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Abstract. In this paper, we propose a quasi boundary value method for
an homogeneous biharmonic equation in a rectangular domain. It is known
that the problem for the Biharmonic equations is severely ill-posed in the
sense of Hadamard [12], i.e., the solution does not depend continuously
on the given data. Convergence estimates for the regularized solutions are
obtained under a priori and a posteriori bound assumptions for the exact
solution. Some numerical results are given to show the effectiveness of the
proposed method.
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1 Introduction

Let Ω = {(x, t) : 0 < x < π, 0 < t < T} and A = ∆2 be a bi-Laplace operator. For
T > 0, h ∈ L2(0, π), consider the problem of solving the biharmonic equation, denoted
briefly as (BHP ),

(1.1) Au ≡ ∆2u = utttt(x, t) + 2uttxx(x, t) + uxxxx(x, t) = 0, (x, t) ∈ Ω,

satisfying boundary conditions in the spatial variable x, namely

(1.2) u|x=0 = 0, ∆u|x=0 = 0, u|x=π = 0, ∆u|x=π = 0,

and the following boundary conditions in the variable t :

(1.3) u|t=0 = h(x),
∂u

∂t
|t=0 = 0, 0 ≤ x ≤ π,

(1.4) ∆u|t=0 = 0,
∂∆u

∂t
|t=T = 0, 0 ≤ x ≤ π.

The theory of boundary value problems for second order elliptic operators on Lipschitz
domains is a well-developed subject. It has received a great deal of study in the
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past decades and while some important open questions remain, well-posedness of the
Dirichlet, Neumann, and regularity problems in Lp and other function spaces has
been extensively studied in the full generality of divergence form operators −divA∇
with bounded measurable coefficients.

The theory for elliptic equations of order greater than two is much less well de-
veloped [11]. Such equations are common in physics and in engineering design, they
naturally appear in many areas of mathematics too, including conformal geometry [6],
and non-linear elasticity [7], [1]. The prototypical example of a higher-order elliptic
operator, well known from the theory of elasticity, is the bi-Laplacian ∆2 = ∆(∆);
a more general example is the polyharmonic operator ∆m, m ≥ 2. The biharmonic
equation arises in many engineering applications such as the deformation of thin
plates, the motion of fluids, free boundary problems, and non-linear elasticity see
[19, 1]. For historical details we refer to [22, 3, 11, 5]. For a more elaborate history
of the biharmonic problem and the relation with elasticity from an engineering point
of view one may consult a survey of Meleshko [19].

The well-posed biharmonic problem has attracted a great interest in the past
years, and there is an extensive mathematical literature on studies of the biharmonic
operator acting in L2(Ω) for particular regions Ω ⊂ R2. On the contrary, much less
is known on the ill-posed biharmonic problem in a rectangular domain. For example
in [13] the authors obtained a necessary and sufficient condition for well-posedness
for the biharmonic equation in a rectangular domain in the space L2(Ω). There was
considered [17] a non-local boundary value problem for the biharmonic equation in a
disk. However, these authors do not investigate the error estimates.

The method of non-local boundary value problems for the second order elliptic
equations has been used by several authors, such as [24, 8, 20, 9, 25, 4, 2]. However,
the use of this method remains quite scarce in the case of biharmonic problems.
We note also that this method has been successfully applied to ill-posed parabolic
problems.

In the present paper we will present a non-local boundary value problem method
to construct stable approximate solutions to the problems (1.1), when we replace the
initial conditions u(x, 0) = h(x) in (1.3) with

u(x, 0) + αu(x, T ) = h(x),

where α > 0 plays a role of regularization parameter. We suggest a priori and a
posteriori strategies for choosing the parameter α in our regularization methods for
(BHP ).

The paper is organized as follows. In the next Section 2 we present some prelimi-
naries and basic results. In Section 3, the quasi-boundary value method will be given
and convergence estimates are established under a priori and a posteriori regularity
assumptions on the problem data. Numerical results are shown in Section 4. Finally,
conclusions are presented in Section 5.

2 Preliminaries and basic results

Definition 2.1. We call a function u ∈ C4(Ω)∩C3(Ω) satisfying equation (1.1) and
the boundary conditions (1.2)-(1.4) a classical solution to problem (BHP ).
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For notational convenience and simplicity, we set

(2.1) Cp,q =

{
h ∈ H : ‖h‖2p,q =

∞∑
k=1

e2pkT

kq
c2k(h) < +∞

}
p ≥ 0, q ≥ 0.

By the definition of Cp,q we have the following topological inclusions

Cp2,q ⊆ Cp1,q, p2 ≥ p1.

The following technical lemmas play the key role in our analysis and calculations.

Lemma 2.1. Let

(2.2) [1,+∞[3 z 7→ R(z) =
1

αzr + 2e−zT
,

where α > 0, T > 0, and r ≥ 1. Then one has

(2.3) R(z) ≤ 1

α

(
`1

ln(`2(1/α))

)r
,

where `1 = rT, and `2 = 2(T )r/r.

Proof. Differentiating the function R(z) with respect to z yields

R′(z) =
−1

(αzr + 2e−zT )2
(αrzr−1 − 2Te−zT ).

Thus R′(z) = 0 when

(2.4) ẑ =
{
z 7→ αrzr−1

}
∩
{
z 7→ 2Te−zT

}
.

Therefore

(2.5) R(z) ≤ R(ẑ) ≤ 1

αẑr + 2e−ẑT
≤ 1

αẑr
.

Now we have

αrẑr−1 − 2Te−ẑT ⇔ 2T

αr
= ẑr−1eẑT .

By using the inequality (es ≥ s, s ≥ 0), then for s = ẑT, we obtain eẑT ≥ ẑT and we
can write

2T

αr
≤ eẑT

(
eẑT

T

)r−1

≤ T 1−rerẑT ,

which implies that

(2.6) ẑ ≥ 1

rT
ln

(
2T r

αr

)
.

Hence, we obtain

(2.7) R(z) ≤ 1

α

(
`1

ln(`2(1/α))

)r
,

where `1 = rT, and `2 = 2(T )r/r. �
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The following lemma is required in our proof and its proof can be found in [23] or
[13].

Lemma 2.2. By A we denote an operator which is a closure in L2(Ω) of the operator
given by the differential expression

(2.8) Au ≡ utttt(x, t) + 2uttxx(x, t) + uxxxx(x, t), (x, t) ∈ Ω,

on the linear manifold of functions u ∈ C4(Ω) ∩ C3(Ω) satisfying the boundary con-
ditions (1.2-1.4). Then the operator A is symmetric and positive.

2.1 Instability of the solution

We will construct solution u ∈ C4(Ω) ∩ C3(Ω) of the equation (1.1) satisfying the
boundary conditions (1.3)-(1.4), in the form

(2.9) u(x, t) =

∞∑
k=1

ωk(x)ϕk(t) =

√
2

π

∞∑
k=1

ϕk(t) sin(kx),

where ωk(x) =
√

2
π sin(kx), k = 1, 2, ... denote an orthonormal basis in L2(0, π).

We construct a formal solution to (BHP). Substituting (2.9) to equation (1.1) and
to the boundary conditions (1.2)-(1.4), for ϕk(t) we obtain the problems

(2.10) ϕ
(4)
k (t)− 2k2ϕ

′′

k(t) + k4ϕk(t) = 0, 0 < t < T,

(2.11) ϕk(0) = ck(h), ϕ
′

k(0) = 0,

(2.12) ϕ′′k(0)− k2ϕk(0) = 0, ϕ
(3)
k (T )− k2ϕ

′

k(T ) = 0.

where ck(h) is the Fourier coefficient of the expansion according to the orthonormal
basis {ωk(x)}∞k=1 of the function h.

h(x) =

∞∑
k=1

ck(h)ωk(x) =

√
2

π

∞∑
k=1

ck(h) sin(kx).

Equation (2.10) has a general solution

ϕk(t) = (C1t+ C2)ekt + (C3t+ C4)e−kt.

We satisfy this solution to the boundary conditions (2.11), (2.12). Then we get the
system of linear equations

(2.13)


C2 + C4 = ck(h)
C1 + kC2 + C3 − kC4 = 0
C1 − C3 = 0
C1e

kT + C3e
−kT = 0.
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In fact, by direct calculation it is easy to make sure that a function

(2.14) u(x, t) =

√
2

π

∞∑
k=1

cosh(kt)ck(h) sin(kx),

is the solution to (BHP ). It is easy to see that the boundary data h(x) =
√

2
π

sin(kx)
k

tend to zero at k → ∞ but the solution u(x, t) does not tend to zero in any norm.
Consequently, the considered (BHP ) is ill-posed in the sense of Hadamard [12].

2.2 A criterion of existence of a solution to problem (BHP )

The most suitable notion for demonstrating conditions of stability is the notion of a
strong solution.

Definition 2.2. [13] We call a function u ∈ L2(Ω) a strong solution to problem
(BHP ) if there exists a sequence of functions um ∈ C4(Ω) ∩ C3(Ω) satisfying the
boundary conditions (1.2)-(1.4) such that um converge in the norm L2(Ω) to u.

As the required sequence um, we choose a sequence of partial sums of the Fourier
series:

(2.15) um(x, t) =

m∑
k=1

ωk(x)ϕk(t).

If h ∈ L2(0, π), then the existence of the strong solution to problem (BHP ) is equiva-
lent to the convergence of the sequence um in L2(Ω). By virtue of the Parseval equality,
the convergence of the sequence um in L2(Ω) is equivalent to the convergence of the
numerical series

(2.16)

∞∑
k=1

‖ϕk(t)‖2L2(0,T ) <∞.

The following lemma is required in our proof and its proof can be found in [13].

Lemma 2.3. The (BHP ) has a strong solution if and only if

h ∈ C1,1 ⇔
∞∑
k=1

e2kT

k
|ck(h)|2 <∞,

where ck(h) is the Fourier coefficient of the function h and its unique strong solution
is given by (2.14).

3 Regularization method and convergence estimates

The main idea of the original non-local boundary value problem method [24, 8],(also
called quasi-boundary value method) is to approach the considered ill-posed problem
by a family of well-posed problems depending on a (small) regularization parameter.
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In our work we shall regularize (BHP ) by the following non-local boundary value
problem

(P δα)



∆2uδα(x, t) = 0, (x, t) ∈ Ω,

uδα(0, t) = ∆uδα(0, t) = 0, 0 ≤ t ≤ T,

uδα(π, t) = ∆uδα(π, t) = 0, 0 ≤ t ≤ T,

uδα(x, 0) + αuδα(x, T ) = hδ(x),
∂uα(x, 0)

∂t
= 0, 0 ≤ x ≤ π,

∆uδα(x, 0) = 0,
∂∆uδα(x, T )

∂t
= 0 0 ≤ x ≤ π,

where the initial condition uδα(0, t) = hδ(x) is replaced by the nonlocal condition

uδα(x, 0) + αuδα(x, T ) = hδ(x),

where α > 0 is a regularization parameter, and the measured data hδ ∈ L2(0, π),
satisfies

(3.1) ‖hδ − h‖L2(0,π) ≤ δ,

in which the constant δ > 0 is called an error level.
We suggest a priori and a posteriori strategies for choosing the parameter α in our

regularization methods for (BHP ), and we show that

(3.2)
∥∥uδα(., 0)− h

∥∥→ 0, as α→ 0,

(3.3) ‖uδα(., t)− u(., t)‖ → 0, as α→ 0.

Now we are ready to state and prove the main results of this paper.

3.1 A priori parameter choice rule

Theorem 3.1. For all h ∈ L2(0, π), the function

(3.4) uδα(x, t) =

√
2

π

∞∑
k=1

cosh(kt)

1 + α cosh(kT )
cδk(h) sin(kx),

is the unique solution of (P δα) and it depends continuously on h.

Proof. Let uδα1 and uδα2 be the solutions of problem (P δα) corresponding to the data
hδ1 and hδ2, respectively, then we have

∥∥uδα1(., t)− uδα2(., t)
∥∥2

=

∥∥∥∥∥
∞∑
k=1

ωk(x)

(
cosh(kt)

1 + α cosh(kT )

)
(cδk1(h)− cδk2(h))

∥∥∥∥∥
2

≤
∞∑
k=1

(
cosh(kt)

1 + α cosh(kT )

)2 ∣∣cδk1(h)− cδk2(h)
∣∣2

≤
∞∑
k=1

(
cosh(kT )

1 + α cosh(kT )

)2 ∣∣cδk1(h)− cδk2(h)
∣∣2

≤ 1

α2
‖hδ1 − hδ2‖2(3.5)
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�

Theorem 3.2. For all h in L2(0, π), ‖uα(., 0)− h‖ tends to zero as α tends to zero.
That is uα(., 0) converges to h in L2(0, π).

Proof. If h(x) =
∑∞
k=1 ωk(x)ck(h), then

‖uα(., 0)− h‖2 =

∥∥∥∥∥
∞∑
k=1

α cosh(kT )

1 + α cosh(kT )
ck(h)ωk(x)

∥∥∥∥∥
2

≤
∞∑
k=1

α2 cosh2(kT )

(1 + α cosh(kT ))2
|ck(h)|2.

Fix ε > 0. Choose N so that
∑∞
k=N+1 |ck(h)|2 < ε

2 .

‖uα(., 0)− h‖2 ≤
N∑
k=1

α2 cosh2(kT )

(1 + α cosh(kT ))2
|ck(h)|2

+

∞∑
k=N+1

α2 cosh2(kT )

(1 + α cosh(kT ))2
|ck(h)|2

≤ α2
N∑
k=1

cosh2(kT )|ck(h)|2 +

∞∑
k=N+1

|ck(h)|2

≤ α2
N∑
k=1

cosh2(kT )|ck(h)|2 +
ε

2
.

Now let α be such that α2 < ε
(

2
∑N
k=1 cosh2(kT )|ck(h)|2

)−1

, and we are done. �

Theorem 3.3. If h =
∑∞
k=1 ck(h)ωk(x) ∈ L2(0, π), and ‖u(x, T )‖ ≤ E2. Then, we

have that uα(x, T ) converges to u(x, T ) as α tends to zero.

Proof. Let α, β > 0. Then

‖uα(x, T )− uβ(x, T )‖2 =

∞∑
k=1

∥∥∥∥ (β − α) cosh2(kT )

(1 + α cosh(kT ))(1 + β cosh(kT ))
ck(h)

∥∥∥∥2

=

∞∑
k=1

(β − α)2 cosh4(kT )|ck(h)|2[
1 + (α+ β) cosh(kT ) + αβ cosh2(kT )

]2
=

∞∑
k=1

(β − α)2|ck(h)|2[
cosh−2(kT ) + (α+ β) cosh−1(kT ) + αβ

]2
=

N∑
k=1

(β − α)2|ck(h)|2[
cosh−2(kT ) + (α+ β) cosh−1(kT ) + αβ

]2
+

∞∑
k=N+1

(β − α)2|ck(h)|2[
cosh−2(kT ) + (α+ β) cosh−1(kT ) + αβ

]2
= I1 + I2.(3.6)
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Let ε > 0 and h(x) =
∑∞
k=1 ωk(x)ck(h). We have that

‖u(x, T )‖2 =

∞∑
k=1

cosh2(kT )|ck(h)|2 ≤ E2
2 .

Choose N so that
∑∞
k=N+1 cosh2(kT )|ck(h)|2 < ε

2 . Then

I1 + I2 ≤
N∑
k=1

(β − α)2 cosh4(kT )|ck(h)|2

+

∞∑
k=N+1

(
β − α
β + α

)2

cosh2(kT )|ck(h)|2

≤
N∑
k=1

(β − α)2 cosh4(kT )|ck(h)|2 +
ε

2
.(3.7)

Now if we choose γ > 0 so that γ2 < ε
(

2
∑N
k=1(β − α)2 cosh4(kT )|ck(h)|2

)−1

and

require that α and β be less than γ, we have that

‖uα(x, T )− uβ(x, T )‖2 < ε,

and we are done. �

In the following Theorem 3.4, we will prove that the regularized solution uδα given
by (3.4) is a stable approximation to the exact solution u given by (2.9).

Theorem 3.4. Suppose that u is the solution of (BHP ) and uδα is the solution of
problem (P δα). Let the measured data hδ satisfy

∥∥hδ − h∥∥ ≤ δ, and the exact solution

u satisfy
∑∞
k=1 k

2r cosh2(kT )c2k(h) ≤ E2
1 , (r > 0). The regularization parameter α is

chosen as α = δθ, (0 < θ < 1), then for fixed 0 < t ≤ T , we have the following
convergence estimate

(3.8) ‖uδα(., t)− u(., t)‖ ≤ δ1−θ + 2

(
`1

ln (`2(1/(δθ)))

)r
E1,

where `1 = rT, and `2 = 2(T )r/r.

Proof. Denote uα as the solution of problem (P δα) corresponding to the exact data h.
It is clear

(3.9) ‖uδα − u‖ ≤ ‖uδα − uα‖+ ‖uα − u‖

from Theorem 3.1, we know

(3.10) ‖uδα(., t)− uα(., t)‖2L2(0,π) ≤
1

α2
‖hδ − h‖2.
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Then,

‖u(., t)− uα(., t)‖ =

∥∥∥∥∥
∞∑
k=1

(
cosh(kt)− cosh(kt)

1 + α cosh(kT )

)
ck(h)ωk(x)

∥∥∥∥∥
2

≤
∞∑
k=1

(
α cosh(kt)

1 + α cosh(kT )

)2

cosh2(kT )c2k(h)

≤
∞∑
k=1

α2e2kT

(1 + α
2 e
kT )2

cosh2(kT )c2k(h)

= 4α2
∞∑
k=1

1

(α+ 2e−kT )2

k2r

k2r
cosh2(kT )c2k(h)

≤ 4α2
∞∑
k=1

1

(αkr + 2e−kT )2
k2r cosh2(kT )c2k(h)

= 4α2
∞∑
k=1

R2(k)k2r cosh2(kT )c2k(h)

≤ 4α2 1

α2

(
`1

ln(`2(1/α))

)2r ∞∑
k=1

k2r cosh2(kT )c2k(h).

≤ 4

(
`1

ln(`2(1/α))

)2r

E2
1(3.11)

Using (2.3), (3.9), (3.10) and (3.11), the estimate (3.8) can be obtained. �

Theorem 3.5. If h(x) =
∑∞
k=1 ωk(x)ck(h), and there exists an r > 0 so that∑∞

k=1 k
2r|ck(h)|2 ≤ E2. The regularization parameter α is chosen as α = δθ, (0 <

θ < 1), then one has the following error estimate

(3.12)
∥∥uδα(., 0)− h

∥∥ ≤ δ1−θ + 2

(
`1

ln(`2(1/δθ))

)r
E2.

Proof. By using (3.9) and (3.10) one has

(3.13)
∥∥uδα(., 0)− h

∥∥ ≤ 1

α

∥∥hδ − h∥∥+ ‖uα(., 0)− h‖ .
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‖h− uα(., 0)‖ =

∥∥∥∥∥
∞∑
k=1

(
1− 1

1 + α cosh(kT )

)
ck(h)ωk(x)

∥∥∥∥∥
2

≤ 4α2
∞∑
k=1

1

(α+ 2e−kT )2

k2r

k2r
c2k(h)

= 4α2
∞∑
k=1

R2(k)k2rc2k(h)

≤ 4α2 1

α2

(
`1

ln(`2(1/α))

)2r ∞∑
k=1

k2rc2k(h).

≤ 4

(
`1

ln(`2(1/α))

)2r

E2
2 .(3.14)

Thus ∥∥uδα(., 0)− h
∥∥ ≤ δ1−θ + 2

(
`1

ln(`2(1/δθ))

)r
E2.

�

3.2 A posteriori parameter choice rule

Lemma 3.6. Let z(x, t) = u(x, t)− uα(x, t). Then we have

(3.15) ‖z(., t)‖ ≤ 2
t
T ‖z(., T )‖

t
T ‖z(., 0)‖1−

t
T , ∀t ∈ [0, T ].

Proof. Using Hölder’s inequality, we get, for all t ∈ [0, T ],

‖z(., t)‖2 =

∞∑
k=1

cosh2(kt)(z(., 0), ωk)2 ≤
∞∑
k=1

e2kt(z(., 0), ωk)2

=

∞∑
k=1

e2kt
(

(z(., 0), ωk)
2t/T

(z(., 0), ωk)
2(1−t/T )

)

≤

( ∞∑
k=1

(
e2kt

(
(z(., 0), ωk)

2t/T
)T/t))t/T ( ∞∑

k=1

(
(z(., 0), ωk)2(1−t/T )

)T/(T−t))1−t/T

≤

( ∞∑
k=1

2 cosh2(kT )
(

(z (., 0) , ωk)
2
))t/T ( ∞∑

k=1

(
(z(., 0), ωk)2

))1−t/T

= 4t/T ‖z(., T )‖2t/T ‖z(., 0)‖2(1−t/T )
.

Thus,

‖z(., t)‖ ≤ 2
t
T ‖z(., T )‖

t
T ‖z(., 0)‖1−

t
T , ∀t ∈ [0, T ].

�

Theorem 3.7. Suppose that δ < ‖h‖ and choose τ > 1 such that 0 < τδ < ‖h‖ .
Then there exists a unique number α(δ) > 0 such that

(3.16)
∥∥uα(δ)(., 0)− h(.)

∥∥ = τδ.
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Further, if u is the solution of (BHP ) and uδα is the solution of problem (P δα). Let the
measured data hδ satisfy

∥∥hδ − h∥∥ ≤ δ, and the exact solution u satisfy ‖u(., T )‖ ≤ E3.
then we have the following convergence estimate

(3.17) ‖uα(δ)
α (., t)− u(., t)‖ ≤ 21+ t

T δ1− t
T (1 + τ)

(
E3

τ − 1

) t
T

, ∀t ∈ [0, T ].

Proof. Set z(., t) = u(., t)− uα(δ)(., t), ∀t ∈ [0, T ]. Then

(3.18) ‖z(., 0)‖ = ‖u(., 0)− uα(δ)(., 0)‖ ≤ ‖u(., 0)− h‖+ ‖uα(δ)(., 0)− h‖ ≤ (1 + τ)δ,

(3.19) ‖z(., T )‖ ≤ ‖u(., T )‖+ ‖uα(δ)(., T )‖.

From (3.16) and (3.4), we have

τδ =
∥∥uα(δ)(., 0)− h

∥∥ =
∥∥α(δ)uα(δ)(., T )

∥∥
=

∥∥∥∥∥
∞∑
k=1

α(δ) cosh(kT )

1 + α(δ) cosh(kT )
)(h, ωk)ωk

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
k=1

α(δ) cosh(kT )

1 + α(δ) cosh(kT )
)(h− u(., 0), ωk)ωk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

α(δ) cosh(kT )

1 + α(δ) cosh(kT )
)(u(., 0), ωk)ωk

∥∥∥∥∥
≤ ‖h− u(., 0)‖+

∥∥∥∥∥
∞∑
k=1

α(δ)
α(δ)

2 + e−kT
)(u(., 0), ωk)ωk

∥∥∥∥∥
≤ δ +

∥∥∥∥∥
∞∑
k=1

α(δ)ekT (u(., 0), ωk)ωk

∥∥∥∥∥
≤ δ + 2α(δ)

∥∥uα(δ)(., T )
∥∥ .

This implies that
δ

α(δ)
≤ 2

τ − 1

∥∥uα(δ)(., T )
∥∥ .

It follows that∥∥uα(δ)(., T )
∥∥ ≤

∥∥∥∥∥
∞∑
k=1

cosh(kT )

1 + α(δ) cosh(kT )
)(h− u(., 0), ωk)ωk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

cosh(kT )

1 + α(δ) cosh(kT )
)(u(., 0), ωk)ωk

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
k=1

1
α(δ)

2 + e−kT
(h− u(., 0), ωk)ωk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=1

cosh(kT )(u(., 0), ωk)ωk

∥∥∥∥∥
≤ 2δ

α(δ)
+ ‖u(., T )‖ ≤ 3 + τ

τ − 1
‖u(., T )‖ .(3.20)
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From (3.19) and (3.20) we obtain

(3.21)
∥∥u(., T )− uα(δ)(., T )

∥∥ ≤ 2(1 + τ)

τ − 1
E3.

It follows from (3.18), (3.20) and (holder inequality) that

∥∥u(., t)− uα(δ)(., t)
∥∥ ≤ 2

t
T

∥∥u(., T )− uα(δ)(., T )
∥∥ t
T
∥∥u(., 0)− uα(δ)(., 0)

∥∥1− t
T

≤ 21+ t
T δ1− t

T (1 + τ)

(
E3

τ − 1

) t
T

.(3.22)

�

4 Numerical illustrations

In this section, we use a numerical example to verify the stability of our proposed
regularization method. Solving biharmonic problems numerically typically involves
significant challenges with respect to the approximation of high-order derivatives and
the imposition of double boundary conditions. For this reason we propose a semi-
discrete finite difference method

We choose T = 1, h(x) =
√

2
π sin(x) and the exact solution u(x, t) is computed by

solving the ill-posed problem for the biharmonic equation (BHP ). It is not too hard
to see that the exact solution is

(4.1) u(x, t) =

√
2

π
cosh(t) sin(x),

The equation (1.1) can be written as

(
∂2

∂t2
− L

)2

u(x, t) = 0,

and it is easy to check that the operator

(4.2)

{
D(L) =

{
u ∈ L2(0, π)| u|x=0 = ∆u|x=0 = 0, u|x=π = ∆u|x=π = 0

}
L = − ∂2

∂x2 , D(L) ⊂ L2(0, π),

is positive, self-adjoint with compact resolvent (L is diagonalizable). The eigenpairs

(λk, ϕk) of L are λk = k2, ϕk =
√

2
π sin(kx), k ∈ N∗.

As proposed in section 3, instead of solving the ill-posed problem (BHP ), we solve
the well-posed problem (P δα), where the regularization parameter α to be prescribed
according to criterion (3.16).
By using the central difference with step length ` = π

N+1 to approximate the first
derivative ux and the second derivative uxx, we can get the following semi-discrete
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problem (system of ordinary differential equation):

(4.3)



( d
2

dt2 − AN )2uα(xi, t) = 0, xi = ih, i = 1, ..., N, t ∈ (0, 1),

uα(x0 = 0, t) = uα(xN+1 = π, t) = 0, t ∈ (0, 1),

∆uα(x0 = 0, t) = ∆uα(xN+1 = π, t) = 0, t ∈ (0, 1),

uα(xi, 0) = h(xi) =
√

2
π sin(xi),

∂uα
∂t (xi, 0) = 0, xi = ih, i = 1, ..., N,

∆uα(xi, 0) = ∂∆uα(xi,T )
∂t = 0, xi = ih, i = 1, ..., N,

where AN is the discretization matrix stemming from the operator A = − ∂2

∂x2

AN =
1

h2
Tridiag(−1, 2,−1) ∈MN (R).

The final value of the solution of the problem (4.3) is

(4.4) uα(xi, 1) =
cosh(

√
AN )

(IN + α cosh(
√
AN ))

h(xi),

where the vector h = (h1, h2, ...hN ) = (h(x1), h(x2), ...h(xN )) represent the discrete
form of the data function h(x). Note that in practice, the data h(x) is obtained by
measurement and therefore it is inevitably contaminated by measurement error, some
uniformly distributed random noises ε are added to h in our test examples, i.e.,

hδ = h+ εrandn(size(h)),

and ε indicates the noise level of the measurement data. The bound on the mea-
surement error δ can be measured in the sense of Root Mean Square Error (RMSE)
according to

δ := ‖hδ − h‖l2 =

(
1

N + 1

N+1∑
i=1

(
hi − hδi

)2)1/2

,

and it is easy to see that ε and δ posses the same order of magnitude. In order to
investigate the algorithm, we evaluate the relative error Rer defined by

Rer =
‖uδα(., 1)− u(., 1)‖l2

‖u(., 1)‖l2
.

For the choice of α we use the criterion (3.16) which gives the unique α(δ) > 0
such that

(4.5)
∥∥uα(δ)(., 0)− hδ(.)

∥∥
L2(0,π)

= α(δ)
∥∥uα(δ)(., T )

∥∥
L2(0,π)

= τδ,

where τ > 1 is a given fixed number and

(4.6)
∥∥h− hδ∥∥

L2(0,π)
≤ δ.

Table 1. The relative errors at T = 1 for N = 31, 36 and various noisy levels.
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ε N = 31 α RE ε N = 36 α RE

0.000 0.0162 6.4085×10−5 0.000 0.0139 1.9879× 10−5

0.100 0.305 0.3966 0.100 0.255 0.3977
0.010 0.079 0.1272 0.010 0.075 0.1341
0.001 0.03 0.0337 0.001 0.0335 0.0374
0.0001 0.0173 0.0043 0.0001 0.015 0.0048

Table 2. The relative errors at T = 1 for N = 41, 45 and various noisy levels.

ε N = 41 α RE ε N = 45 α RE

0.000 0.0122 3.8776×10−5 0.000 0.011 9.3362× 10−5

0.100 0.33 0.4192 0.100 0.22 0.4859
0.010 0.12 0.1585 0.010 0.108 0.1547
0.001 0.03 0.0376 0.001 0.028 0.0385
0.0001 0.015 0.0072 0.0001 0.0142 0.0070

Numerical results are shown in figures 1,...,4, table 1 and table 2. The numerical
results for exact Cauchy data u(x, 1) are shown in figure 1. The numerical results
for u(., 1), uδα(., 1) and the relative errors between exact and regularization solutions
with ε ∈ {0.01, 0.001, 0.0001} are shown in figures 2,3 and 4. Table 1 and table 2
gives the comparison of the errors between the exact and regularization solutions
for ε ∈ {0, 0.1, 0.01, 0.001, 0.0001} at different values of N. We first observe that
for the exact data u(x, 1), the numerical results presented in figures 1 show a good
approximation for the method. From figures. 1, 2, 3, and 4 and Tables 1 and 2, it
can be observed that our proposed method is effective and stable. From Tables 1 and
2, we note that the more small ε is, the better the calculation effect is, which means
that our proposed regularization method is convergent with respect to decreasing the
noise level ε.

5 Conclusions

In this paper, we propose a nonlocal boundary value problem method to solve an
elliptic problem for the biharmonic equation in the rectangle. The convergence and
stability estimates for 0 < t ≤ T have been obtained under a priori and a posteriori
bound assumptions for the exact solution. Finally, some numerical tests show that
our proposed regularization method is effective and stable.
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[9] D.N. Hào, N.V.Duc and D.Lesnic, A non-local boundary value problem method for
the Cauchy problem for elliptic equations, Inverse problems, 25 (2009), 055002.

[10] F. Gazzola, On the moments of solutions to linear parabolic equations involving
the biharmonic operator, Discrete Contin. Dyn. Syst. 33, 8 (2013), 3583-3597.

[11] F. Gazzola, H.C. Grunau and G. Sweers, Polyharmonic boundary value prob-
lems. A monograph on positivity preserving and nonlinear higher order elliptic
equations in bounded domains, Springer-Verlag Berlin Heidelberg 2010.

[12] J. Hadamard. Lecture note on Cauchy’s problem in linear partial differential
equations, Yale Univ. Press, New Haven,1923.

[13] U.A. Iskakova, On a model of oscillations of a thin flat plate with a variety of
mounts on opposite sides, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9, 2 (2016),
110-116.

[14] S. I. Kabanikhin, Inverse and Ill-posed Problems: Theory and Applications, Wal-
ter de Gruyter, Berlin, 2011.

[15] S. I. Kabanikhin, Y. S. Gasimov, D. B. Nurseitov, M. A. Shishlenin, B. B. Shol-
panbaev and S. Kasenov, Regularization of the continuation problem for elliptic
equations, J. Inverse Ill-Posed Probl. 21, 6 (2013), 871884.

[16] S. I. Kabanikhin and M. A. Shishlenin, Regularization of the decision prolongation
problem for parabolic and elliptic equations from border part, Eurasian J. Math.
Comp. Appl. 2, 2 (2014), 8191.

[17] T. S. Kal’menov and U. A. Iskakova, On a boundary value problem for the bihar-
monic equation, AIP Conf. Proc. 1676 (2015), Article ID 020031.

[18] Li, J. Application of radial basis meshless methods to direct and inverse bihar-
monic boundary value problems, Commun. Num. Meth.Eng., 21 (2005), 169-182.

[19] V. V. Meleshko, Selected topics in the history of the two-dimensional biharmonic
problem, Appl. Mech. Rev. 56, 1 (2003), 33-85.

[20] I.V. Melnikova and A. Filinkov, Abstract Cauchy Problems: Three Approaches,
(Boca Raton, FL: Chapman and Hall, 2001.



Ill-posed biharmonic equation 51

[21] I. Mozolevski and E. Sli, P.R. Bsing, hp-Version a priori error analysis of interior
penalty discontinuous Galerkin finite element approximations to the biharmonic
equation, J. Sci. Comput. 30 (2007), 465-491.

[22] G. Sweers. A survey on boundary conditions for the biharmonic. Complex Vari-
ables and Elliptic Equations, 54 (2009),79-93.

[23] Tynysbek S. Kal’menov, Makhmud A. Sadybekov and Ulzada A. Iskakova On a
criterion for the solvability of one ill-posed problem for the biharmonic equation,
J. Inverse Ill-Posed Probl. 24 ,6 (2016).

[24] P.N. Vabishchevich and Denisenko A Yu, Regularization of nonstationary prob-
lems for elliptic equations, J. Eng. Phys. Thermophys. 65 (1993), 1195-1199.

[25] H. Zhang and T.Wei, An improved non-local boundary value problem method for
a cauchy problem of the Laplace equation, Numer Algor. 59 (2012), 249-269.

[26] F. Zouyed and F. Rebbani, A modified quasi-boundary value method for an
ultraparabolic ill-posed problem, J. Inverse Ill-Posed Probl. 22, 4 (2014), 449-
466.

Author’s address:

Abderafik Benrabah
Department of Mathematics, 08 May 1945-Guelma University,
P.O.Box. 401, Guelma, 24000, Algeria.
Applied Math Lab, Badji Mokhtar-Annaba University,
P.O.Box. 12, Annaba, 23000, Algeria.
E-mail: babderafik@yahoo.fr



52 A. Benrabah

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
nonlocal regularization method

 

 
excact solution
approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8
x 10

−5 Error: |excact solution − approximate solution|

 

 
Error: ε (noise level) =0,α=0.0162

Figure 1:

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
nonlocal regularization method

 

 
excact solution
approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4
Error: |excact solution − approximate solution|

 

 
Error: ε (noise level) =0.01,α=0.079

Figure 2:



Ill-posed biharmonic equation 53

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
nonlocal regularization method

 

 
excact solution
approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

0.02

0.04

0.06

0.08
Error: |excact solution − approximate solution|

 

 
Error: ε (noise level) =0.001,α=0.03

Figure 3:

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
nonlocal regularization method

 

 
excact solution
approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8
x 10

−3 Error: |excact solution − approximate solution|

 

 
Error: ε (noise level) =0.0001,α=0.0173

Figure 4:


