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Abstract. This paper describes a polynomial decay rate of solution for a
transmission problem with 1−D mixed type I and type II thermoelastic
system with infinite memory acting in the first part. The main contri-
butions here are to show that the infinite memory lets our problem still
dissipative, and that the system is not exponentially stable, in spite of the
kernel in the memory term is sub-exponential. Also we establish that the
t−1 is the sharp decay rate. We extend the results in [27].
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1 Introduction and position of problem

A qualitative studies for problems described the thermo-mechanical interactions in
elastic materials has been increasing interest in recent years. The 1− d linear model
of the dynamical problems for classical thermoelastic systems is given by:

(1.1)

 u′′ − uxx + lθx = 0, x ∈ (0, L), t > 0,

θ′ − θxx + lu′x = 0, x ∈ (0, L), t > 0,

where u(x, t) denotes the displacement of the rod at time t and θ(x, t) is the tem-
perature difference with respect to a fixed reference temperature. This last system is
so-called the type I thermoelastic, which is special case when we take k = 0 from the
type III given by:

(1.2)

 ρu′′ − (aux − lθ)x = 0,

cτ ′′ + lu′x − (βθx + kτx)x = 0.

When β = 0, the following thermoelastic system is named thermoelasticity without
dissipation, that is, the energy is conservative (type II):

(1.3)

 ρu′′ − (aux − lθ)x = 0,

cτ ′′ + lu′x − kτxx = 0.
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These last three types were introduced by Green an Naghdi [13]-[14].
In the present paper, we consider a transmission problem with 1 − D mixed type I
and type II thermoelastic system and memory term for t > 0 in the following:

(1.4)



ρ1u
′′ − a1

(
uxx −

∫ t
−∞ µ(t− s)uxx(s)ds

)
+ β1θx = 0, x ∈ (−L, 0),

c1w
′′
1 − lθxx + β1u

′
x = 0, x ∈ (−L, 0),

ρ2v
′′ − a2vxx + β2qx = 0, x ∈ (0, L),

c2w
′′
2 − kw2,xx + β2v

′
x = 0, x ∈ (0, L),

u(0, t) = v(0, t),
θ(0, t) = q(0, t),
w1(0, t) = w2(0, t),
lθx(0, t) = kw2,x(0, t),
a1ux(0, t)− a2vx(0, t) = β1θ(0, t) + β2q(0, t),

where u, v are the displacement of the system at time t in (−L, 0) and (0, L) and θ, q
are respectively the temperature difference with respect to a fixed reference temper-
ature, w1, w2 are the so-called thermal displacement, which satisfies

w1(., t) =

∫ t

0

θ(., s)ds+ w1(., 0)

and

w2(., t) =

∫ t

0

q(., s)ds+ w2(., 0).

The parameters a1, a2, ρ1, ρ2, β1, β2, c1.c2, k, l and L <∞ are assumed to be positive
constants.
The system (1.4) satisfies the Dirichlet boundary conditions:

(1.5)

 u(−L, t) = v(L, t) = 0, t > 0,

w1(−L, t) = w2(L, t) = 0, t > 0,

and the following initial conditions:

(1.6)


u(., 0) = u0(x), u′(., 0) = u1(x), w1(., 0) = w0

1(x), θ(., 0) = θ0(x), x ∈ (−L, 0)

v(., 0) = v0(x), v′(., 0) = v1(x), w2(., 0) = w0
2(x), q(., 0) = q0(x), x ∈ (0, L).

We treat the infinite memory as Dafermos [6], adding a new variable η to the system
which corresponds to the relative displacement history. Let us define the auxiliary
variable

η = ηt(x, s) = u(x, t)− u(x, t− s), (x, s) ∈ (−L, 0)× R+.

By differentiation, we have

d

dt
ηt(x, s) = − d

ds
ηt(x, s) +

d

dt
u(x, t), (x, s) ∈ (−L, 0)× R+.
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We can take as initial condition (t = 0)

η0(x, s) = u0(x)− u(x,−s), (x, s) ∈ (−L, 0)× R+.

Thus, the original memory term can be rewritten as follows∫ t
−∞ µ(t− s)uxx(s)ds =

∫∞
0
µ(s)uxx(t− s)ds

=
(∫∞

0
µ(t)dt

)
uxx −

∫∞
0
µ(s)ηtxx(s)ds.

The problem (1.4) is transformed into the system

(1.7)



ρ1u
′′ − a1

(
µ0uxx +

∫∞
0
µ(s)ηtxx(s)ds

)
+ β1θx = 0, x ∈ (−L, 0),

c1w
′′
1 − lθxx + β1u

′
x = 0, x ∈ (−L, 0),

ρ2v
′′ − a2vxx + β2qx = 0, x ∈ (0, L),

c2w
′′
2 − kw2,xx + β2v

′
x = 0, x ∈ (0, L),

d
dtη

t(x, s) + d
dsη

t(x, s)− d
dtu(x, t) = 0, x ∈ (−L, 0),

u(0, t) = v(0, t),
θ(0, t) = q(0, t),
w1(0, t) = w2(0, t),
lθx(0, t) = kw2,x(0, t),
a1ux(0, t)− a2vx(0, t) = β1θ(0, t) + β2q(0, t),
η0(x, s) = u0(x, 0)− u0(x,−s), s > 0,

where µ0 = 1−
∫∞
0
µ(t)dt.

The stability of various transmission problems on thermoelasticity have been con-
sidered [8], [11], [20], [21], [22] and [25]. Without infinite memory, it is proved in [27]
that the energy of system (1.4) cannot achieve exponential decay rate. This paper
is devoted to show that our system can achieve polynomial decay rate. That is, our
main result here is to show that for these types of materials the dissipation produced
by the viscoelastic part is not strong enough to produce an exponential decay of the
solution despite that the infinite memory satisfies assumptions (3.1) and (3.2).

2 Previous results and stability

The transmission problem to hyperbolic equations was studied by Dautray and Lions
[7], where the existence and regularity of solutions for the linear problem have been
proved. In [21], the authors considered the transmission problem of viscoelastic waves

(2.1)

{
ρ1u
′′ − α1uxx = 0, x ∈ (0, L0),

ρ2v
′′ − α2vxx +

∫ t
0
g(t− s)vxx(s)ds = 0, x ∈ (L0, L),

satisfying boundary conditions and initial conditions. The authors studied the wave
propagations over materials consisting of elastic and viscoelastic components. They
showed that the viscoelastic part produce exponential decay of the solution. In [18],
the authors investigated a 1D semi-linear transmission problem in classical thermoe-
lasticity and showed that a combination of the first, second and third energies of the
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solution decays exponentially to zero. Marzocchi et al [19] studied a multidimen-
sional linear thermoelastic transmission problem. An existence and regularity result
has been proved. When the solution is supposed to be spherically symmetric, the
authors established an exponential decay result similar to [18]. Next, Rivera and all
[22], considered a transmission problem in thermoelasticity with memory. As time
goes to infinity, they showed the exponential decay of the solution in case of radi-
ally symmetric situations. We must mention the pioneer work by Rivera and all in
[11], where a semilinear transmission problem for a coupling of an elastic and a ther-
moelastic material is considered. The heat conduction is modeled by Cattaneo’s law
removing the physical paradox of infinite propagation speed of signals. The damped,
totally hyperbolic system is shown to be exponentially stable. In 2009, Mesaoudi
and all [20] proposed and studied a 1D linear thermoelastic transmission problem,
where the heat conduction is described by the theories of Green and Naghdi. By
using the energy method, they proved that the thermal effect is strong enough to
produce an exponential stability of the solution. The earliest result in this direction
was established in [27], where the dynamical behavior of the system is described by

(2.2)


ρ1u
′′
1 − a1u1,xx + β1θ1,x = 0, x ∈ (−1, 0),

c1τ
′′
1 − bθ1,xx + β1u

′
1,x = 0, x ∈ (−1, 0),

ρ2u
′′
2 − a2u2,xx + β2θ2,x = 0, x ∈ (0, 1),

c2τ
′′
2 − kτ2,xx + β2u

′
2,x = 0, x ∈ (0, 1).

The system consists of two kinds of thermoelastic components, one is of type I, another
one is of type II. Under certain transmission conditions, these two components are
coupled at the interface. The authors proved that the system is lack of exponential
decay rate and they obtain the sharp polynomial decay rate.

3 Preliminaries

For simplicity reason denote u(x, t) = u, v(x, t) = v, wi(x, t) = wi, i = 1, 2, q(x, t) = q,
when there is no confusion. Here u′ = du(t)/dt, v′ = dv(t)/dt and u′′ = d2u(t)/dt2, v′′ =
d2v(t)/dt2, w′′i = d2wi(t)/dt

2, i = 1, 2.
First we recall and make use the following assumptions on the functions µ:
We assume that the function µ : R+ −→ R+ is of class C1 satisfying:

(3.1) 1−
∫ ∞
0

µ(t)dt = µ0 > 0, ∀t ∈ R+,

and that there exists a constants k1 > 0 such that

(3.2) µ′(t) + k1µ(t) ≤ 0 ∀t ∈ R+.

We denote by A the unbounded operator in an appropriate Hilbert state space
Let

V k(0, L) = {h ∈ Hk(0, L);h(L) = 0}.

V k(−L, 0) = {h ∈ Hk(−L, 0);h(−L) = 0},

H = V 1(−L, 0)×L2(−L, 0)×L2(−L, 0)× V 1(0, L)×L2(0, L)× V 1(0, L)×L2(0, L),
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equipped, for (u, u1, θ, v, v1, w2, q), (ũ, ũ1, θ̃, ṽ, ṽ1, w̃2, q̃) ∈ H, with an inner product〈
(u, u1, θ, v, v1, w2, q), (ũ, ũ1, θ̃, ṽ, ṽ1, w̃2, q̃)

〉
H

=∫ 0

−L

[
a1

(
µ0ux +

∫ t

0

µ(s)ηtx(s)ds
)
ũx + ρ1u

1ũ1 + c1θθ̃
]
dx

+

∫ L

0

[
a2vxṽx + ρ2v

1ṽ1 + kw2,x ˜w2,x + c2qxq̃x

]
dx.

with domain

D(A) = (u, u1, θ, v, v1, w2, q) ∈ H :


u, θ ∈ H2(−L, 0), u1 ∈ H1(−L, 0),
v ∈ H2(0, L), v1, q ∈ H1(0, L), w2 ∈ H2(0, L),
θ(−L) = q(L) = 0, lθx(0) = kw2,x(0)
a1µ0ux(0)− β1θ(0) = a2vx(0)− β2q(0)
u(0) = v(0), θ(0) = q(0),

(3.3)

and

(3.4) A



u
u1

θ
v
v1

w2

q


=



u1

ρ−11

(
a1

(
µ0uxx +

∫∞
0
µ(s)ηtxx(s)ds

)
− β1θx

)
c−11

(
− β1u1x + lθxx

)
v1

ρ−12

(
a2vxx − β2qx

)
q

c−12

(
− β2v1x + kw2,xx

)


For U = (u, u1, θ, v, v1, w2, q)

T , the problem (1.7) can be reformulated in the abstract
from

(3.5) U ′ = AU ,

where U(0) = (u0, u1, θ0, v0, v1, w0
2, q

0)T ∈ H is given.
We will use necessary and sufficient conditions for C0-semigroups being exponentially
stable in a Hilbert space. This result was obtained by Gearhart [12] and Huang [10]

Theorem 3.1. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space.
Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iζ : ζ ∈ R} ≡ iR

and

lim
|ζ|→∞

‖(iζI −A)−1‖L(H) <∞.



Transmission problem with 1−D mixed type in thermoelasticity 23

4 Lack of Exponential Stability

Following the techniques in [2], it is easy to check that (H, ‖.‖H) is a Hilbert space.
In this section we prove the lack of exponential decay using Theorem 3.1, that is we
show that there exists a sequence of values hm such that

(4.1) ‖(ihmI −A)−1‖L(H) →∞.

It is equivalent to prove that there exist a sequence of data Fm ∈ H and a sequence
of real numbers hm ∈ R, with ‖Fm‖H ≤ 1 such that

(4.2) ‖(ihmI −A)−1Fm‖H = ‖Um‖2H →∞.

Theorem 4.1. Assume that the kernel is of the form µ(s) = e−hs, s ∈ R+, with
h > 1. The semi group S(t) on H is not exponentially stable.

Proof. As in [1], we will find a sequence of bounded functions

Fm = (f1,m, f2,m, f3,m, f4,m, f5,m, f6,m, f7,m, f8,m)T ∈ H, h ∈ R,

for which the corresponding solutions of the resolvent equations is not bounded. This
will prove that the resolvent operator is not uniformly bounded. We consider the
spectral equation

ihUm −AUm = Fm.

and show that the corresponding solution Um is not bounded when Fm is bounded in
H. Rewriting the spectral equation in term of its components, we get

ihu− u1 = f1m

ihρ1u
1 −

(
a1

(
µ0uxx +

∫∞
0
µ(s)ηtxx(s)ds

)
− β1θx

)
= ρ1f2m

ihc1θ −
(
− β1u1x + lθxx

)
= c1f3m

ihv − v1 = f4m

ihρ2v
1 −

(
a2vxx − β2qx

)
= ρ2f5m

ihw2 − q = f6m

ihc2q −
(
− β2v1x + kw2,xx

)
= c2f7m

ihηt − u1 + ηts = f8m.

(4.3)

We prove that there exists a sequence of real numbers hm so that (4.3) verified. Let us
consider f1m = f4m = f6m = f8m = 0. We eliminate the terms u1, v1. We can choose
f2m = f3m = f5m = f6m = λm and we obtain u1 = ihu, v1 = ihv and q = ihw2.
Then, the system (4.3) takes the form

(4.4)



−h2u− ρ−11

(
a1

(
µ0uxx +

∫∞
0
µ(s)ηtxx(s)ds

)
− β1θx

)
= λm

ihθ − c−11

(
− β1u1x + lθxx

)
= λm

−h2v − ρ−12

(
a2vxx − β2ihw2,x

)
= λm

−h2w2 − c−12

(
− β2v1x + kw2,xx

)
= λm

ihηt − ihu+ ηts = 0
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We look for solutions of the form

u = aλm, v = bλm, θ = cλm, w2 = dλm, u
1 = eλm, v

1 = fλm, η
t(x, s) = γ(s)λm

with a, b, c, d, e, f ∈ C and γ(s) depend on h and will be determined explicitly in what
follows. From (4.4), we get a, b, c, d, e and f satisfy

(4.5)



−h2a− ρ−11

(
a1hm

(
µ0a+

∫∞
0
µ(s)γ(s)ds

)
− β1ch

)
= 1,

ihc− c−11

(
− β1e+ lhmc

)
= 1,

−h2b− ρ−12

(
a2hmb− β2ihd

)
= 1,

ihd− c−12

(
− β2f + khmd

)
= 1,

γs + ihγ − iha = 0.

From (4.5)5 we get

(4.6) γ(s) = a− ae−ihs.

Then, from (4.6) we have∫ ∞
0

µ(s)γ(s) ds =

∫ ∞
0

µ(s)(a− ae−ihs)ds

= a

∫ ∞
0

µ(s)ds− a
∫ ∞
0

µ(s)ae−ihsds

= a(1− µ0)− a
∫ ∞
0

µ(s)e−ihs ds.(4.7)

Now, we would like to find the parameters constants. To this end, we choose

c1ih = hml, c2ih = khm,(4.8)

and using the equations (4.5)2 and (4.5)4, we obtain

e =
c1
β1
,(4.9)

f =
c2
β2
.(4.10)

We choose −h2ρ2 = a2hm. By equations (4.5)1 and (4.5)3, we have

c = 1
(−h2−ρ−1

1 hma1µ0)

(
1 + ρ−11 hma1

∫∞
0
µ(s)γ(s)ds− ρ−11 hmβ1c

)
,

d = ρ2
β2ih

.

Since c2l = c1k, recalling from (4.9), (4.10) that

u1 + v1 = eλm + fλm

=
c1
β1
λm +

c2
β2
λm,
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we get

‖u1‖22 + ‖v1‖22 =
[( c1
β1

)2
+
( c2
β2

)2]
h2m.

Therefore we have

lim
m→∞

‖Um‖2H ≥ lim
m→∞

[‖u1‖22 + ‖v1‖22]

= lim
m→∞

[( c1
β1

)2
+
( c2
β2

)2]
h2m

= +∞

which completes the proof. �

5 Polynomial Stability

Our main result reads as follows.

Theorem 5.1. Assume that (3.1) and (3.2) hold. Then t−1 is the sharp decay rate.
Therefore there exists positive constant C such that the solution of our system satisfies

(5.1) E(t) ≤ C

t
, ∀t ∈ R+.

Proof. We will follow the idea for the proof of the corresponding results in [27]. We
would show that

lim
ζ→∞

‖(iζI −A)−1‖ <∞(5.2)

We prove that there exist a sequence

Vn = (un, u
1
n, θn, vn, v

1
n, w2,n, qn) ∈ D(A),

with ‖Vn‖H = 1, and a sequence ζn ∈ R with ζn →∞ such that

lim
n→∞

ζn‖(iζnI −A)Vn‖H = 0
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or

ζn(iζnun − u1n) → 0, in H1(−L, 0),(5.3)

ζn

(
iζnu

1
n − ρ−11

(
a1

(
µ0un,xx +

∫ ∞
0

µ(s)ηtn,xx(s)ds
)
− β1θn,x

))
→ 0, in L2(−L, 0),(5.4)

ζn

(
iζnθn − c−11

(
− β1u1n,x + lθn,xx

))
→ 0, in L2(−L, 0),(5.5)

ζn(iζnvn − v1n) → 0, in H1(0, L),(5.6)

ζn

(
iζnv

1
n − ρ−12

(
a2vn,xx − β2qn,x

))
→ 0, in L2(0, L),(5.7)

ζn(iζnw2,n − qn) → 0, in H1(0, L),(5.8)

ζn

(
iζnqn − c−12

(
− β2v1n,x + kw2,n,xx

))
→ 0, in L2(0, L),(5.9)

ihηt − u11,n + ηts = 0(5.10)

Note that

Re〈ζn(iζn −A)Vn, Vn〉H = ζn‖
√
l θn,x‖2L2 → 0.

Then √
ζn θn,x → 0, in L2(−L, 0).(5.11)

By Poincaré’s inequality, we get√
ζn θn → 0, in L2(−L, 0).(5.12)

Thanks to the Gagliardo-Nirenberg inequality, we have

‖
√
ζn θn‖L∞ ≤ C1

√
‖
√
ζn θn,x‖L2

√
‖
√
ζn θn‖L2 + C2‖

√
ζn θn‖L2 .(5.13)

Thus, √
ζn θn(0)→ 0.(5.14)

From (5.3), we have β1(iζn)−1u1n,x is bounded in L2(−L, 0). By (5.5) we have the
boundedness of (iζn)−1θn,xx in L2(−L, 0).
Using again the Gagliardo-Nirenberg inequality, we have

‖
(√√

ζn

)−1
θn,x‖L∞ ≤ d1

√
‖(ζn)−1 θn,xx‖L2

√
‖
√
ζn θn,x‖L2 + d2‖

(√√
ζn

)−1
θn,x‖L2

→ 0.
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which gives (√√
ζn

)−1
θn,x(−L)→ 0,

(√√
ζn

)−1
θn,x(0)→ 0.(5.15)

Multiplying (5.4) by p(x)un,x in L2 − norm for p(x) ∈ C1[−L, 0], we get

−ζ2n〈un, p(x)un,x〉L2(−L,0) − ρ−11 a1

〈
µ0un,xx, p(x)un,x

〉
L2(−L,0)

−ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, p(x)un,x

〉
L2(−L,0)

+ρ−11 β1〈θn,x, p(x)un,x〉L2(−L,0) → 0.(5.16)

Integration by parts gives

−ζ2n〈un, p(x)un,x〉L2(−L,0) = ζ2np(−L)|un(−L)|2 − ζ2np(0)|un(0)|2 + ζ2n

〈
px(x)un, un

〉
L2(−L,0)

−ρ−11 a1µ0

〈
un,xx, p(x)un,x

〉
L2(−L,0)

= −ρ−11 a1µ0p(0)|un,x(0)|2 + ρ−11 a1µ0p(−L)|un,x(−L)|2

+ ρ−11 a1µ0

〈
px(x)un,x, un,x

〉
L2(−L,0)

and

−ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, p(x)un,x

〉
L2(−L,0)

= −ρ−11 a1p(0)

∫ ∞
0

µ(s)ηtn,x(0, s)dsun,x(0)

+ ρ−11 a1p(−L)

∫ ∞
0

µ(s)ηtn,x(−L, s)dsun,x(−L)

+ ρ−11 a1

〈
px(x)

∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

.

Since

ρ−11 β1〈θn,x, p(x)un,x〉L2(−L,0) → 0,

then by the above integrations, for p(x) = x ∈ C1[−L, 0], (5.16) takes the form

−ζ2n|un(−L)|2 + ζ2n

〈
un, un

〉
L2(−L,0)

−ρ−11 a1µ0|un,x(−L)|2 + ρ−11 a1µ0

〈
un,x, un,x

〉
L2(−L,0)

−ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(−L, s)dsun,x(−L)

+ ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

→ 0,(5.17)
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and hence, un,x(−L) and ζnun(−L) are bounded.
Similarly, taking p(x) = x+ L ∈ C1[−L, 0], (5.16) takes the form

−ζ2n|un(0)|2 + ζ2n

〈
un, un

〉
L2(−L,0)

−ρ−11 a1µ0|un,x(0)|2 + ρ−11 a1µ0

〈
un,x, un,x

〉
L2(−L,0)

−ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(0, s)dsun,x(0)

+ ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

→ 0.(5.18)

Then, we get boundedness of ζnun(0) and un,x(0).
Multiplying (5.5) by un,x and taking the integration, we get

iζn

〈
θn, un,x

〉
L2(−L,0)

+ c−11 β1

〈
u1,n,x, un,x

〉
L2(−L,0)

− c−11 l
〈
θn,xx, un,x

〉
L2(−L,0)

→ 0.

By (5.12), after dividing by i
√
ζn, we have, where we have used ζn > 0

iζn

〈
θn, un,x

〉
L2(−L,0)

→ 0

Integrating by parts, we get

l(i
√
ζn)−1

(
θn,x(−L)un,x(−L)− θn,x(0)un,x(0)

)
+ l
〈√

ζnθn,x, (iζn)−1un,xx

〉
L2(−L,0)

+β1
√
ζn

〈
u1,n,x, un,x

〉
L2(−L,0)

→ 0(5.19)

By (5.15) and the boundedness of un,x(−L) and un,x(0), we have

l(i
√
ζn)−1

(
θn,x(−L)un,x(−L)− θn,x(0)un,x(0)

)
→ 0

Moreover, from (5.4), we obtain that (iζn)−1un,xx is bounded in L2(−L, 0). Thus

l(
√
ζnθn,x, (iζn)−1un,xx)→ 0

Hence by (5.19), we get

(5.20)

√√
ζn un,x → 0, in L2(−L, 0).

Thanks to the Poincaré inequality, we have

(5.21)

√√
ζn un → 0, in L2(−L, 0)

By (5.20), (5.21) and Galiardo-Nirenberg inequality, we get

(5.22)

√√
ζn un(0)→ 0.
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From (5.4) and (5.11), using ζn > 0, we have

iζnu1,n − ρ−11 a1

(
µ0un,xx +

∫ ∞
0

µ(s)ηtn,xx(s)ds
)
→ 0, in L2(−L, 0),(5.23)

Multiplying the above by un, we get

iζn

〈
u1,n, un

〉
L2(−L,0)

− ρ−11 a1

〈(
µ0un,xx +

∫ ∞
0

µ(s)ηtn,xx(s)ds
)
, un

〉
L2(−L,0)

→ 0.

Integrating by parts, we get

−
〈
u1,n, u1,n

〉
L2(−L,0)

−ρ−11 a1µ0un,x(0)un(0) + ρ−11 a1µ0un,x(−L)un(−L)− ρ−11 a1µ0

〈
un,x, un,x

〉
L2(−L,0)

+ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(0, s)dsun(0)− ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(−L, s)dsun(−L)

+ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

→ 0.

Since un,x(0), un,x(−L) are bounded, by (5.20) and un(−L)→ 0, un(0)→ 0, we have

(5.24) u1,n, ζnun → 0, in L2(−L, 0).

Multiplying (5.4) by (x+ L)un,x, we get the real part as follows

2<
[
−
〈
ζ2nu1,n, (x+ L)un,x

〉
L2(−L,0)

−ρ−11 a1

〈(
µ0un,xx +

∫ ∞
0

µ(s)ηtn,xx(s)ds
)
, (x+ L)un,x

〉
L2(−L,0)

]
= −ζ2n|un(0)|2 + ζ2n

〈
un, un

〉
L2(−L,0)

− ρ−11 a1µ0|un,x(0)|2 + ρ−11 a1µ0

〈
un,x, un,x

〉
L2(−L,0)

−ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(0, s)dsun,x(0) + ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

→ 0.

Hence, by (5.20) and (5.24), we get

(5.25) ζnun(0), un,x(0)→ 0

Now, multiplying (5.4) by xun,x, we get the real part as follows

2<
[
−
〈
ζ2nu

1
n, xun,x

〉
L2(−L,0)

(5.26)

−ρ−11 a1

〈(
µ0un,xx +

∫ ∞
0

µ(s)ηtn,xx(s)ds
)
, xun,x

〉
L2(−L,0)

]
= −ζ2n|un(−L)|2 + ζ2n

〈
un, un

〉
L2(−L,0)

− ρ−11 a1µ0|un,x(−L)|2 + ρ−11 a1µ0

〈
un,x, un,x

〉
L2(−L,0)

−ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(−L, s)dsun,x(−L) + ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

→ 0.
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Then

(5.27) ζnun(−L), un,x(−L)→ 0.

Taking again (5.4), multiplying by un, we have√
ζn

〈
iζnu

11, n, un

〉
L2(−L,0)

+ ρ−11

√
ζnβ1

〈
θn,x, un

〉
L2(−L,0)

−ρ−11

√
ζna1µ0

〈
un,xx, un

〉
L2(−L,0)

−ρ−11

√
ζna1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, un

〉
L2(−L,0)

→ 0.(5.28)

By (5.20) and (5.25), we have

−ρ−11

√
ζna1µ0

〈
un,xx, un

〉
L2(−L,0)

= −ρ−11 a1µ0

√
ζnun,x(0)un(0) + ρ−11 a1µ0

√
ζnun,x(−L)un(−L)

+ρ−11 a1µ0

√
ζn

〈
un,x, un,x

〉
L2(−L,0)

→ 0

and

−ρ−11

√
ζna1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, un

〉
L2(−L,0)

= −ρ−11 a1µ0

√
ζn

∫ ∞
0

µ(s)ηtn,x(0, s)dsun(0)

+ρ−11 a1µ0

√
ζn

∫ ∞
0

µ(s)ηtn,x(−L, s)dsun(−L)

+ρ−11 a1µ0

√
ζn

〈∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

→ 0.(5.29)

Thus, by(5.29) and (5.11), we go to

(5.30)

√√
ζnu

1
n → 0, in L2(−L, 0).

Multiplying (5.4) by (x+ L)un,x, we have〈
i
√
ζnζnu

1
n, (x+ L)un,x

〉
L2(−L,0)

+ ρ−11

√
ζnβ1

〈
θn,x, (x+ L)un,x

〉
L2(−L,0)

−ρ−11

√
ζna1µ0

〈
un,xx, (x+ L)un,x

〉
L2(−L,0)

−ρ−11

√
ζna1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, (x+ L)un,x

〉
L2(−L,0)

→ 0.(5.31)
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Integrating by parts and using (5.11) and the boundedness of un,x in L2(−L, 0), we
get

−
√
ζn|u1n(0)|2 +

√
ζn

〈
u1n, u

1
n

〉
L2(−L,0)

− ρ−11 a1µ0

√
ζn|un,x(0)|2

+ρ−11 a1µ0

√
ζn

〈
un,x, un,x

〉
L2(−L,0)

−ρ−11 a1
√
ζn

∫ ∞
0

µ(s)ηtn,x(0, s)dsun,x(0)

−ρ−11 a1
√
ζn

∫ 0

−L

〈∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

→ 0.(5.32)

Thus by (5.20) and (5.30), we go to

(5.33)

√√
ζnu

1
n(0),

√√
ζnun,x(0)→ 0

Multiplication of (5.23) by un,x yields

iζn

〈
u1n, un,x

〉
L2(−L,0)

− ρ−11 a1µ0

〈
un,xx, un,x

〉
L2(−L,0)

−ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, un,x

〉
L2(−L,0)

→ 0.(5.34)

Due to (5.25)and (5.27), we get

−ρ−11 a1µ0

〈
un,xx, un,x

〉
L2(−L,0)

− ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, un,x

〉
L2(−L,0)

=
1

2
(−ρ−11 a1µ0)|un,x(0)|2 + ρ−11 a1µ0)|un,x(−L)|2

−ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(0, s)dsun,x(0) + ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(−L, s)dsun,x(−L)

+ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,x(s)ds, un,x

〉
L2(−L,0)

→ 0.(5.35)

Thus, it follows from (5.34) that

(5.36) (iζnu
1
n, un,x)→ 0.

Taking the product of (5.23) with θn, yields

iζn

〈
u1,n, θn

〉
L2(−L,0)

− ρ−11 a1µ0

〈
un,xx, θn

〉
L2(−L,0)

−ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, θn

〉
L2(−L,0)

→ 0 in L2(−L, 0).(5.37)

Due to (5.11),(5.14) and (5.25), we have

−ρ−11 a1µ0

〈
un,xx, θn

〉
L2(−L,0)

= −ρ−11 a1µ0un,x(0)θn(0) + ρ−11 a1µ0un,x(−L)θn(−L)

+ρ−11 a1µ0

〈
un,x, θn,x

〉
L2(−L,0)

→ 0(5.38)
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and

−ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,xx(s)ds, θn

〉
L2(−L,0)

= −ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(0, s)dsθn(0)

+ρ−11 a1

∫ ∞
0

µ(s)ηtn,x(−L, s)dsθn(−L)

+ρ−11 a1

〈∫ ∞
0

µ(s)ηtn,x(s)ds, θn,x

〉
L2(−L,0)

→ 0.(5.39)

Then from (5.37), we obtain

iζn

〈
u1n, θn

〉
L2(−L,0)

→ 0(5.40)

Multiplying (5.5) by u1n, we have

(5.41)
〈
iζnθn, u

1
n

〉
L2(−L,0)

−c−11 l
〈
θn,xx, u

1
n

〉
L2(−L,0)

+c−11 β1

〈
u1n,x, u

1
n

〉
L2(−L,0)

→ 0.

By (5.36), (5.40), we have

(5.42)
〈
θn,xx, u

1
n

〉
L2(−L,0)

→ 0.

Integrating by parts

(5.43) θn,x(0)u1n(0)− θn,x(−L)u1n(−L)−
〈
θn,x, u

1
n,x

〉
L2(−L,0)

→ 0.

Due to (5.15)and (5.33), we get

(5.44) θn,x(0)u1n(0)− θn,x(−L)u1n(−L)→ 0.

From (5.43) we have

(5.45)
〈
θn,x, u

1
n,x

〉
L2(−L,0)

→ 0.

Multiplying (5.5) by (x+ L)θn,x and integrating, we get

<
[〈
iζnθn, (x+ L)θn,x

〉
L2(−L,0)

− c−11

〈
(lθn,xx − β1u1n,x), (x+ L)θn,x

〉
L2(−L,0)

]
→ 0

(5.46)

By (5.11) and (5.12), we obtain

(5.47)
〈
iζnθn, (x+ L)θn,x

〉
L2(−L,0)

→ 0.

Thus by (5.46) and (5.11), we have

(5.48) −c−11 lθn,x(0)θn,x(0) + 2<[c−11 β1(u1n,x, (x+ L)θn,x)]→ 0.
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Then, by (5.45), we get

(5.49) θn,x(0)→ 0

Hence, by (5.35),(5.25),(5.14)and (5.49), we have

(5.50) un,x(0), un(0), θn(0), θn,x(0)→ 0.

Taking the product of (5.9) with (x− L)w2,n,x, yields

<
[
iζn

〈
qn, (x− L)w2,n,x

〉
L2(0,L)

+ c−12 β2

〈
v1n,x, (x− L)w2,n,x

〉
L2(0,L)

−c−12 k
〈
w2,n,xx, (x− L)w2,n,x

〉
L2(0,L)

]
→ 0.(5.51)

Using the transmission conditions in (1.4), we get

(5.52) (qn, qn) + c−12 k(w2,n,x, w2,n,x)− 2<
[
c−12 β2

〈
vn,x, (x− L)qn,x

〉
L2(0,L)

]
→ 0.

Taking the product of (5.7) with (x− L)vn,x, we obtain

iζn

〈
v1n, (x− L)vn,x

〉
L2(0,L)

− ρ−12 a2

〈
vn,xx, (x− L)vn,x

〉
L2(0,L)

+ρ−12 β2

〈
qn,x, (x− L)vn,x

〉
L2(0,L)

→ 0.(5.53)

Integrating (5.53) by parts we have〈
v1n, v

1
n

〉
L2(0,L)

+ ρ−12 a2

〈
vn,x, vn,x

〉
L2(0,L)

+2<
[
ρ−12 β2

〈
qn,x, (x− L)qn,x

〉
L2(0,L)

]
→ 0.(5.54)

Thus by (5.52) and (5.54), we obtain

a2

〈
vn,x, vn,x

〉
L2(0,L)

+
〈
ρ2v

1
n, v

1
n

〉
L2(0,L)

+ k
〈
w2,n,x, w2,n,x

〉
L2(0,L)

+c2

〈
qn, qn

〉
L2(0,L)

→ 0.(5.55)

Then

(5.56) vn,x, v
1
n, w2,n,x, qn → 0, in L2(0, L).

Thus (5.56) together with (5.12), (5.24) and (5.56), we give

(5.57) Vn = (un, u
1
n, θn, vn, v

1
n, w2,n, qn)T → 0,

which contradicts ‖Vn‖ = 1. Therefore, (5.2) holds. This completes the proof. �
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