ ∞

−∞
eµz

1√
2πσ

exp

{
− (z − θ)2

2σ2

}
dz,

where Q(z) := P [N(0, 1) > z]. Contrary to p(x, y), this expression for pD(x, y) does
not depend (explicitly) on x. Remember, however, that we assumed that the various
model parameters depend on x.

2.3 Linear regression

Finally, for comparison purposes, the probability p(x, y) will also be estimated by
making use of linear regression. That is, we assume that

(2.6) XR(t+ 1) = aXR(t) + b+ ϵ,

where ϵ ∼ N(0, σ2). We can state that XR(t) is an autoregressive process of order 1,
which is denoted by AR(1). It is a simple matter to obtain the following formula for
the probability p(x, y) based on this model:

(2.7) pR(x, y) = P [N(ax+ b, σ2) ≥ x+ y] = Q

(
(1− a)x+ y − b

σ

)
.

3 Implementation of the various models

The three models defined in Section 2 will be used to estimate the probability that
the flow of the Delaware River, which is an important river located in the United
States, will increase by at least y cubic feet per second in one day, for various values
of y, when its current value is equal to x.

The observed daily values of the flow of the Delaware River can be found on
the Web site of the U.S. Geological Survey (http://nwis.waterdata.usgs.gov). The
Montague station (no. 01438500) was chosen. The data set consists of the observed
flow values over an 11-year period: from 23 January 2003 to 22 January 2014. Once
the parameters have been estimated, the point estimates of the probabilities p(x, y),
pD(x, y) and pR(x, y) will be calculated and compared with the observed frequencies
of the events considered in this paper.

As we mentioned above, we chose the value x = 10000. This flow value is already
quite high. Moreover, if the flow increases, for instance, by (at least) 5000 cubic feet
per second in one day, then the risk of flooding could be high. We could not choose a
value of x much greater than 10000, because we need enough observations to obtain
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reliable frequencies. In fact, we did not find enough observations for which x was
exactly equal to 10000 ft3/s in the data set. For this reason, we decided to include
the 106 observations that belong to the interval [10000, 11000).

Lefebvre and Bensalma [5] obtained the following point estimates:

p̂(10000, y) ≃ 0.264e−0.264

×
∫ 1

0

exp

{
−
(

1

8465

) [
10000

(
1− e−1/7.72

)
+ y

]
e(1−u)/7.72

}
du,(3.1)

p̂D(10000, y) ≃ e−0.264Q

(
y + 1269.1

662.6

)
+ 0.264e−0.264 e−(1/7933)y

×
∫ ∞

−∞
e(1/7933)z

1√
2π (662.6)

exp

{
− (z + 1269.1)2

2(662.6)2

}
dz(3.2)

and

(3.3) p̂R(10000, y) = Q

(
(−1.61)10000 + y + 16031

6180.49

)
= Q

(
y − 69

6180.49

)
.

3.1 Numerical results

The various values derived from the previous formulas when y = 5000, 10000 and
20000 are presented in Table 1. The corresponding observed frequencies in the data
set are also given in the table. Looking at the numbers in Table 1, we must conclude

Table 1: Numerical values of the various point estimates and corresponding observed
frequencies

y p̂(10000, y) p̂D(10000, y) p̂R(10000, y) Frequency
5000 0.0926 0.0923 0.2125 0.0943
10000 0.0493 0.0492 0.0540 0.0472
20000 0.0140 0.0140 0.0006 0.0189

that p̂(10000, y) and p̂D(10000, y) are practically equal, which is rather surprising
because the underlying models are quite different. We can also conclude that both
p̂(10000, y) and p̂D(10000, y) are good approximations to the corresponding frequen-
cies. However, the autoregressive model was unable to provide accurate point esti-
mates of the probabilities considered (if we compare these point estimates with the
corresponding frequencies).

Remember that to compute the frequencies, all observed flow values that be-
long to the interval [10000, 11000) were used. Therefore, if we could have considered
only the observations that are exactly equal to 10000, the estimates p̂(10000, y) and
p̂D(10000, y) would probably have been even better.
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4 Obtaining more accurate estimates

In order to improve the results presented in the previous section, one should try
to incorporate exogenous variables into the models. Probably the most important
such exogenous variable is precipitation. The problem is to determine exactly how to
incorporate the amount of precipitation, observed or forecast, into a purely stochastic
model. A possible answer is to appeal to linear regression to do so. The technique
will be illustrated with the filtered Poisson process.

Let P (t) be the amount of precipitation (in inches) observed at time t and P (t+1)
be the amount of precipitation forecast for time t + 1. By making use of linear
regression, we find that

X(t+ 1) = −364 + 0.965X(t) + 4102P (t) + 1224P (t+ 1).

Based on this equation, we can estimate the probability p(10000, y) more accurately,
as can be seen in the next tables.

Table 2: Values of p̂(10000, 5000, P (t), P (t + 1)), compared with p̂(10000, 5000) =
0.0926 and with the frequency 0.0943

P (t) P (t+ 1) p̂(10000, 5000, P (t), P (t+ 1))
0 0 0.0859
0 1 0.1007
1 0 0.1467
1 1 0.1721

Table 3: Values of p̂(10000, 10000, P (t), P (t + 1)), compared with p̂(10000, 10000) =
0.0493 and with the frequency 0.0472

P (t) P (t+ 1) p̂(10000, 10000, P (t), P (t+ 1))
0 0 0.0447
0 1 0.0525
1 0 0.0764
1 1 0.0896

Looking at these results, we can conclude that our estimates of the probability
p(10000, y) are much more precise when we take precipitation into account. In partic-
ular, we see that p̂(10000, y) is much higher when both P (t) and P (t+1) are positive.
We also see that the amount of precipitation observed at time t increases the value
of p̂(10000, y) more than the same amount of precipitation forecast for time t+ 1.

Finally, we can consider the variable P (t) as deterministic. However, P (t + 1)
is actually random. Indeed, the amount of precipitation forecast for time t + 1 can
obviously be wrong. Let us write

P (t+ 1) = P̂ (t+ 1) + E,
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Table 4: Values of p̂(10000, 20000, P (t), P (t + 1)), compared with p̂(10000, 20000) =
0.0140 and with the frequency 0.0189

P (t) P (t+ 1) p̂(10000, 20000, P (t), P (t+ 1))
0 0 0.0122
0 1 0.0143
1 0 0.0207
1 1 0.0243

where P̂ (t+ 1) is the actual forecast, and E is the forecasting error.
The author and Guilbault [6] worked on the problem of finding a suitable statistical

distribution for the forecasting errors in the case of precipitation. Based on their work,
we can state that, given that it will be positive, E has a certain lognormal distribution.
This distribution can be used to obtain an explicit expression for p̂(x, y), given that
E > 0.

It is particularly important to use this expression to estimate the risk that the
river flow will exceed a given threshold on the next day, even if P̂ (t+1) is equal to 0
or is very small. Indeed, it is possible that the actual amount of precipitation will be
much larger than the forecast P̂ (t + 1). Taking the random nature of P̂ (t + 1) into
account, one can be more prudent in estimating the risk of flooding.

5 Concluding remarks

In this note, we saw how the estimate of the probability that a river flow will exceed
a given threshold can be made more precise. We can obtain even more accuracy if we
take into account the forecasting error for the amount of precipitation at time t+ 1.
Finally, we could add other exogenous variables to the stochastic models, such as the
maximum and minimum temperatures observed at time t, and forecast for t+ 1.
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