Insertion of a contra-continuous function between two comparable contra-precontinuous real-valued functions

M. Mirmiran

Abstract. A necessary and sufficient condition in terms of lower cut sets are given for the insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

M.S.C. 2010: 54C08, 54C10, 54C50; 26A15, 54C30.

Key words: Insertion; strong binary relation; semi-open set; preopen set; contracontinuous function; lower cut set.

1 Introduction

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 1964 [4]. A subset A of a topological space (X, τ) is called *preopen* or *locally dense* or *nearly open* if $A \subseteq Int(Cl(A))$. A set A is called *preclosed* if its complement is preopen or equivalently if $Cl(Int(A)) \subseteq A$. The term preopen, was used for the first time by A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb [20], while the concept of a locally dense set was introduced by H.H. Corson and E. Michael [4].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [17]. A subset A of a topological space (X, τ) is called *semi-open* [10] if $A \subseteq Cl(Int(A))$. A set A is called *semi-closed* if its complement is semi-open or equivalently if $Int(Cl(A)) \subseteq A$.

A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ -sets [19].

Recall that a real-valued function f defined on a topological space X is called A-continuous [23] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had

Applied Sciences, Vol.20, 2018, pp. 129-138.

[©] Balkan Society of Geometers, Geometry Balkan Press 2018.

focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [6] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 12, 13, 22].

Hence, a real-valued function f defined on a topological space X is called *contra-continuous* (resp. *contra-semi-continuous*, *contra-precontinuous*) if the preimage of every open subset of \mathbb{R} is closed (resp. *semi-closed*, preclosed) in X[6].

Results of Katětov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contracontinuous function between two comparable real-valued functions on such topological spaces that Λ -sets or kernel of sets are open [19].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. g < f) in case $g(x) \leq f(x)$ (resp. g(x) < f(x)) for all x in X.

The following definitions are modifications of conditions considered in [16].

A property P defined relative to a real-valued function on a topological space is a cc-property provided that any constant function has property P and provided that the sum of a function with property P and any contra-continuous function also has property P. If P_1 and P_2 are cc-properties, the following terminology is used:(i) A space X has the weak cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a contra-continuous function h such that $g \leq h \leq f$.(ii) A space X has the cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that g < f, g has property P_1 and f has property P_2 , then there exists a contra-continuous function h such that g < h < f.(iii) A space X has the weakly cc-insertion h such that g < h < f.(iii) A space X has the weakly cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that g < f, g has property P_1 and f has property P_2 , then there exists a contra-continuous function h such that g < h < f.(iii) A space X has the weakly cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that g < f, g has property P_1 , f has property P_2 and f - g has property P_2 , then there exists a contra-continuous function h such that g < h < f.

In this paper, for a topological space whose Λ -sets or kernel of sets are open, is given a sufficient condition for the weak cc-insertion property. Also for a space with the weak cc-insertion property, we give a necessary and sufficient condition for the space to have the cc-insertion property. Several insertion theorems are obtained as corollaries of these results.

2 The main result

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows:

 $\begin{array}{l} A^{\Lambda}=\cap\{O:O\supseteq A,O\in (X,\tau)\} \text{ and } A^{V}=\cup\{F:F\subseteq A,F^{c}\in (X,\tau)\}.\\ \text{ In [7, 18, 21], } A^{\Lambda} \text{ is called the } kernel \text{ of } A. \end{array}$

The family of all preopen, preclosed, semi-open and semi-closed will be denoted by $pO(X, \tau)$, $pC(X, \tau)$, $sO(X, \tau)$ and $sC(X, \tau)$, respectively. Insertion of a contra-continuous function

We define the subsets $p(A^{\Lambda}), p(A^{V}), s(A^{\Lambda})$ and $s(A^{V})$ as follows: $p(A^{\Lambda}) = \cap \{O : O \supseteq A, O \in pO(X, \tau)\},$ $p(A^{V}) = \cup \{F : F \subseteq A, F \in pC(X, \tau)\},$ $s(A^{\Lambda}) = \cap \{O : O \supseteq A, O \in sO(X, \tau)\}$ and $s(A^{V}) = \cup \{F : F \subseteq A, F \in sC(X, \tau)\}.$ $p(A^{\Lambda}) \text{ (resp. } s(A^{\Lambda}))$ is called the *prekernel* (resp. *semi - kernel*) of A.

The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If ρ is a binary relation in a set S then $\overline{\rho}$ is defined as follows: $x \overline{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

1) If $A_i \ \rho \ B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in P(X) such that $A_i \ \rho \ C$ and $C \ \rho \ B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

2) If $A \subseteq B$, then $A \bar{\rho} B$.

3) If $A \ \rho \ B$, then $A^{\Lambda} \subseteq B$ and $A \subseteq B^{V}$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f,\ell)$ is called a *lower indefinite cut set* in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which kernel sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \ \rho \ A(g,t_2)$, then there exists a contra-continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of Xby F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [15] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$. For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \leq h \leq f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g,t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = H(t_2)^V \setminus H(t_1)^{\Lambda}$. Hence $h^{-1}(t_1, t_2)$ is closed in X, i.e., h is a contra-continuous function on X.

The above proof used the technique of theorem 1 in [14].

Theorem 2.2. Let P_1 and P_2 be cc-property and X be a space that satisfies the weak cc-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that g < f, g has property P_1 and f has property P_2 . The space X has the cc-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f-g, 3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each $n, X \setminus D_n$ and $A(f-g, 3^{-n+1})$ are completely separated by contracontinuous functions.

Proof. Assume that X has the weak cc-insertion property for (P_1, P_2) . Let g and f be functions such that g < f, g has property P_1 and f has property P_2 . By hypothesis there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a sequence (D_n) such that $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and such that for each $n, X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by contra-continuous functions. Let k_n be a contra-continuous function such that $k_n = 0$ on $A(f - g, 3^{-n+1})$ and $k_n = 1$ on $X \setminus D_n$. Let a function k on X be defined by

$$k(x) = 1/2 \sum_{n=1}^{\infty} 3^{-n} k_n(x).$$

By the Cauchy condition and the properties contra-continuous functions, the function k is a contra-continuous function. Since $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and since $k_n = 1$ on $X \setminus D_n$, it follows that 0 < k. Also 2k < f - g: In order to see this, observe first that if x is in $A(f - g, 3^{-n+1})$, then $k(x) \leq 1/4(3^{-n})$. If x is any point in X, then $x \notin A(f - g, 1)$ or for some n,

$$x \in A(f - g, 3^{-n+1}) - A(f - g, 3^{-n});$$

in the former case 2k(x) < 1, and in the latter $2k(x) \leq 1/2(3^{-n}) < f(x) - g(x)$. Thus if $f_1 = f - k$ and if $g_1 = g + k$, then $g < g_1 < f_1 < f$. Since P_1 and P_2 are E-properties, then g_1 has property P_1 and f_1 has property P_2 . Since X has the weak cc-insertion property for (P_1, P_2) , then there exists a contra-continuous function h such that $g_1 \leq h \leq f_1$. Thus g < h < f, it follows that X satisfies the cc-insertion property for (P_1, P_2) . (The technique of this proof is by Katětov[14]).

Conversely, let g and f be functions on X such that g has property P_1 , f has property P_2 and g < f. By hypothesis, there exists a contra-continuous function h such that g < h < f. We follow an idea contained in Lane [16]. Since the constant function 0 has property P_1 , since f - h has property P_2 , and since X has the cc-insertion property for (P_1, P_2) , then there exists a contra-continuous function ksuch that 0 < k < f - h. Let $A(f - g, 3^{-n+1})$ be any lower cut set for f - g and let

$$D_n = \{x \in X : k(x) < 3^{-n+2}\}. \text{ Since } k > 0 \text{ it follows that } \bigcap_{n=1}^{\infty} D_n = \emptyset. \text{ Since } A(f - g, 3^{-n+1}) \subseteq \{x \in X : (f - g)(x) \le 3^{-n+1}\} \subseteq \{x \in X : k(x) \le 3^{-n+1}\}$$

and since $\{x \in X : k(x) \leq 3^{-n+1}\}$ and $\{x \in X : k(x) \geq 3^{-n+2}\} = X \setminus D_n$ are completely separated by contra-continuous functions $\sup\{3^{-n+1}, \inf\{k, 3^{-n+2}\}\}$, it follows that for each $n, A(f - g, 3^{-n+1})$ and $X \setminus D_n$ are completely separated by contra-continuous functions.

3 Applications

The abbreviations *cpc* and *csc* are used for contra-precontinuous and contra-*semi*-continuous, respectively.

Before stating the consequences of theorems 2.1, 2.2, we suppose that X is a topological space whose kernel sets are open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the weak cc-insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let g and f be real-valued functions defined on X, such that f and g are cpc (resp. csc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $p(A^{\Lambda}) \subseteq p(B^{V})$ (resp. $s(A^{\Lambda}) \subseteq s(B^{V})$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a preopen (resp. semi-open) set and since $\{x \in X : g(x) < t_2\}$ is a preclosed (resp. semi-closed) set, it follows that $p(A(f,t_1)^{\Lambda}) \subseteq p(A(g,t_2)^V)$ (resp. $s(A(f,t_1)^{\Lambda}) \subseteq s(A(g,t_2)^V)$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2 , there exist closed sets F_1 and F_2 such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then every contra-precontinuous (resp. contra-*semi*-continuous) function is contra-continuous.

Proof. Let f be a real-valued contra-precontinuous (resp. contra-*semi*-continuous) function defined on X. Set g = f, then by Corollary 3.1, there exists a contra-continuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the *cc*-insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are cpc (resp. csc), and g < f. Set h = (f + g)/2, thus g < h < f, and by Corollary 3.2, since g and f are contra-continuous functions hence h is a contra-continuous function.

Corollary 3.4. If for each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is *semi*-open, there exist closed subsets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X have the weak *cc*-insertion property for (cpc, csc) and (csc, cpc).

Proof. Let g and f be real-valued functions defined on X, such that g is cpc (resp. csc) and f is csc (resp. cpc), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $s(A^{\Lambda}) \subseteq p(B^{V})$ (resp. $p(A^{\Lambda}) \subseteq s(B^{V})$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a *semi*-open (resp. preopen) set and since $\{x \in X : g(x) < t_2\}$ is a preclosed (resp. *semi*-closed) set, it follows that $s(A(f,t_1)^{\Lambda}) \subseteq p(A(g,t_2)^V)$ (resp. $p(A(f,t_1)^{\Lambda}) \subseteq s(A(g,t_2)^V)$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is *semi*-open, there exist closed subsets F_1, F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$.

(ii) If G is a semi-open (resp. preopen) subset of X which is contained in a preclosed (resp. semi-closed) subset F of X, then there exists a closed subset H of X such that $G \subseteq H \subseteq H^{\Lambda} \subseteq F$.

Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are semi-open (resp. preopen) and preclosed (resp. semi-closed) subsets of X, respectively. Hence, F^c is a preopen (resp. semi-open) and $G \cap F^c = \emptyset$.

By (i) there exists two disjoint closed subsets F_1, F_2 such that $G \subseteq F_1$ and $F^c \subseteq F_2$. But

$$F^c \subseteq F_2 \Rightarrow F_2^c \subseteq F,$$

and

$$F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c$$

hence

$$G \subseteq F_1 \subseteq F_2^c \subseteq F$$

and since F_2^c is an open subset containing F_1 , we conclude that $F_1^{\Lambda} \subseteq F_2^c$, i.e.,

$$G \subseteq F_1 \subseteq F_1^{\Lambda} \subseteq F.$$

By setting $H = F_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that G_1, G_2 are two disjoint subsets of X, such that G_1 is preopen and G_2 is *semi*-open.

This implies that $G_2 \subseteq G_1^c$ and G_1^c is a preclosed subset of X. Hence by (ii) there exists a closed set H such that $G_2 \subseteq H \subseteq H^{\Lambda} \subseteq G_1^c$. But

$$H \subseteq H^{\Lambda} \Rightarrow H \cap (H^{\Lambda})^c = \emptyset$$

and

$$H^{\Lambda} \subseteq G_1^c \Rightarrow G_1 \subseteq (H^{\Lambda})^c.$$

Furthermore, $(H^{\Lambda})^c$ is a closed subset of X. Hence $G_2 \subseteq H, G_1 \subseteq (H^{\Lambda})^c$ and $H \cap (H^{\Lambda})^c = \emptyset$. This means that condition (i) holds. \Box

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is preopen and G_2 is *semi*-open, can be separated by closed subsets of X then there exists a contra-continuous function $h: X \to [0, 1]$ such that $h(G_2) = \{0\}$ and $h(G_1) = \{1\}$.

Proof. Suppose G_1 and G_2 are two disjoint subsets of X, where G_1 is preopen and G_2 is *semi*-open. Since $G_1 \cap G_2 = \emptyset$, hence $G_2 \subseteq G_1^c$. In particular, since G_1^c is a preclosed subset of X containing the *semi*-open subset G_2 of X, by Lemma 3.1, there exists a closed subset $H_{1/2}$ such that

$$G_2 \subseteq H_{1/2} \subseteq H_{1/2}^{\Lambda} \subseteq G_1^c.$$

Note that $H_{1/2}$ is also a preclosed subset of X and contains G_2 , and G_1^c is a preclosed subset of X and contains the *semi*-open subset $H_{1/2}^{\Lambda}$ of X. Hence, by Lemma 3.1, there exists closed subsets $H_{1/4}$ and $H_{3/4}$ such that

$$G_2 \subseteq H_{1/4} \subseteq H_{1/4}^{\Lambda} \subseteq H_{1/2} \subseteq H_{1/2}^{\Lambda} \subseteq H_{3/4} \subseteq H_{3/4}^{\Lambda} \subseteq G_1^c.$$

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain closed subsets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function hon X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin G_1$ and h(x) = 1 for $x \in G_1$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D, G_2 \subseteq H_t$; hence $h(G_2) = \{0\}$. Furthermore, by definition, $h(G_1) = \{1\}$. It remains only to prove that h is a contra-continuous function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \cup \{H_t : t < \alpha\}$, hence, they are closed subsets of X. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \leq \alpha$ then $\{x \in X : h(x) > \alpha\} = \cup \{(H_t^{\Lambda})^c : t > \alpha\}$ hence, every of them is a closed subset. Consequently h is a contra-continuous function.

Lemma 3.3. Suppose that X is a topological space such that every two disjoint semi-open and preopen subsets of X can be separated by closed subsets of X. The following conditions are equivalent:

(i) Every countable convering of semi-closed (resp. preclosed) subsets of X has a refinement consisting of preclosed (resp. semi-closed) subsets of X such that for every $x \in X$, there exists a closed subset of X containing x such that it intersects only finitely many members of the refinement.

(ii) Corresponding to every decreasing sequence $\{G_n\}$ of semi-open (resp. preopen) subsets of X with empty intersection there exists a decreasing sequence $\{F_n\}$ of preclosed (resp. semi-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n.$

Proof. (i) \Rightarrow (ii) Suppose that $\{G_n\}$ is a decreasing sequence of *semi*-open (resp. preopen) subsets of X with empty intersection. Then $\{G_n^c : n \in \mathbb{N}\}$ is a countable covering of semi-closed (resp. preclosed) subsets of X . By hypothesis (i) and Lemma 3.1, this covering has a refinement $\{V_n : n \in \mathbb{N}\}$ such that every V_n is a closed subset of X and $V_n^{\Lambda} \subseteq G_n^c$. By setting $F_n = (V_n^{\Lambda})^c$, we obtain a decreasing sequence of closed subsets of X with the required properties.

(ii) \Rightarrow (i) Now if $\{H_n : n \in \mathbb{N}\}$ is a countable covering of *semi*-closed (resp. preclosed) subsets of X, we set for $n \in \mathbb{N}$, $G_n = (\bigcup_{i=1}^n H_i)^c$. Then $\{G_n\}$ is a decreasing sequence of semi-open (resp. preopen) subsets of X with empty intersection. By (ii) there exists a decreasing sequence $\{F_n\}$ consisting of preclosed (resp. semi-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n$. Now we define the subsets W_n of X in the following manner:

 W_1 is a closed subset of X such that $F_1^c \subseteq W_1$ and $W_1^{\Lambda} \cap G_1 = \emptyset$.

 W_2 is a closed subset of X such that $W_1^{\Lambda} \cup F_2^c \subseteq W_2$ and $W_2^{\Lambda} \cap G_2 = \emptyset$, and so on. (By Lemma 3.1, W_n exists).

Then since $\{F_n^c : n \in \mathbb{N}\}$ is a covering for X, hence $\{W_n : n \in \mathbb{N}\}$ is a covering for X consisting of closed sets. Moreover, we have

(i) $W_n^{\Lambda} \subseteq W_{n+1}$ (ii) $F_n^c \subseteq W_n$

(iii) $W_n \subseteq \bigcup_{i=1}^n H_i$.

Now setting $S_1 = W_1$ and for $n \ge 2$, we set $S_n = W_{n+1} \setminus W_{n-1}^{\Lambda}$.

Then since $W_{n-1}^{\Lambda} \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of closed sets and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

These sets are closed sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a closed set containing x that intersects at most finitely many of sets $S_i \cap H_i$. Consequently, $\{S_i \cap H_i : i \in \mathbb{N}, j = i \in \mathbb{N}\}$ $1, \ldots, i+1$ refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are closed sets, and for every point in X we can find a closed set containing the point that intersects only finitely many elements of that refinement. \Box **Corollary 3.5.** If every two disjoint semi-open and preopen subsets of X can be separated by closed subsets of X, and in addition, every countable covering of semi-closed (resp. preclosed) subsets of X has a refinement that consists of preclosed (resp. semi-closed) subsets of X such that for every point of X we can find a closed subset containing that point such that it intersects only a finite number of refining members then X has the weakly cc-insertion property for (cpc, csc) (resp. (csc, cpc)).

Proof. Since every two disjoint *semi*-open and preopen sets can be separated by closed subsets of X, therefore by Corollary 3.4, X has the weak cc-insertion property for (cpc, csc) and (csc, cpc). Now suppose that f and g are real-valued functions on X with g < f, such that g is cpc (resp. csc), f is csc (resp. cpc) and f - g is csc (resp. cpc). For every $n \in \mathbb{N}$, set

$$A(f - g, 3^{-n+1}) = \{x \in X : (f - g)(x) \le 3^{-n+1}\}.$$

Since f - g is csc (resp. cpc), hence $A(f - g, 3^{-n+1})$ is a semi-open (resp. preopen) subset of X. Consequently, $\{A(f - g, 3^{-n+1})\}$ is a decreasing sequence of semi-open (resp. preopen) subsets of X and furthermore since 0 < f - g, it follows that $\bigcap_{n=1}^{\infty} A(f - g, 3^{-n+1}) = \emptyset$. Now by Lemma 3.3, there exists a decreasing sequence $\{D_n\}$ of preclosed (resp. semi-closed) subsets of X such that $A(f - g, 3^{-n+1}) \subseteq D_n$ and $\bigcap_{n=1}^{\infty} D_n = \emptyset$. But by Lemma 3.2, the pair $A(f - g, 3^{-n+1})$ and $X \setminus D_n$ of semi-open (resp. preopen) and preopen (resp. semi-open) subsets of X can be completely separated by contra-continuous functions. Hence by Theorem 2.2, there exists a contra-continuous function h defined on X such that g < h < f, i.e., X has the weakly cc-insertion property for (cpc, csc) (resp. (csc, cpc)).

Acknowledgement. This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

- A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
- [2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
- [3] M. Caldas and S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
- [4] H.H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8(1964), 351-360.
- [5] J. Dontchev, The characterization of some peculiar topological space via α and β -sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
- [6] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
- J. Dontchev, and H. Maki, On sg-closed sets and semi-λ-closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
- [8] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.

- [9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.
- [10] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
- [11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
- [12] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
- [13] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
- [14] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
- [15] M. Katětov, Correction to "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
- [16] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
- [17] N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70(1963), 36-41.
- [18] S. N. Maheshwari and R. Prasad, On $R_{Os}-spaces,$ Portugal. Math., 34(1975), 213-217.
- [19] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
- [20] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [21] M. Mrsevic, On pairwise R and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
- [22] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
- [23] M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.

Author's address:

Majid Mirmiran Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. E-mail: mirmir@sci.ui.ac.ir

138