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Abstract. Motivated by the idea which has been introduced by Haiour
and Boulaaras’ work in [11], we provide a maximum norm analysis of a
theta scheme combined with finite element Schwarz alternating method
for a class of parabolic equation on two overlapping subdomains with
nonmatching grids. We consider a domain which is the union of two over-
lapping subdomains where each subdomain has its own independently
generated grid. The two meshes being mutually independent on the over-
lap region, a triangle belonging to one triangulation does not necessarily
belong to the other one. Under a stability analysis on the theta scheme
which given by our work in [4], we establish, on each subdomain, an opti-
mal asymptotic behavior between the discrete Schwarz sequence and the
asymptotic solution of parabolic differential equations.
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1 Introduction

This paper deals with the error analysis in the maximum norm, in the context of
the nonmatching grids method, of the following evolutionary equation: find u ∈
L2
(
0, T ;H1

0 (Ω)
)
∩ C2

(
0, T,H−1 (Ω)

)
solution of

(1.1)



∂u

∂t
−∆u+ αu = f in Σ,

u = 0 in Γ/Γ0,

∂u

∂η
= ϕ in Γ0, u(., 0) = u0, in Ω,
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where Σ is a set in R2 ×R defined as Σ = Ω× [0, T ] with T̈ < +∞ , where Ω is a
smooth bounded domain of R2 with boundary Γ.

The function α ∈ L∞ (Ω) is assumed to be non-negative satisfies

(1.2) α ≤ β, β > 0.

f is a regular function such that

f ∈ L2
(
0, T, L2 (Ω)

)
∩ C1

(
0, T,H−1 (Ω)

)
.

Let (., .)Ω be the scalar product in L2 (Ω) and (., .)Γ0
be the scalar product in

L2 (Γ0) , where Γ0 is the part of the boundary defined as

Γ0 =
{
x ∈ ∂Ω = Γ such that ∀ξ > 0, x+ ξ /∈ Ω̄

}
.

Schwarz method has been invented by Herman Amandus Schwarz in 1890. This
method has been used to solve the stationary or evolutionary boundary value problems
on domains which consists of two or more overlapping sub-domains (see [1], [11],
[20], [2]). We refer to ([1], [11]-[6]) , and the references therein for the analysis of
the Schwarz alternating method for elliptic obstacle problems and to the proceedings
of the annual domain decomposition conference beginning with [10]. For results on
maximum norm error analysis of overlapping nonmatching grids methods for elliptic
problems we refer, for example, to [5].

In [11], we studied the overlapping domain decomposition method combined with
a finite element approximation for elliptic equation related for Laplace operator ∆,
where on uniform norm of an overlapping Schwarz method on nonmatching grids has
been used, where we proved that the discretization on every subdomain converges on
uniform norm norm. Furthermore, a result of asymptotic behavior in uniform norm
has been given. In this paper, similar to that in [11], we extend the last work for evolu-
tionary equation with mixed boundary conditions, where we provide a maximum norm
analysis of a theta scheme combined with finite element Schwarz alternating method
for a linear parabolic equations on two overlapping subdomains with nonmatching
grids. We consider a domain which is the union of two overlapping subdomains where
each subdomain has its own independently generated grid. The two meshes being
mutually independent on the overlap region, a triangle belonging to one triangulation
does not necessarily belong to the other one. Under a stability analysis on the theta
scheme which given by our work in [4], we establish, on each subdomain, an opti-
mal asymptotic behavior between the discrete Schwarz sequence and the asymptotic
solution of parabolic differential equations.

The outline of the paper is as follows: In section 2, we introduce some necessary
notations, then we prove a full-discrete weak formulation of the presented problem
using the theta time scheme combined with a finite element method. In section 3
we state a continuous alternating Schwarz sequences and define their respective finite
element counterparts in the context of nonmatching overlapping grids. Section 4 is
devoted to the asymptotic behavior of the method.
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2 The discrete parabolic equation

The problem (1.1) can be reformulated into the following continuous parabolic vari-
ational equation: find u ∈ L2

(
0, T,H1

0 (Ω)
)

solution of

(2.1)



(
∂u

∂t
, v

)
+ a (u, v) = (f, v) + (ϕ, v)Γ0

,

u = 0 in Γ/Γ0,

∂u

∂η
= ϕ in Γ0,

u (x, 0) = u0 in Ω,

where a (., .) is the bilinear form defined as:

(2.2) u, v ∈ H1
0 (Ω) : a (u, u) = (∇u,∇u)− (αu, u)

2.1 The space discretization

Let Ω be decomposed into triangles and τh denotes the set of those elements, where
h > 0 is the mesh size. We assume that the family τh is regular and quasi-uniform. We
consider the usual basis of affine functions ϕi i = {1, ...,m (h)} defined by ϕi (Mj) =
δij where Mj is a vertex of the considered triangulation. We introduce the following
discrete spaces Vh of finite element

(2.3) V
(ϕ)
h =



v ∈
(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
)))

such that vh |K= P1, k ∈ τh,

vh (., 0) = vh0 in Ω,
∂vh
∂η

= πhϕ in Γ0,

vh = 0 in Γ\Γ0,


where P1 Lagrangian polynomial of degree less than or equal to 1 and πh is an

interpolation operator on Γ0.
We consider rh be the usual interpolation operator defined by

rhv =

m(h)∑
i=1

v (Mi)ϕi (x) .

2.1.1 The discrete maximum principle assumption (DMP)

We assume the matrices whose coefficients a (ϕi, ϕj) are M-matrix ([16] and [17]).
For convenience in all the sequels, C will be a generic constant independent on h.It
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can be approximated the problem (1.1) by a weakly coupled system of the following
parabolic equation v ∈ H1 (Ω)

(2.4)

(
∂u

∂t
, v

)
Ω

+ a (u, v) = (f, v)Ω + (ϕ, v)Γ0
.

We discretize in space, i.e., we approach the space H1
0 by a space discretization of

finite dimensional Vh ⊂
(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
)))

, we get the following
semi-discrete system of parabolic equation

(2.5)

(
∂uh
∂t

, vh

)
Ω

+ a (uh, vh) = (f, vh)Ω + (ϕ, vh)Γ0
.

2.2 The time discretization

Now we apply the θ-scheme in the semi-discrete approximation (2.5). Thus we have,
for any θ ∈ [0, 1] and k = 1, ..., p

(2.6)

(
ukh − u

k−1
h , vh

)
Ω

+ (∆t) a
(
uθ,kh , vh

)
=

(∆t)
[(
fθ,k, vh

)
Ω

+
(
ϕθ,k, vh

)
Γ0

]
,

where
uθ,kh = θukh + (1− θ)uk−1

h ,

(2.7) f θ,k = θfk + (1− θ) fk−1

and

(2.8) ϕ θ,k = θϕk + (1− θ)ϕk−1.

By multiplying and dividing by θ and by adding

(
uk−1
h

θ∆t
, vh

)
to both parties of

the inequalities (1.1), we get

(2.9)

(
uθ,kh
θ∆t

, vh

)
Ω

+ a
(
uθ,kh , vh

)
=

(
f θ,k +

uθ,k−1
h

θ∆t
, vh

)
Ω

+

+
(
ϕθ,k, vh

)
Γ0
, vh ∈ V (ϕ)

h .

Then, the problem (2.9) can be reformulated into the following coercive discrete
system of parabolic variational equation
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(2.10) b
(
uθ,kh , vh

)
=
(
fθ,k + µuk−1

h , vh
)

Ω
+
(
ϕθ,k, vh

)
Γ0
, vh, u

θ,k
h ∈ V (ϕ)

h ,

where

(2.11)


b
(
uθ,kh , vh

)
= µ

(
uθ,kh , vh

)
Ω

+ a
(
uθ,kh , vh

)
, vh ∈ V (ϕ)

h ,

µ =
1

θ∆t
=

p

θT
..

.

Theorem 2.1. (see [11]). Under suitable regularity of the solution of problem (1.1),
there exists a constant C independent of h such that

(2.12) ‖ζ∞h − ζ‖ ≤ Ch2 |log h| .

Lemma 2.2. (see [15]) Let w ∈ H1 (Ω) ∩ C
(
Ω̄
)

satisfies a (w, φ) + λ (w, φ) ≥ 0 or
all nonnegative φ ∈ H1 (Ω) and w ≥ 0 on Γ, then w ≥ 0 on Ω̄.

Notation 2.1. (F θ,k, ϕθ,k); (F̃ θ,k, ϕ̃θ,k) be a pair of data and ζθ,k = ∂(F θ,k, ϕθ,k); ζ̃θ,k =

∂(F̃ θ,k, ϕ̃θ,k) the corresponding solutions to (2.10) .

Proposition 2.3. Under the previous notation, we have

(2.13)
∥∥∥ζθ,kh − ζθ,k

∥∥∥
L∞(Ω)

≤ max{
(

1

β

)∥∥∥F θ,k − F̃ θ,k∥∥∥
L∞(Ω)

,
∥∥ϕθ,k − ϕ̃θ,k∥∥

L∞(Ω)
}.

Proof. First, putting

(2.14) µθ,k = max{
(

1

β

)∥∥∥F θ,k − F̃ θ,k∥∥∥
L∞(Ω)

,
∥∥ϕθ,k − ϕ̃θ,k∥∥

L∞(Γ)
},

then 

F̃ θ,k ≤ F θ,k +
∥∥∥F θ,k − F̃ θ,k∥∥∥

L∞(Ω)

≤ F θ,k +

(
λ

β

)∥∥∥F θ,k − F̃ θ,k∥∥∥
L∞(Ω)

≤ F θ,k + λmax{
(

1

β

)∥∥∥F θ,k − F̃ θ,k∥∥∥
L∞(Ω)

,
∥∥ϕθ,k − ϕ̃θ,k∥∥

L∞(Γ)

}

≤ F θ,k + λµθ,k.

So

(2.15) b
(
ζ̃θ,k, φ

)
≤ b

(
ζθ,k, φ

)
+ λ

(
µθ,k, φ

)
, for all φ ≥ 0, φ ∈ H1

0 (Ω)
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and thus
b
(
ζ̃θ,k, φ

)
≤ b

(
ζθ,k + µθ,k, φ

)
=
(
F θ,k + λµθ,k, φ

)
.

On the other hand,we have

(2.16) ζθ,k + φ− ζ̃θ,k ≥ 0 on Γ0.

So

(2.17) b(ζθ,k + φ− ζ̃θ,k ≥ 0.

By using the result of lemma 1, we get

(2.18) ζ̃θ,k + φ− ζθ,k ≥ 0 on Ω

Similarly, interchanging the roles of the couples (F θ,k, ϕθ,k) and (F̃ θ,k, ϕ̃θ,k), we get

(2.19) ζ̃θ,k + φ− ζθ,k ≥ 0 on Ω,

which completes the proof. �

Remark 2.2. Proposition 1 stays true for the discrete case.

Lemma 2.4. ([15]) Let w ∈ Vh satisfy b(wθ,k, φs) > 0 for s = 1, 2...m(h)and wθ,k ≥ 0

on Γ0.then wθ,k ≥ 0 on (Ω).

Notation 2.3. (F θ,k, ϕθ,k); (F̃ θ,k, ϕ̃θ,k) be a pair of data and ζθ,kh = ∂(F θ,k, ϕθ,k); ζ̃θ,kh =

∂(F̃ θ,k, ϕ̃θ,k) the corresponding solutions to (2.10) .

Proposition 2.5. Let DMP hold, we have

(2.20)
∥∥∥ζθ,kh − ζ̃θ,kh

∥∥∥
L∞(Ω)

≤ max{
(

1

β

)∥∥∥F θ,k − F̃ θ,k∥∥∥
L∞(Ω)

,
∥∥ϕθ,k − ϕ̃θ,k∥∥

L∞(Γ0)
}

Proof. The proof is similar to that of the continuous case. �

3 Schwarz Alternating Methods for parabolic equa-
tion

We decompose (Ω) in two overlapping smooth subdomain Ω1 and Ω2 such that Ω =
Ω1 ∪ Ω2, we denote by ∂Ωi the boundary of Ωi and Γi = ∂Ωi ∩ Ωj and assume that
the intersection of Γi and Γj ;i 6= j is empty. Let

V
(wθ,kj )

i =

 v ∈
(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
)))

such that v = wj on Γi.
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We associate with problem (2.10) the following system: find (uθ,k1 , uθ,k2 ) ∈ V θ,k1 ×
V θ,k2 solution to

(3.1)

 b1(uθ,k1 , v) = (F
θ,k

, v)Ω1 + (ϕθ,k, v)Γ01 ,

b2(uθ,k2 , v) = (F
θ,k

, v)Ω2 + (ϕθ,k, v)Γ02 ,

where

(3.2) bi(u
θ,k
i , v) =

∫
Ωi

(5uθ,k.Ovθ,k + αuθ,k.vθ,k)dx

and
uθ,ki = uθ,k/Ωi; i = 1, 2

3.1 The Continuous Schwartz Sequences

Let u0 be an initialization in C0

(
Ω
)
,i.e., continuous functions vanishing on ∂Ω such

that

(3.3) b(u0, v) = (F θ,k, v).

Starting from u0 = u0/Ω2 , we respectively define the alternating Schwarz sequences
(
un+1

1

)
on

Ω1 such that

uθ,k,n+1
1 ∈ V (uθ,k,n2 )

1 solves of

(3.4) b1(uθ,k,n+1
1 , v) = (F θ,k1 , v),

where
F θ,k1 = fθ,k + λuθ,k−1,n+1

1

and (uθ,k,n+1
2 )on Ω2 such that uθ,k,n+1

2 ∈ V (θ,k,uθ,k,n+1
1 )

2 solves

(3.5) b2(uθ,k,n+1
2 , v) = (F θ,k1 , v),

where
F θ,k1 = fθ,k + λuθ,k−1,n+1

2

Theorem 3.1. [11] The sequences (un+1
h ); (un+1

h ), n ≥ 0 produced by the Schwarz
alternating method converge geometrically to a solution u of the elliptic obstacle prob-
lem. More precisely, there exist k1, k2 ∈ (0, 1) which depend on (Ω1, γ2) and (Ω2, γ1)
such that for all n ≥ 0,

(3.6) sup
Ω1

∣∣uh − u2n+1
∣∣ ≤ δn1 δn2 sup

γ1

∣∣uh − u0
h

∣∣
and

(3.7) sup
Ω2

∣∣uh − u2n
∣∣ ≤ δn1 δn−1

2 sup
γ2

∣∣uh − u0
h

∣∣ .
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3.2 The discrete Schwartz sequences

As we have defined before, for i = 1, 2, let τhi be a standard regular and quasiuniform
finite element triangulation in Ωi;hi , being the mesh size. The two meshes being
mutually independent Ω1 ∩ Ω2 , a triangle belonging to one triangulation does not
necessarily belong to the other and for every w ∈ C (Ωi) , we set

V
(wθ,kj )

hi =

 v ∈
(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
)))

such that v = φ on Γ01 ∩ Γ02; v = πhi (w) on Γ0i,

where πhidenote an interpolation operator on Γ0i.
Now, we define the discrete counterparts of the continuous Schwarz sequences

defined in (3.4) and (3.5) .
Indeed, let u0h be the discrete analog of u0, defined in (3.3), we respectively, define

by uθ,k,n+1
1h ∈ V (uθ,k,n2h )

h1 such that

(3.8) b1(uθ,k,n+1
1h , v) = (F θ,k(uθ,k,n+1

1h ), v),∀v ∈ V (ϕ)
h ; n ≥ 0

and uθ,k,n+1
2h ∈ V (uθ,k,n+1

1h )
h2 such that

(3.9) b2(uθ,k,n+1
2h , v) = (F θ,k(uθ,k,n+1

2h ), v),∀v ∈ V (ϕ)
h ; n ≥ 0.

4 Maximum norm analysis of asymptotic behavior

4.1 Error Analysis for the stationary case

We begin by introducing two discrete auxiliary sequences and prove a fundamental
lemma.

4.1.1 Two auxiliary Schwarz sequences

For w0
2h = u0

2h , we define the sequences wθ,∞,n+1
1h and wθ,∞,n+1

2h such that uθ,∞,n+1
1h ∈

V
(uθ,∞,n

2 )
h1 solves

(4.1) b1(wθ,∞,n+1
1h , v) = (F θ,k(uθ,∞,n+1

1h ), v),∀v ∈ V (ϕ)
h1 ;n ≥ 0,

and wθ,∞,n+1
2h ∈ V (uθ,∞,n+1

1h )
2h solves

(4.2) b2(wθ,∞,n+1
2h , v) = (F θ,k(uθ,∞,n+1

2h ), v),∀v ∈ V (ϕ)
h2 ;n ≥ 0,
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respectively. It is then clear that wθ,∞,n+1
1h and wθ,∞,n+1

2h are the finite element

approximation of uθ,∞,n+1
1 and uθ,∞,n+1

2 defined in (4.1), (4.2), respectively. Then,

as F θ,k (.) is continuous,
∥∥∥F θ,k (uθ,k,n+1

i

)∥∥∥
∞
≤ λ

∥∥∥uθ,k,n+1
i

∥∥∥
∞

, (independent i of n).

Therefore, making use of standard maximum norm estimates for linear parabolic
problems, we have

(4.3)
∥∥∥uθ,k,ni − uθ,k,nih

∥∥∥
L∞(Ωi)

≤ Ch2 |log h|

where C is a constant independent of both h and n.

Notation 4.1. From now on, we shall adopt the following notations: |.|1 = |.|L∞(Γ1),

|.|2 = |.|L∞(Γ2), ‖.‖1 = ‖.‖L∞(Γ1) , ‖.‖2 = ‖.‖L∞(Γ2), and we set πh1
= πh2

= πh.

4.2 Iterative discrete algorithm

We give our following discrete algorithm

(4.4) uθ,k,n+1
ih = Thu

k−1,n+1
ih , k = 1, ..., p, uθ,k,n+1

ih ∈ V (uθ,k,n2 )
hi

where uθ,kh is the solution of the problem (2.10) and the first iteration u0
h is solution

of (3.3).

Proposition 4.1. [4]Under the previous hypotheses and notations, we have the fol-

lowing estimate of convergence if θ ≥ 1

2

(4.5)
∥∥∥uθ,k,n+1

h − u∞h
∥∥∥
∞
≤
(

1

1 + θ∆t

)k
‖u∞h − uh0

‖∞ ,

if 0 ≤ θ <
1

2
, we have

(4.6)
∥∥∥uθ,k,2n+1

h − u∞h
∥∥∥
∞
≤
(

2

2 + θ (1− 2θ) ρ (A)

)k
‖u∞h − uh0

‖∞ ,

where ρ (A) is the spectral radius of the elliptic operator.

Lemma 4.2. Let ρ =
α

β
. Then, under assumption (1.2), there exists a constant C

independent of both h and n such that

(4.7)
∥∥∥uθ,∞,n+1

i − uθ,∞,n+1
ih

∥∥∥
i
≤ Ch2 |log h|

1− ρ
, i = 1, 2.

Proof. We know from standard error estimate on uniform norm for linear problem
[19] that there exists a constant C independent of h such that

(4.8)
∥∥u0 − u0

h

∥∥
L=(Ω)

≤ Ch2 |log h| .
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Since
1

2
< ρ < 1, then 1 < ρ/ (1− ρ) and

(4.9)
∥∥u0

2 − u0
2h

∥∥
2
≤ Ch2 |log h| ≤ ρCh2 |log h|

1− ρ
.

Let us now prove (4.7) by induction. Indeed for n = 1, using the result of Propsition1,
we have in Ω1∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤

∥∥∥uθ,k,11 − wθ,k,11h

∥∥∥
1

+
∥∥∥wθ,k,11 − uθ,k,11h

∥∥∥
1

≤ Ch2 |log h|+
∥∥∥wθ,k,11 − uθ,k,11h

∥∥∥
1

≤ Ch2 |log h|+ max{
(

1

β

)∥∥∥F θ,k (uθ,k,11

)
− F θ,k

(
uθ,k,11h

)∥∥∥
1

,
∣∣u0

2 − u0
2h

∣∣
1

≤ Ch2 |log h|+ max{
(

1

β

)∥∥∥F θ,k (uθ,k,11

)
− F θ,k

(
uθ,k,11h

)∥∥∥
1

,
∥∥u0

2 − u0
2h

∥∥
2

≤ Ch2 |log h|+ max{ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

,
∥∥u0

2 − u0
2h

∥∥
2
.

We then have to distinguish between two cases

(4.10) max{ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

,
∥∥u0

2 − u0
2h

∥∥
2
} = ρ

∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

or

(4.11) max{ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

,
∥∥u0

2 − u0
2h

∥∥
2
} =

∥∥u0
2 − u0

2h

∥∥
2
.

(4.10) implies
∥∥∥uθ,k,11 − uθ,k1

1h

∥∥∥
1

≤ Ch2 |log h|+ ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
,

∥∥u0
2 − u0

2h

∥∥
2
≤ ρ

∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

,

then 
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤ Ch2 |log h|

1− ρ
.

∥∥u0
2 − u0

2h

∥∥
2
≤ ρ

∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

≤ ρCh2|log h|
1−ρ .

(4.11) implies 
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤ Ch2 |log h|+

∥∥u0
2 − u0

2h

∥∥
2

≤
∥∥u0

2 − u0
2h

∥∥
2
,
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so, by multiplying (4.11) by ρ we get

(4.12) ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

≤ ρCh2 |log h|+ ρ
∥∥u0

2 − u0
2h

∥∥
2
.

So,ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

is bounded by both ρCh2| log h|+ρ
∥∥u0

2 − u0
2h

∥∥
2
and

∥∥u0
2 − u0

2h

∥∥
2
,

this implies that

(4.13) ρ
∥∥u0

2 − u0
2h

∥∥
2
≤ ρCh2 |log h|+ ρ

∥∥u0
2 − u0

2h

∥∥
2
,

or

(4.14) ρCh2 |log h|+ ρ
∥∥u0

2 − u0
2h

∥∥
2
≤
∥∥u0

2 − u0
2h

∥∥
2
,

that is (4.13) implies

(4.15)
∥∥u0

2 − u0
2h

∥∥
2
≤ ρCh2 |log h|

1− ρ
and (4.14) implies

(4.16)
∥∥u0

2 − u0
2h

∥∥
2
≥ ρCh2 |log h|

1− ρ
.

It follows that only the case (4.13) is true, that is,

(4.17)
∥∥u0

2 − u0
2h

∥∥
2
≤ ρCh2 |log h|

1− ρ
,

then

ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤ Ch2 |log h|+

∥∥u0
2 − u0

2h

∥∥
2

≤ Ch2 |log h|+ ρCh2 |log h|
1− ρ

≤ Ch2 |log h|
1− ρ

.

So, in both cases (4.10) and (4.11), we have

(4.18)
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤ Ch2 |log h|

1− ρ
.

Similarly, we have in Ω2∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
≤ Ch2 |log h|+

∥∥∥wθ,k,12 − uθ,k,12h

∥∥∥
2

≤ Ch2 |log h|+ max{
(

1

β

)∥∥∥F θ,k (uθ,k,12

)
− F θ,k

(
uθ,k,12h

)∥∥∥
2
,
∣∣∣uθ,k,11 − uθ,k,11h

∣∣∣
2
}

≤ Ch2 |log h|+ max{
(

1

β

)∥∥∥F θ,k (uθ,k,12

)
− F θ,k

(
uθ,k,12h

)∥∥∥
2
,
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
}

≤ Ch2 |log h|+ max{ρ
∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
,
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
}.
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So

(4.19) max{ρ
∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
,
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
} = ρ

∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2

or

(4.20) max{ρ
∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
,
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
} =

∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
.

cases (4.19) implies∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
≤ Ch2 |log h|+ ρ

∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
,∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤ ρ

∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2

so 

∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
≤ Ch2 |log h|

1− ρ
,
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

≤ ρ
∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2

≤ ρCh2 |log h|
1− ρ

≤ Ch2 |log h|
1− ρ

,

while case (4.20) implies

(4.21)


∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
≤ Ch2 |log h|+

∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

ρ
∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
≤
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
.

,

So, by multiplying (4.21) by ρ we get

(4.22) ρ
∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
≤ ρCh2 |log h|+ ρ

∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
.

Hence ρ
∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2

is bounded by both ρCh2|logh| + ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
and∥∥∥uθ,k,11 − uθ,k1

1h

∥∥∥
1
, then

(4.23)
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤ ρCh2 |log h|+ ρ

∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

or

(4.24) Ch2 |log h|+ ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
,

which (4.23) implies

(4.25)
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
≤ ρCh2 |log h|

1− ρ
<
Ch2 |log h|

1− ρ
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or (4.24) implies

(4.26)
ρCh2 |log h|

1− ρ
≤
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
<
Ch2 |log h|

1− ρ
.

Hence, (4.23) and (4.24) are true because they both coincide with (4.18). So, there
is either a contradiction and thus case (4.19) is impossible or case (4.20) is possible
only if

(4.27)
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

= ρCh2 |log h|+ ρ
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1
,

that is

(4.28)
∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

=
ρCh2 |log h|

1− ρ
,

thus ∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
≤ Ch2 |log h|+

∥∥∥uθ,k,11 − uθ,k,11h

∥∥∥
1

≤ Ch2 |log h|+ ρCh2 |log h|
1− ρ

≤ Ch2 |log h|
1− ρ

,

that is, both cases (4.19) and (4.20) imply

(4.29)
∥∥∥uθ,k,12 − uθ,k,12h

∥∥∥
2
≤ Ch2 |log h|

1− ρ
.

Now, let us assume that

(4.30)
∥∥∥uθ,k,n2 − uθ,k,n2h

∥∥∥
2
≤ Ch2 |log h|

1− ρ

and prove that 

∥∥∥uθ,k,n+1
1 − uθ,k,n+1

1h

∥∥∥
1
≤ Ch2 |log h|

1− ρ∥∥∥uθ,k,n+1
2 − uθ,k,n+1

2h

∥∥∥
2
≤ Ch2 |log h|

1− ρ
�

Theorem 4.3. Let h = max (h1, h2). Then, for n large enough, there exists a con-
stant C independent of both h and n such that

(4.31)
∥∥∥uθ,k,n+1

i − uθ,k,n+1
ih

∥∥∥
1
≤ ch2 |log h|

1− ρ
, ∀i = 1, 2.
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Proof. Let us give the proof for i = 1. The one for i = 2 is similar and so will be
omitted. Indeed, Let δ = δ1δ2, then making use of Theorem 2 and Lemma 3, we get∥∥∥uθ,k1 − uθ,k,n+1

1h

∥∥∥
1
≤

∥∥∥uθ,k1 − uθ,k,n+1
1

∥∥∥
1

+
∥∥∥uθ,k,n+1

1 − uθ,k,n+1
1h

∥∥∥
1

≤ δn1 δ
n
2

∣∣u0 − u
∣∣
1

+
ch2 |log h|

1− ρ

≤ δ2n
∣∣u0 − u

∣∣
1

+
ch2 |log h|

1− ρ
.

So, for n large enough, we have

(4.32) δ2n ≤ h2

and thus ∥∥∥uθ,k1 − uθ,k,n+1
1h

∥∥∥
1
≤ ch2 + ch2 |log h|

≤ ch2 |log h| ,

which is the desired result. �

4.3 Asymptotic behavior

This section is devoted to the proof of main result of the present paper, where we
prove the theorem of the asymptotic behavior in L∞-norm for parabolic variational
inequalities, where we evaluate the variation in L∞ between uh (T ) , the discrete
solution calculated at the moment T = p∆t and u∞, the asymptotic continuous
solution of (2.11)

Theorem 4.4. According to the results of the proposition 3 and the theorem 3, we
have

for the first case θ ≥ 1

2

(4.33)
∥∥∥uθ,p,n+1

1h − u∞
∥∥∥
∞
≤ C

[
h2 |log h|+

(
1

1 + θ∆t

)p]
,

and

(4.34)
∥∥∥uθ,p,n+1

2h − u∞
∥∥∥
∞
≤ C

[
h2 |log h|+

(
1

1 + θ∆t

)p]
,

and for the second case 0 ≤ θ < 1

2

(4.35)
∥∥∥uθ,p,n+1

1h − u∞
∥∥∥
∞
≤ C

[
h2 |log h|+

(
2

2 + θ (1− 2θ) ρ (A)

)p]
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and

(4.36)
∥∥∥uθ,p,n+1

2h − u∞
∥∥∥
∞
≤ C

[
h2 |log h|+

(
2

2 + θ (1− 2θ) ρ (A)

)p]
,

where C is a constant independent of h and k.

Proof. We have∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞
≤
∥∥∥uθ,p,2n+1

h − u∞h
∥∥∥
∞

+ ‖u∞h − u∞‖∞ .

Using the proposition 4.1 and the theorem 4.3, we have for θ ≥ 1

2∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞
≤ C

[
h2 |log h|3 +

(
1

1 + θ∆t

)p]
,

and for 0 ≤ θ <
1

2
we have

∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞
≤ C

[
h2 |log h|3 +

(
2

2 + θ (1− 2θ) ρ (∆)

)p]
The proof for (4.35) and (4.36) case is similar. �

Remark 4.2. It can be seen in the previous estimates (4.33) up to (4.36),

(
1

1 + βθ∆t

)p
,(

2

2 + θ (1− 2θ) ρ (∆)

)p
, goes to 0 when p tend to infinity. Therefore, the estimation

order for both the coercive and noncoercive problems is∥∥∥u∞ − u∞,n+1
1h

∥∥∥
L∞(Ω̄1)

≤ Ch2 |log h|3

and ∥∥∥u∞ − u∞,n+1
2h

∥∥∥
L∞(Ω̄2)

≤ Ch2 |log h|3 .
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