Insertion of a contra-continuous function between two comparable contra-precontinuous real-valued functions

M. Mirmiran

Abstract

A necessary and sufficient condition in terms of lower cut sets are given for the insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

M.S.C. 2010: 54C08, 54C10, 54C50; 26A15, 54C30.

Key words: Insertion; strong binary relation; semi-open set; preopen set; contracontinuous function; lower cut set.

1 Introduction

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 1964 [4]. A subset A of a topological space (X, τ) is called preopen or locally dense or nearly open if $A \subseteq \operatorname{Int}(\operatorname{Cl}(A))$. A set A is called preclosed if its complement is preopen or equivalently if $C l(\operatorname{Int}(A)) \subseteq A$. The term preopen, was used for the first time by A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb [20], while the concept of a locally dense set was introduced by H.H. Corson and E. Michael [4].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [17]. A subset A of a topological space (X, τ) is called semi-open [10] if $A \subseteq C l(\operatorname{Int}(A))$. A set A is called semi-closed if its complement is semi-open or equivalently if $\operatorname{Int}(C l(A)) \subseteq A$.

A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [19].

Recall that a real-valued function f defined on a topological space X is called A-continuous [23] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had

[^0]focused their research in the direction of investigating different types of generalized continuity.
J. Dontchev in [6] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers $[1,3,8,9,10,12,13,22]$.

Hence, a real-valued function f defined on a topological space X is called contracontinuous (resp. contra-semi-continuous, contra-precontinuous) if the preimage of every open subset of \mathbb{R} is closed (resp. semi-closed, preclosed) in $X[6]$.

Results of Katětov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contracontinuous function between two comparable real-valued functions on such topological spaces that Λ-sets or kernel of sets are open [19].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. $g<f$) in case $g(x) \leq f(x)$ (resp. $g(x)<f(x)$) for all x in X.

The following definitions are modifications of conditions considered in [16].
A property P defined relative to a real-valued function on a topological space is a $c c-$ property provided that any constant function has property P and provided that the sum of a function with property P and any contra-continuous function also has property P. If P_{1} and P_{2} are $c c-$ properties, the following terminology is used:(i) A space X has the weak cc-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a contra-continuous function h such that $g \leq h \leq f$.(ii) A space X has the $c c$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g<f, g$ has property P_{1} and f has property P_{2}, then there exists a contra-continuous function h such that $g<h<f$.(iii) A space X has the weakly $c c-$ insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g<f, g$ has property P_{1}, f has property P_{2} and $f-g$ has property P_{2}, then there exists a contra-continuous function h such that $g<h<f$.

In this paper, for a topological space whose Λ-sets or kernel of sets are open, is given a sufficient condition for the weak $c c$-insertion property. Also for a space with the weak $c c$-insertion property, we give a necessary and sufficient condition for the space to have the $c c$-insertion property. Several insertion theorems are obtained as corollaries of these results.

2 The main result

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated.
Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{V} as follows:
$A^{\Lambda}=\cap\{O: O \supseteq A, O \in(X, \tau)\}$ and $A^{V}=\cup\left\{F: F \subseteq A, F^{c} \in(X, \tau)\right\}$.
In $[7,18,21], \overline{A^{\Lambda}}$ is called the kernel of A.
The family of all preopen, preclosed, semi-open and semi-closed will be denoted by $p O(X, \tau), p C(X, \tau), s O(X, \tau)$ and $s C(X, \tau)$, respectively.

We define the subsets $p\left(A^{\Lambda}\right), p\left(A^{V}\right), s\left(A^{\Lambda}\right)$ and $s\left(A^{V}\right)$ as follows:
$p\left(A^{\Lambda}\right)=\cap\{O: O \supseteq A, O \in p O(X, \tau)\}$,
$p\left(A^{V}\right)=\cup\{F: F \subseteq A, F \in p C(X, \tau)\}$,
$s\left(A^{\Lambda}\right)=\cap\{O: O \supseteq A, O \in s O(X, \tau)\}$ and
$s\left(A^{V}\right)=\cup\{F: F \subseteq A, F \in s C(X, \tau)\}$.
$p\left(A^{\Lambda}\right)\left(\right.$ resp. $\left.s\left(A^{\Lambda}\right)\right)$ is called the prekernel (resp. semi - kernel) of A.
The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1) If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
2) If $A \subseteq B$, then $A \bar{\rho} B$.
3) If $A \bar{\rho} B$, then $A^{\Lambda} \subseteq B$ and $A \subseteq B^{V}$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X$: $f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leq \ell\}$ for a real number ℓ, then $A(f, \ell)$ is called a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main result:
Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which kernel sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a contra-continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \bar{\rho} F\left(t_{2}\right), G\left(t_{1}\right) \bar{\rho} G\left(t_{2}\right)$, and $F\left(t_{1}\right) \rho G\left(t_{2}\right)$. By Lemmas 1 and 2 of [15] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_{1} and t_{2} are any rational numbers with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho H\left(t_{2}\right), H\left(t_{1}\right) \rho H\left(t_{2}\right)$ and $H\left(t_{1}\right) \rho G\left(t_{2}\right)$.

For any x in X, let $h(x)=\inf \{t \in \mathbb{Q}: x \in H(t)\}$.
We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x is in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x) \leq t^{\prime}$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_{1} and t_{2} with $t_{1}<t_{2}$, we have $h^{-1}\left(t_{1}, t_{2}\right)=$ $H\left(t_{2}\right)^{V} \backslash H\left(t_{1}\right)^{\Lambda}$. Hence $h^{-1}\left(t_{1}, t_{2}\right)$ is closed in X, i.e., h is a contra-continuous function on X.
The above proof used the technique of theorem 1 in [14].
Theorem 2.2. Let P_{1} and P_{2} be $c c-$ property and X be a space that satisfies the weak $c c$-insertion property for $\left(P_{1}, P_{2}\right)$. Also assume that g and f are functions on X such that $g<f, g$ has property P_{1} and f has property P_{2}. The space X has the $c c-$ insertion property for $\left(P_{1}, P_{2}\right)$ if and only if there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a decreasing sequence $\left\{D_{n}\right\}$ of subsets of X with empty intersection and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by contracontinuous functions.

Proof. Assume that X has the weak $c c-$ insertion property for $\left(P_{1}, P_{2}\right)$. Let g and f be functions such that $g<f, g$ has property P_{1} and f has property P_{2}. By hypothesis there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a sequence $\left(D_{n}\right)$ such that $\bigcap_{n=1}^{\infty} D_{n}=\varnothing$ and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by contra-continuous functions. Let k_{n} be a contra-continuous function such that $k_{n}=0$ on $A\left(f-g, 3^{-n+1}\right)$ and $k_{n}=1$ on $X \backslash D_{n}$. Let a function k on X be defined by

$$
k(x)=1 / 2 \sum_{n=1}^{\infty} 3^{-n} k_{n}(x)
$$

By the Cauchy condition and the properties contra-continuous functions, the function k is a contra-continuous function. Since $\bigcap_{n=1}^{\infty} D_{n}=\varnothing$ and since $k_{n}=1$ on $X \backslash D_{n}$, it follows that $0<k$. Also $2 k<f-g$: In order to see this, observe first that if x is in $A\left(f-g, 3^{-n+1}\right)$, then $k(x) \leq 1 / 4\left(3^{-n}\right)$. If x is any point in X, then $x \notin A(f-g, 1)$ or for some n,

$$
x \in A\left(f-g, 3^{-n+1}\right)-A\left(f-g, 3^{-n}\right)
$$

in the former case $2 k(x)<1$, and in the latter $2 k(x) \leq 1 / 2\left(3^{-n}\right)<f(x)-g(x)$. Thus if $f_{1}=f-k$ and if $g_{1}=g+k$, then $g<g_{1}<f_{1}<f$. Since P_{1} and P_{2} are E-properties, then g_{1} has property P_{1} and f_{1} has property P_{2}. Since X has the weak $c c$-insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a contra-continuous function h such that $g_{1} \leq h \leq f_{1}$. Thus $g<h<f$, it follows that X satisfies the $c c$-insertion property for $\left(P_{1}, P_{2}\right)$. (The technique of this proof is by Katětov[14]).

Conversely, let g and f be functions on X such that g has property P_{1}, f has property P_{2} and $g<f$. By hypothesis, there exists a contra-continuous function h such that $g<h<f$. We follow an idea contained in Lane [16]. Since the constant function 0 has property P_{1}, since $f-h$ has property P_{2}, and since X has the $c c$-insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a contra-continuous function k such that $0<k<f-h$. Let $A\left(f-g, 3^{-n+1}\right)$ be any lower cut set for $f-g$ and let
$D_{n}=\left\{x \in X: k(x)<3^{-n+2}\right\}$. Since $k>0$ it follows that $\bigcap_{n=1}^{\infty} D_{n}=\varnothing$. Since

$$
A\left(f-g, 3^{-n+1}\right) \subseteq\left\{x \in X:(f-g)(x) \leq 3^{-n+1}\right\} \subseteq\left\{x \in X: k(x) \leq 3^{-n+1}\right\}
$$

and since $\left\{x \in X: k(x) \leq 3^{-n+1}\right\}$ and $\left\{x \in X: k(x) \geq 3^{-n+2}\right\}=X \backslash D_{n}$ are completely separated by contra-continuous functions $\sup \left\{3^{-n+1}, \inf \left\{k, 3^{-n+2}\right\}\right\}$, it follows that for each $n, A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ are completely separated by contra-continuous functions.

3 Applications

The abbreviations $c p c$ and $c s c$ are used for contra-precontinuous and contra-semi-continuous, respectively.

Before stating the consequences of theorems 2.1, 2.2, we suppose that X is a topological space whose kernel sets are open.
Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets G_{1}, G_{2} of X, there exist closed sets F_{1} and F_{2} of X such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$ then X has the weak $c c$-insertion property for ($c p c, c p c$) (resp. ($c s c, c s c$)).

Proof. Let g and f be real-valued functions defined on X, such that f and g are $c p c$ (resp. csc), and $g \leq f$.If a binary relation ρ is defined by $A \rho B$ in case $p\left(A^{\Lambda}\right) \subseteq p\left(B^{V}\right)$ (resp. $s\left(A^{\Lambda}\right) \subseteq s\left(B^{V}\right)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right)
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is a preopen (resp. semi-open) set and since $\{x \in$ $\left.X: g(x)<t_{2}\right\}$ is a preclosed (resp. semi-closed) set, it follows that $p\left(A\left(f, t_{1}\right)^{\Lambda}\right) \subseteq$ $p\left(A\left(g, t_{2}\right)^{V}\right)$ (resp. $s\left(A\left(f, t_{1}\right)^{\Lambda}\right) \subseteq s\left(A\left(g, t_{2}\right)^{V}\right)$). Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2.1.
Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets G_{1}, G_{2}, there exist closed sets F_{1} and F_{2} such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$ then every contra-precontinuous (resp. contra-semi-continuous) function is contracontinuous.

Proof. Let f be a real-valued contra-precontinuous (resp. contra-semi-continuous) function defined on X. Set $g=f$, then by Corollary 3.1, there exists a contracontinuous function h such that $g=h=f$.

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets G_{1}, G_{2} of X, there exist closed sets F_{1} and F_{2} of X such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$ then X has the $c c-$ insertion property for ($c p c, c p c$) (resp. $(c s c, c s c)$).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are $c p c$ (resp. csc), and $g<f$. Set $h=(f+g) / 2$, thus $g<h<f$, and by Corollary 3.2, since g and f are contra-continuous functions hence h is a contra-continuous function.

Corollary 3.4. If for each pair of disjoint subsets G_{1}, G_{2} of X, such that G_{1} is preopen and G_{2} is semi-open, there exist closed subsets F_{1} and F_{2} of X such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$ then X have the weak $c c$-insertion property for $(c p c, c s c)$ and (csc, cpc).

Proof. Let g and f be real-valued functions defined on X, such that g is $c p c$ (resp. $c s c$) and f is $c s c$ (resp. cpc), with $g \leq f$.If a binary relation ρ is defined by $A \rho B$ in case $s\left(A^{\Lambda}\right) \subseteq p\left(B^{V}\right)$ (resp. $p\left(A^{\Lambda}\right) \subseteq s\left(B^{V}\right)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right)
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is a semi-open (resp. preopen) set and since $\{x \in$ $\left.X: g(x)<t_{2}\right\}$ is a preclosed (resp. semi-closed) set, it follows that $s\left(A\left(f, t_{1}\right)^{\Lambda}\right) \subseteq$ $p\left(A\left(g, t_{2}\right)^{V}\right)$ (resp. $p\left(A\left(f, t_{1}\right)^{\Lambda}\right) \subseteq s\left(A\left(g, t_{2}\right)^{V}\right)$). Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2.1.

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas.
Lemma 3.1. The following conditions on the space X are equivalent:
(i) For each pair of disjoint subsets G_{1}, G_{2} of X, such that G_{1} is preopen and G_{2} is semi-open, there exist closed subsets F_{1}, F_{2} of X such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$.
(ii) If G is a semi-open (resp. preopen) subset of X which is contained in a preclosed (resp. semi-closed) subset F of X, then there exists a closed subset H of X such that $G \subseteq H \subseteq H^{\Lambda} \subseteq F$.
Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are semi-open (resp. preopen) and preclosed (resp. semi-closed) subsets of X, respectively. Hence, F^{c} is a preopen (resp. semi-open) and $G \cap F^{c}=\varnothing$.

By (i) there exists two disjoint closed subsets F_{1}, F_{2} such that $G \subseteq F_{1}$ and $F^{c} \subseteq F_{2}$. But

$$
F^{c} \subseteq F_{2} \Rightarrow F_{2}^{c} \subseteq F
$$

and

$$
F_{1} \cap F_{2}=\varnothing \Rightarrow F_{1} \subseteq F_{2}^{c}
$$

hence

$$
G \subseteq F_{1} \subseteq F_{2}^{c} \subseteq F
$$

and since F_{2}^{c} is an open subset containing F_{1}, we conclude that $F_{1}^{\Lambda} \subseteq F_{2}^{c}$, i.e.,

$$
G \subseteq F_{1} \subseteq F_{1}^{\Lambda} \subseteq F
$$

By setting $H=F_{1}$, condition (ii) holds.
(ii) \Rightarrow (i) Suppose that G_{1}, G_{2} are two disjoint subsets of X, such that G_{1} is preopen and G_{2} is semi-open.

This implies that $G_{2} \subseteq G_{1}^{c}$ and G_{1}^{c} is a preclosed subset of X. Hence by (ii) there exists a closed set H such that $G_{2} \subseteq H \subseteq H^{\Lambda} \subseteq G_{1}^{c}$.
But

$$
H \subseteq H^{\Lambda} \Rightarrow H \cap\left(H^{\Lambda}\right)^{c}=\varnothing
$$

and

$$
H^{\Lambda} \subseteq G_{1}^{c} \Rightarrow G_{1} \subseteq\left(H^{\Lambda}\right)^{c}
$$

Furthermore, $\left(H^{\Lambda}\right)^{c}$ is a closed subset of X. Hence $G_{2} \subseteq H, G_{1} \subseteq\left(H^{\Lambda}\right)^{c}$ and $H \cap\left(H^{\Lambda}\right)^{c}=\varnothing$. This means that condition (i) holds.

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_{1}, G_{2} of X, where G_{1} is preopen and G_{2} is semi-open, can be separated by closed subsets of X then there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that $h\left(G_{2}\right)=\{0\}$ and $h\left(G_{1}\right)=\{1\}$.

Proof. Suppose G_{1} and G_{2} are two disjoint subsets of X, where G_{1} is preopen and G_{2} is semi-open. Since $G_{1} \cap G_{2}=\varnothing$, hence $G_{2} \subseteq G_{1}^{c}$. In particular, since G_{1}^{c} is a preclosed subset of X containing the semi-open subset G_{2} of X,by Lemma 3.1, there exists a closed subset $H_{1 / 2}$ such that

$$
G_{2} \subseteq H_{1 / 2} \subseteq H_{1 / 2}^{\Lambda} \subseteq G_{1}^{c}
$$

Note that $H_{1 / 2}$ is also a preclosed subset of X and contains G_{2}, and G_{1}^{c} is a preclosed subset of X and contains the semi-open subset $H_{1 / 2}^{\Lambda}$ of X. Hence, by Lemma 3.1, there exists closed subsets $H_{1 / 4}$ and $H_{3 / 4}$ such that

$$
G_{2} \subseteq H_{1 / 4} \subseteq H_{1 / 4}^{\Lambda} \subseteq H_{1 / 2} \subseteq H_{1 / 2}^{\Lambda} \subseteq H_{3 / 4} \subseteq H_{3 / 4}^{\Lambda} \subseteq G_{1}^{c}
$$

By continuing this method for every $t \in D$, where $D \subseteq[0,1]$ is the set of rational numbers that their denominators are exponents of 2 , we obtain closed subsets H_{t} with the property that if $t_{1}, t_{2} \in D$ and $t_{1}<t_{2}$, then $H_{t_{1}} \subseteq H_{t_{2}}$. We define the function h on X by $h(x)=\inf \left\{t: x \in H_{t}\right\}$ for $x \notin G_{1}$ and $h(x)=1$ for $x \in G_{1}$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D, G_{2} \subseteq H_{t}$; hence $h\left(G_{2}\right)=\{0\}$. Furthermore, by definition, $h\left(G_{1}\right)=\{1\}$. It remains only to prove that h is a contra-continuous function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X: h(x)<\alpha\}=\varnothing$ and if $0<\alpha$ then $\{x \in X: h(x)<\alpha\}=\cup\left\{H_{t}: t<\alpha\right\}$, hence, they are closed subsets of X. Similarly, if $\alpha<0$ then $\{x \in X: h(x)>\alpha\}=X$ and if $0 \leq \alpha$ then $\{x \in X: h(x)>\alpha\}=\cup\left\{\left(H_{t}^{\Lambda}\right)^{c}: t>\alpha\right\}$ hence, every of them is a closed subset. Consequently h is a contra-continuous function.

Lemma 3.3. Suppose that X is a topological space such that every two disjoint semi-open and preopen subsets of X can be separated by closed subsets of X. The following conditions are equivalent:
(i) Every countable convering of semi-closed (resp. preclosed) subsets of X has a refinement consisting of preclosed (resp. semi-closed) subsets of X such that for every $x \in X$, there exists a closed subset of X containing x such that it intersects only finitely many members of the refinement.
(ii) Corresponding to every decreasing sequence $\left\{G_{n}\right\}$ of semi-open (resp. preopen) subsets of X with empty intersection there exists a decreasing sequence $\left\{F_{n}\right\}$ of preclosed (resp. semi-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_{n}=\varnothing$ and for every $n \in \mathbb{N}, G_{n} \subseteq F_{n}$.
Proof. (i) \Rightarrow (ii) Suppose that $\left\{G_{n}\right\}$ is a decreasing sequence of semi-open (resp. preopen) subsets of X with empty intersection. Then $\left\{G_{n}^{c}: n \in \mathbb{N}\right\}$ is a countable covering of semi-closed (resp. preclosed) subsets of X. By hypothesis (i) and Lemma 3.1, this covering has a refinement $\left\{V_{n}: n \in \mathbb{N}\right\}$ such that every V_{n} is a closed subset of X and $V_{n}^{\Lambda} \subseteq G_{n}^{c}$. By setting $F_{n}=\left(V_{n}^{\Lambda}\right)^{c}$, we obtain a decreasing sequence of closed subsets of X with the required properties.
(ii) \Rightarrow (i) Now if $\left\{H_{n}: n \in \mathbb{N}\right\}$ is a countable covering of semi-closed (resp. preclosed) subsets of X, we set for $n \in \mathbb{N}, G_{n}=\left(\bigcup_{i=1}^{n} H_{i}\right)^{c}$. Then $\left\{G_{n}\right\}$ is a decreasing sequence of semi-open (resp. preopen) subsets of X with empty intersection. By (ii) there exists a decreasing sequence $\left\{F_{n}\right\}$ consisting of preclosed (resp. semi-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_{n}=\varnothing$ and for every $n \in \mathbb{N}, G_{n} \subseteq F_{n}$. Now we define the subsets W_{n} of X in the following manner:
W_{1} is a closed subset of X such that $F_{1}^{c} \subseteq W_{1}$ and $W_{1}^{\Lambda} \cap G_{1}=\varnothing$.
W_{2} is a closed subset of X such that $W_{1}^{\Lambda} \cup F_{2}^{c} \subseteq W_{2}$ and $W_{2}^{\Lambda} \cap G_{2}=\varnothing$, and so on. (By Lemma 3.1, W_{n} exists).

Then since $\left\{F_{n}^{c}: n \in \mathbb{N}\right\}$ is a covering for X, hence $\left\{W_{n}: n \in \mathbb{N}\right\}$ is a covering for X consisting of closed sets. Moreover, we have
(i) $W_{n}^{\Lambda} \subseteq W_{n+1}$
(ii) $F_{n}^{c} \subseteq W_{n}$
(iii) $W_{n} \subseteq \bigcup_{i=1}^{n} H_{i}$.

Now setting $S_{1}=W_{1}$ and for $n \geq 2$, we set $S_{n}=W_{n+1} \backslash W_{n-1}^{\Lambda}$.
Then since $W_{n-1}^{\Lambda} \subseteq W_{n}$ and $S_{n} \supseteq W_{n+1} \backslash W_{n}$, it follows that $\left\{S_{n}: n \in \mathbb{N}\right\}$ consists of closed sets and covers X. Furthermore, $S_{i} \cap S_{j} \neq \varnothing$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

$$
\begin{array}{llll}
S_{1} \cap H_{1}, & S_{1} \cap H_{2} & & \\
S_{2} \cap H_{1}, & S_{2} \cap H_{2}, & S_{2} \cap H_{3} \\
S_{3} \cap H_{1}, & S_{3} \cap H_{2}, & S_{3} \cap H_{3}, & S_{3} \cap H_{4} \\
\vdots & & & \\
S_{i} \cap H_{1}, & S_{i} \cap H_{2}, & S_{i} \cap H_{3}, & S_{i} \cap H_{4}, \\
\cdots & \cdots, & S_{i} \cap H_{i+1} \\
\vdots & & &
\end{array}
$$

These sets are closed sets, cover X and refine $\left\{H_{n}: n \in \mathbb{N}\right\}$. In addition, $S_{i} \cap H_{j}$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_{n} \cap H_{m}$, then $S_{n} \cap H_{m}$ is a closed set containing x that intersects at most finitely many of sets $S_{i} \cap H_{j}$. Consequently, $\left\{S_{i} \cap H_{j}: i \in \mathbb{N}, j=\right.$ $1, \ldots, i+1\}$ refines $\left\{H_{n}: n \in \mathbb{N}\right\}$ such that its elements are closed sets, and for every point in X we can find a closed set containing the point that intersects only finitely many elements of that refinement.

Corollary 3.5. If every two disjoint semi-open and preopen subsets of X can be separated by closed subsets of X, and in addition, every countable covering of semi-closed (resp. preclosed) subsets of X has a refinement that consists of preclosed (resp. semi-closed) subsets of X such that for every point of X we can find a closed subset containing that point such that it intersects only a finite number of refining members then X has the weakly $c c$-insertion property for ($c p c, c s c$) (resp. $(c s c, c p c)$).

Proof. Since every two disjoint semi-open and preopen sets can be separated by closed subsets of X, therefore by Corollary 3.4, X has the weak $c c$-insertion property for (cpc, csc) and (csc, cpc). Now suppose that f and g are real-valued functions on X with $g<f$, such that g is $c p c$ (resp. csc), f is csc (resp. cpc) and $f-g$ is csc (resp. cpc). For every $n \in \mathbb{N}$, set

$$
A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x) \leq 3^{-n+1}\right\}
$$

Since $f-g$ is $c s c$ (resp. cpc), hence $A\left(f-g, 3^{-n+1}\right)$ is a semi-open (resp. preopen) subset of X. Consequently, $\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of semi-open (resp. preopen) subsets of X and furthermore since $0<f-g$, it follows that $\bigcap_{n=1}^{\infty} A\left(f-g, 3^{-n+1}\right)=\varnothing$. Now by Lemma 3.3, there exists a decreasing sequence $\left\{D_{n}\right\}$ of preclosed (resp. semi-closed) subsets of X such that $A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}$ and $\bigcap_{n=1}^{\infty} D_{n}=\varnothing$. But by Lemma 3.2, the pair $A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ of semi-open (resp. preopen) and preopen (resp. semi-open) subsets of X can be completely separated by contra-continuous functions. Hence by Theorem 2.2, there exists a contra-continuous function h defined on X such that $g<h<f$, i.e., X has the weakly $c c$-insertion property for ($c p c, c s c$) (resp. ($c s c, c p c$)).

Acknowledgement. This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

[1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
[2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
[3] M. Caldas and S. Jafari, Some properties of contra- β-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
[4] H.H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8(1964), 351-360.
[5] J. Dontchev, The characterization of some peculiar topological space via α - and β-sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
[6] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
[7] J. Dontchev, and H. Maki, On sg-closed sets and semi- $\lambda-$ closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
[8] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.
[9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 3745.
[10] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
[11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
[12] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
[13] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
[14] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
[15] M. Katětov, Correction to "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
[16] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
[17] N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70(1963), 36-41.
[18] S. N. Maheshwari and R. Prasad, On $R_{O s}-$ spaces, Portugal. Math., 34(1975), 213-217.
[19] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139146.
[20] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
[21] M. Mrsevic, On pairwise R and pairwise R_{1} bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
[22] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
[23] M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.

Author's address:
Majid Mirmiran
Department of Mathematics,
University of Isfahan,
Isfahan 81746-73441, Iran.
E-mail: mirmir@sci.ui.ac.ir

[^0]: Applied Sciences, Vol.20, 2018, pp. 129-138.
 © Balkan Society of Geometers, Geometry Balkan Press 2018.

