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1 Introduction

The Lyapunov matrix differential equations occur in many branches of control theory
such as optimal control and stability analysis.

Recent works for Ψ− stability, Ψ− asymptotic stability, Ψ− boundedness, Ψ− in-
stability, controllability, dichotomy and conditioning for Lyapunov matrix differential
equations have been given in many papers. See [3], [4], [5], [6], [7], [8], [10], [14], [15],
[16] and the references therein.

In this paper are presented a several new sufficient conditions for Ψ− asymptotic
stability of the trivial solution to the nonlinear Lyapunov matrix differential equation
with integral term as right-hand side:

(1.1) Z ′ = A(t)Z + ZB(t) +

∫ t

0

F (t, s, Z(s))ds.

These conditions can be expressed in the terms of a fundamental matrices of the
matrix differential equations

X ′ = A(t)X(1.2)

Y ′ = Y B(t)(1.3)

and on the function F .
Here, Ψ is a matrix function whose introduction permits to obtain a mixed asymp-

totic behavior for the components of solutions.
The main tool used in this paper is the technique of Kronecker product of matri-

ces (combined with the variation of constants formula), which has been successfully
applied in various fields of matrix theory, group theory and particle physics. See, for
example, the cited papers and the references cited therein.
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2 Preliminaries

In this section we present some basic notations, definitions, hypotheses and results
which are useful later on.

Let Rd be the Euclidean d − dimensional space. For x = (x1, x2, ..., xd)
T ∈ Rd,

let ∥ x ∥ = max{| x1|, | x2|, ..., | xd|} be the norm of x (here, T denotes transpose).

Let Md×d be the linear space of all real d× d matrices.

For A = (aij) ∈ Md×d, we define the norm | A | by formula | A | = sup
∥x∥≤1

∥ Ax ∥ .

It is well-known that | A | = max
1≤i≤d

{
d∑

j=1

| aij|}.

By a solution of the equation (1.1) we mean a continuous differentiable d × d
matrix function satisfying the equation (1.1) for all t ∈ R+ = [0,∞)

In equation (1.1), we assume that A andB are continuous d×d matrices on R+ and
F : D −→ Md×d, D = {(t, s, Z) | 0 ≤ s ≤ t < +∞, Z ∈ Md×d}, is continuous function
such that F (t, s, Od) = Od. It is well-known that these conditions ensure the local
existence of a solution of (1.1) passing through any given point (t0, Z0) ∈ R+×Md×d,
but it does not guarantee that the solution is unique or that it can be continued for
large values of t ∈ R+.

Let Ψi :R+ −→ (0,∞), i = 1, 2, ..., d, be continuous functions and

Ψ = diag [Ψ1,Ψ2, · · ·Ψd].

In this paper, we will admit the following hypothesis:

(H) For all t0 ∈ R+, Z0 ∈ Md×d and ρ > 0, if | Ψ(t0)Z0 |< ρ, then any solution
Z(t) of (1.1) which satisfies the equality Z(t0) = Z0 exists on R+ and satisfies the
inequality | Ψ(t)Z(t) |≤ ρ for all t ∈ [0, t0].

This is a natural hypothesis in studying Ψ− stability of trivial solution of (1.1).
See, for example, [12], [11], [9].

Definition 2.1. ([3], [4]) (i) The trivial solution of the equation (1.1) is said to be
Ψ− stable over R+ if for each ε > 0 and each t0 ∈ R+ there is a a corresponding
δ = δ(ε, t0) > 0 such that any solution Z(t) of (1.1) which satisfies the inequality
| Ψ(t0)Z(t0) |< δ, exists and satisfies the inequality | Ψ(t)Z(t) |< ε for all t ≥ t0.
(ii) The trivial solution of the equation (1.1) is said to be Ψ− asymptotically stable
over R+ if it is Ψ− stable over R+ and in addition, for each t0 ∈ R+, there is a
corresponding δ0 = δ0(t0) > 0 such that any solution Z(t) of (1.1) which satisfies the
inequality | Ψ(t0)Z(t0) |< δ0, satisfies the condition lim

t→∞
Ψ(t)Z(t) = Od.

Remark 2.2. 1. The Definition extends the definition of (asymptotic) stability from
(vector) differential equations to matrix differential equations.
2. For Ψ = Id, one obtain the notion of classical stability (see [2]).
3. It is easy to see that if Ψ and Ψ−1 are bounded on R+, then the Ψ− stability is
equivalent with the classical stability.
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Definition 2.3. ([1]) Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mp×q. The Kronecker
product of A and B, written A⊗B, is defined to be the partitioned matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 .

Obviously, A⊗B ∈ Mmp×nq.
The important rules of calculation of the Kronecker product are given in [1], [13],

Chapter 2 and Lemma 1, [3].

Definition 2.4. ([13]) The application Vec : Mm×n −→ Rmn, defined by

Vec(A) = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)
T ,

where A = (aij) ∈ Mm×n, is called the vectorization operator.

For important properties and rules of calculation of the Vec operator, see Lemmas
2, 3, 4, [3].

For ”corresponding Kronecker product system associated with (1.1)”, see Lemma
5, [3].

The Lemmas 6 and 8, [3], play an important role in the proofs of main results of
present paper.

3 Main results

Theorem 3.1. Suppose that:
(1) the hypothesis (H) is fulfilled;
(2) the fundamental matrices X(t) and Y (t) for the linear Lyapunov matrix differen-
tial equations (1.2) and (1.3) respectively satisfy the condition∫ t

0

φ(s)
∣∣(Y T (t)(Y T )−1(s)

)
⊗
(
Ψ(t)X(t)X−1(s)Ψ−1(s)

)∣∣ ds ≤ M, for all t ≥ 0,

where M is a positive constant and φ is a continuous function φ : R+ → (0,∞) such
that

∫∞
0

φ(t)dt = +∞;
(3) the matrix function F (t, s, Z) satisfies the inequality

| Ψ(t)F (t, s, Z) |≤ f(t, s) | Ψ(s)Z |,

for (t, s, Z) ∈ D, where f(t, s) is a continuous nonnegative function for t ≥ s ≥ 0
such that

K = sup
t≥0

∫ t

0

f(t, s)

φ(t)
ds <

1

Md
, lim

s→∞

∫ t

0

f(s, u)

φ(s)
du = 0, for all t > 0.

Then, the trivial solution of (1.1) is Ψ-asymptotically stable over R+.
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Proof. We will use Definition of Ψ−asymptotic stability. For a given ε > 0 and
t0 ∈ R+, we choose δ = δ(ε, t0) such that 0 < δ < min{ ε

2 ,
1−dKM

dKM+NN0

ε
2d}, where N

and N0 are positive constants that will be specified below.
Let Z(t) be any solution of equation (1.1) which satisfies the inequality | Ψ(t0)Z(t0) |<
δ. From hypothesis (1), Z(t) exists on R+ and satisfies the inequality | Ψ(t)Z(t) |≤ δ,
for all t ∈ [0, t0].
We may reason by reduction ad absurdum.
Suppose that there exists τ > t0 such that | Ψ(τ)Z(τ) |= ε and one can consider
| Ψ(t)Z(t) |< ε for t ∈ [t0, τ).
Then, Z(t) is a solution of the equation

Z ′ = A(t)Z + ZB(t) +

∫ t

0

F (t, s, Z(s))ds, t ∈ [t0, τ ].

From Lemma 5, [3], the vector function z(t) = Vec(Z(t)) is a solution of the corre-
sponding Kronecker product system associated with this equation, i.e. of the system

(3.1) z′ =
(
Id ⊗A(t) +BT (t)⊗ Id

)
z +

∫ t

0

f(t, s, z(s))ds

where f(t, s, z) = Vec (F (t, s, Z)) , on the same interval [t0, τ ].
From Lemma 8, [3], we know that if X(t) and Y (t) are fundamental matrices for
equations (1.2) and (1.3) respectively, then, the matrix U(t) = Y T (t) ⊗ X(t) is a
fundamental matrix for the linear homogeneous system associated with system (3.1),
i.e. for the differential system

(3.2) z′ =
(
Id ⊗A(t) +BT (t)⊗ Id

)
z.

Therefore, by the variation of constants formula (see [2], Chapter II, section 2 (8))

z(t) = U(t)U−1(t0)z0 +

∫ t

t0

U(t)U−1(s)

∫ s

0

f(s, u, z(u))duds,

for t ∈ [t0, τ ], where z0 = Vec(Z(t0)).
From Lemma 1, [3],

U(t)U−1(t0) =
(
Y T (t)⊗X(t)

) (
Y T (t0)⊗X(t0)

)−1
=

=
(
Y T (t)

(
Y T
)−1

(t0)
)
⊗
(
X(t)X−1(t0)

)
, t ≥ t0,

and then, for t ∈ [t0, τ ]

z(t) =
[(

Y T (t)
(
Y T
)−1

(t0)
)
⊗
(
X(t)X−1(t0)

)]
z0 +

(3.3)

+

∫ t

t0

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗
(
X(t)X−1(s)

)] ∫ s

0

f(s, u, z(u))duds.
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We define the vector function w(t) by setting w(t) = (Id ⊗Ψ(t)) z(t), for t ∈ [t0, τ ]

and the matrix function Φ(t, s) =
(
Y T (t)

(
Y T
)−1

(s)
)
⊗
(
Ψ(t)X(t)X−1(s)Ψ−1(s)

)
,

for t ≥ s ≥ 0. Multiplying through Id ⊗Ψ(t), we have (see Lemma 1, [3])

w(t) = Φ(t, t0)w(t0) +

∫ t

t0

Φ(t, s)

∫ s

0

(Id ⊗Ψ(s)) f(s, u, z(u))duds, t ∈ [t0, τ ].

As a result, for t ∈ [t0, τ ],
(3.4)

∥ w(t) ∥≤| Φ(t, t0)|∥ w(t0) ∥ +

∫ t

t0

| Φ(t, s) |
∫ s

0

∥ (Id ⊗Ψ(s)) f(s, u, z(u)) ∥ duds.

From hypotheses and Lemma 6, [3],

∥ (Id ⊗Ψ(s)) f(s, u, z(u)) ∥ = ∥ (Id ⊗Ψ(s))Vec (F (s, u, Z(u))) ∥ ≤

≤ | Ψ(s)F (s, u, Z(u)) | ≤ f(s, u) | Ψ(u)Z(u) | ≤

≤ d · f(s, u) ∥ (Id ⊗Ψ(u))Vec(Z(u)) ∥ = d · f(s, u) ∥ w(u) ∥,

for s ∈ [t0, τ ], s ≥ u ≥ 0.
From hypothesis (2), Theorems 1 and 2, [3] and Theorem 2, [4], there exists a constant

N > 0 such that | Y T (t)⊗Ψ(t)X(t) |≤ Ne−M−1
∫ t
0
φ(s)ds, for t ≥ 0.

As a result, for t ∈ [t0, τ ],

| Φ(t, t0) | = |
(
Y T (t)

(
Y T
)−1

(t0)
)
⊗
(
Ψ(t)X(t)X−1(t0)Ψ

−1(t0)
)
| =

= |
(
Y T (t)⊗Ψ(t)X(t)

)
·
((

Y T
)−1

(t0)⊗X−1(t0)Ψ
−1(t0)

)
| ≤

≤ | Y T (t)⊗Ψ(t)X(t) ||
(
Y T
)−1

(t0)⊗X−1(t0)Ψ
−1(t0) | ≤ NN0,

where N0 =|
(
Y T
)−1

(t0)⊗X−1(t0)Ψ
−1(t0) | .

Therefore, from (3.4) and the above results, for t ∈ [t0, τ ],

∥ w(t) ∥≤| Φ(t, t0) |∥ w(t0) ∥ +
∫ t

t0
| Φ(t, s) |

∫ s

0
∥ (Id ⊗Ψ(s)) f(s, u, z(u)) ∥ duds ≤

≤ NN0 ∥ w(t0) ∥ +
∫ t

t0
φ(s) | Φ(t, s) |

(∫ s

0
d·f(s,u)
φ(s) ∥ w(u) ∥ du

)
ds ≤

≤ NN0δ + d
∫ t

t0
φ(s) | Φ(t, s) |

(∫ t0
0

f(s,u)
φ(s) ∥ w(u) ∥ du+

∫ s

t0

f(s,u)
φ(s) ∥ w(u) ∥ du

)
ds ≤

≤ NN0δ + dδ
∫ t

t0
φ(s) | Φ(t, s) |

(∫ t0
0

f(s,u)
φ(s) du

)
ds+

+ d
∫ t

t0
φ(s) | Φ(t, s) |

(∫ s

t0

f(s,u)
φ(s) ∥ w(u) ∥ du

)
ds ≤

≤ NN0δ + dδK
∫ t

t0
φ(s) | Φ(t, s) | ds+

+ d
∫ t

t0
φ(s) | Φ(t, s) |

[∫ s

t0

f(s,u)
φ(s)

(
sup

t∈[t0,τ ]

∥ w(t) ∥

)
du

]
ds ≤

≤ δ(NN0 + dKM) + dKM

(
sup

t∈[t0,τ ]

∥ w(t) ∥

)
.
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It follows that

(3.5)

(
sup

t∈[t0,τ ]

∥ w(t) ∥

)
≤ NN0 + dKM

1− dKM
δ

and then, ∥ w(t) ∥≤ ε
2d , for t ∈ [t0, τ ].

From Lemma 6, [3], it follows that| Ψ(τ)Z(τ) |≤ ε
2 . This is a clear contradiction of

the fact that | Ψ(τ)Z(τ) |= ε.
From Definition, it follows that the trivial solution of (1.1) is Ψ− stable over R+.
To prove that the trivial solution of (1.1) is Ψ− asymptotically stable over R+, we
must show furter that for each t0 ∈ R+, there exists δ0 = δ0(t0) > 0 such that if
| Ψ(t0)Z(t0) |< δ0, then lim

t→∞
Ψ(t)Z(t) = Od.

From the above result, it follows that for ε = 1 and t0 ≥ 0, there exists δ0 = δ(1, t0) <
1 such that if Z0 ∈ Md×d and | Ψ(t0)Z0 |< δ0, then any solution Z(t) of (1.1) which
satisfies the equality Z(t0) = Z0, satisfies the condition | Ψ(t)Z(t) |< 1, for t ≥ 0.
Then, ∥ w(t) ∥< 1 for t ≥ 0.
We will show that lim

t→∞
Ψ(t)Z(t) = Od, by showing lim

t→∞
∥ w(t) ∥= 0.

Suppose that lim sup
t→∞

∥ w(t) ∥ = ℓ > 0. Let θ be such that dKM < θ < 1. It follows

that there exists t1 ≥ t0 such that | Ψ(t)Z(t) |≤ ℓ
θ , for t ≥ t1. From hypothesis (3), it

follows that there exists s0 > t1 such that∫ t1

0

f(s, u)

φ(s)
du < ℓ

θ − dKM

2dθM
, for s ≥ s0.

From (3.4), we obtain an estimate for ∥ w(t) ∥, for t > s0 :

∥ w(t) ∥≤| Φ(t, t0) |∥ w(t0) ∥ +
∫ t

t0
| Φ(t, s) |

∫ s

0
∥ (Id ⊗Ψ(s)) f(s, u, z(u)) ∥ duds <

<| Y T (t)⊗Ψ(t)X(t) ||
(
Y T
)−1

(t0)⊗X−1(t0)Ψ
−1(t0) | δ0+

+
∫ s0
t0

φ(s) | Φ(t, s) |
(∫ s

0
df(s,u)
φ(s) ∥ w(u) ∥ du

)
ds+

+
∫ t

s0
φ(s) | Φ(t, s) |

(∫ t1
0

df(s,u)
φ(s) ∥ w(u) ∥ du

)
ds+

+
∫ t

s0
φ(s) | Φ(t, s) |

(∫ s

t1

df(s,u)
φ(s) ∥ w(u) ∥ du

)
ds ≤

≤ (N0δ0 + P0) | Y T (t)⊗Ψ(t)X(t) | +dℓ θ−dKM
2dθM M + dMK ℓ

θ ,

where P0 =
∫ s0
t0

φ(s) |
(
Y T
)−1

(s)⊗X−1(s)Ψ−1(s) |
(∫ s

0
df(s,u)
φ(s) du

)
ds.

From lim
t→∞

| Y T (t)⊗Ψ(t)X(t) | = 0, it follows that there exists t2 > s0 such that

| Y T (t)⊗Ψ(t)X(t) |<
ℓ− ℓ

θ
θ+dKM

2

2 (N0δ0 + P0)
, for all t > t2.

Thus, for t > t2, we have

∥ w(t) ∥≤ (N0δ0 + P0)
ℓ− ℓ

θ
θ+dKM

2

2 (N0δ0 + P0)
+ dℓ

θ − dKM

2dθM
M + dMK

ℓ

θ
=

ℓ

4

(
3 +

dKM

θ

)
.

From this and definition of ℓ, we obtain ℓ ≤ ℓ
4

(
3 + dKM

θ

)
< ℓ, which is contradictory.

Therefore, lim
t→∞

∥ w(t) ∥= 0 and then (see Lemma 6, [3])

lim
t→∞

Ψ(t)Z(t) = Od.
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Thus, the trivial solution of equation (1.1) is Ψ− asymptotically stable over R+. �

Theorem 3.2. Suppose that:
(1) the hypothesis (H) is fulfilled;
(2) the fundamental matrix X(t) for the linear matrix differential equation (1.2) sat-
isfies the condition∫ t

0

φ(s)
∣∣Ψ(t)X(t)X−1(s)Ψ−1(s)

∣∣ ds ≤ M, for all t ≥ 0,

where M is a positive constant and φ is a continuous function φ : R+ → (0,∞) such
that

∫∞
0

φ(t)dt = +∞;
(3) the matrix function F (t, s, Z) satisfies the inequality

| Ψ(t)F (t, s, Z) |≤ f(t, s) | Ψ(s)Z |,

for (t, s, Z) ∈ D, where f(t, s) is a continuous nonnegative function for t ≥ s ≥ 0
such that

K = sup
t≥0

[
| B(t) |
φ(t)

+

∫ t

0

f(t, s)

φ(t)
ds

]
<

1

M
, lim

s→∞

∫ t

0

f(s, u)

φ(s)
du = 0, for all t > 0.

Then, the trivial solution of (1.1) is Ψ− asymptotically stable over R+.

Proof. We will use Definition of Ψ− asymptotic stability. For a given ε > 0 and
t0 ∈ R+, we choose δ = δ(ε, t0) such that

0 < δ <
1−KM

NN0 +KM
ε,

where N and N0 are positive constants that will be specified below.
Let Z(t) be any solution of (1.1) which satisfies the inequality | Ψ(t0)Z(t0) |< δ.
From the first assumption of the Theorem, the solution Z(t) is defined on R+ and
| Ψ(t)Z(t) |≤ δ for all t ∈ [0, t0]. The solution Z(t) satisfies the equation (1.1) written
in the form

Z ′ = A(t)Z +

[
ZB(t) +

∫ t

0

F (t, s, Z(s))ds

]
, t ∈ R+.

From the variation of constants formula (see [2], Chapter II, Section 2 (8))

(3.6) Z(t) = X(t)X−1(t0)Z(t0) +

∫ t

t0

X(t)X−1(s)

[
Z(s)B(s) +

∫ s

0

F (s, u, Z(u))du

]
ds,

for all t ≥ t0.
From hypothesis (2), Theorems 1 and 2, [3] and Theorem 2, [4], there exists a constant
N > 0 such that

| Ψ(t)X(t) |≤ Ne−M−1
∫ t
0
φ(s)ds, for t ≥ 0.

We define the matrix function Φ(t, s) by Φ(t, s) = Ψ(t)X(t)X−1(s)Ψ−1(s), for t ≥
s ≥ 0 and N0 =| X−1(t0)Ψ

−1(t0) | .
For an arbitrary T ∈ (t0,∞), let W (T ) be defined by W (T ) = sup

t∈[t0,T ]

| Ψ(t)Z(t) | .
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It follows from (3.6) that, for t ∈ [t0, T ],
| Ψ(t)Z(t) |≤| Ψ(t)X(t)X−1(t0)Z(t0) | +
+
∫ t

t0
| Ψ(t)X(t)X−1(s)Ψ−1(s) || Ψ(s)Z(s)B(s) +

∫ s

0
Ψ(s)F (s, u, Z(u))du | ds ≤

≤| Ψ(t)X(t)X−1(t0)Ψ
−1(t0)Ψ(t0)Z(t0) | +

+
∫ t

t0
| Φ(t, s) |

[
| Ψ(s)Z(s) || B(s) | +

∫ s

0
| Ψ(s)F (s, u, Z(u)) | du

]
ds ≤

≤| Ψ(t)X(t) || X−1(t0)Ψ
−1(t0) || Ψ(t0)Z(t0) | +

+
∫ t

t0
| Φ(t, s) |

[
| Ψ(s)Z(s) || B(s) | +

∫ s

0
f(s, u) | Ψ(u)Z(u) | du

]
ds ≤

≤ NN0δ +
∫ t

t0
φ(s) | Φ(t, s) |

[
| Ψ(s)Z(s) | |B(s)|

φ(s) +
∫ s

0
f(s,u)
φ(s) | Ψ(u)Z(u) | du

]
ds ≤

≤ NN0δ +
∫ t

t0
φ(s) | Φ(t, s) | [| Ψ(s)Z(s) | |B(s)|

φ(s) +
∫ t0
0

f(s,u)
φ(s) | Ψ(u)Z(u) | du+

+
∫ s

t0

f(s,u)
φ(s) | Ψ(u)Z(u) | du]ds ≤

≤ NN0δ +
∫ t

t0
φ(s) | Φ(t, s) |

[
W (T ) |B(s)|

φ(s) + δ
∫ t0
0

f(s,u)
φ(s) du+

∫ s

t0

f(s,u)
φ(s) W (T )du

]
ds ≤

≤ NN0δ + δKM +W (T )
∫ t

t0
φ(s) | Φ(t, s) |

[
|B(s)|
φ(s) +

∫ s

t0

f(s,u)
φ(s) du

]
ds ≤

≤ δ (NN0 +KM) +KMW (T ).
It follows that

(3.7) W (T ) ≤ NN0 +KM

1−KM
δ < ε.

From this,
| Ψ(t)Z(t) |< ε, for all t ≥ t0.

Thus, we proved that for a given ε > 0 and for each t0 ∈ R+, there exists a δ ∈(
0, 1−KM

NN0+KM ε
)

such that any solution Z(t) of (1.1) which satisfies the inequality

| Ψ(t0)Z(t0) |< δ, exists and satisfies the inequality | Ψ(t)Z(t) |< ε, for all t ≥ t0.
From Definition, it follows that the trivial solution of (1.1) is Ψ− stable over R+.
To prove that the trivial solution of (1.1) is Ψ− asymptotically stable over R+, we
must show furter that for each t0 ∈ R+, there exists δ0 = δ0(t0) > 0 such that if
| Ψ(t0)Z(t0) |< δ0, then lim

t→∞
Ψ(t)Z(t) = Od.

From the above result, it follows that for ε = 1 and t0 ≥ 0, there exists δ0 = δ(1, t0) <
1 such that if Z0 ∈ Md×d and | Ψ(t0)Z0 |< δ0, then any solution Z(t) of (1.1) which
satisfies the equality Z(t0) = Z0, satisfies the condition | Ψ(t)Z(t) |< 1, for t ≥ 0.
We will show that lim

t→∞
Ψ(t)Z(t) = Od.

Let ℓ = lim sup
t→∞

| Ψ(t)Z(t) | and choose θ so that KM < θ < 1.

If ℓ > 0, then | Ψ(t)Z(t) |≤ ℓ
θ , for t ≥ t1 > t0 say.

From hypothesis (3), we can choose s0 > t1 so large that∫ t1

0

f(s, u)

φ(s)
du < ℓ

θ −KM

2θM
, for s ≥ s0.

Now, from (3.6) and the above results, for t > s0,
| Ψ(t)Z(t) |≤| Ψ(t)X(t)X−1(t0)Z(t0) | +
+
∫ t

t0
| Ψ(t)X(t)X−1(s)Ψ−1(s) || Ψ(s)Z(s)B(s) +

∫ s

0
Ψ(s)F (s, u, Z(u))du | ds ≤

≤ | Ψ(t)X(t) | ·
[
| X−1(t0)Ψ

−1(t0) || Ψ(t0)Z(t0) | +
+
∫ t1
t0

| X−1(s)Ψ−1(s) || Ψ(s)Z(s)B(s) +
∫ s

0
Ψ(s)F (s, u, Z(u))du | ds

]
+
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+
∫ t

t1
φ(s) | Φ(t, s) |

[
| Ψ(s)Z(s) | |B(s)|

φ(s) +
∫ s

0
f(s,u)
φ(s) | Ψ(u)Z(u) | du

]
ds ≤

≤ | Ψ(t)X(t) | ·
[
| X−1(t0)Ψ

−1(t0) || Ψ(t0)Z(t0) | +
+
∫ t1
t0

| X−1(s)Ψ−1(s) || Ψ(s)Z(s)B(s) +
∫ s

0
Ψ(s)F (s, u, Z(u))du | ds

]
+

+
∫ t

t1
φ(s) | Φ(t, s) |

[
ℓ
θ
|B(s)|
φ(s) +

∫ t1
0

f(s,u)
φ(s) du+

∫ s

t1

f(s,u)
φ(s)

ℓ
θdu

]
ds ≤

≤ | Ψ(t)X(t) | ·
[
| X−1(t0)Ψ

−1(t0) || Ψ(t0)Z(t0) | +
+
∫ t1
t0

| X−1(s)Ψ−1(s) || Ψ(s)Z(s)B(s) +
∫ s

0
Ψ(s)F (s, u, Z(u))du | ds

]
+

+Mℓ θ−KM
2θM + ℓ

θKM =
≤ | Ψ(t)X(t) | ·

[
| X−1(t0)Ψ

−1(t0) || Ψ(t0)Z(t0) | +
+
∫ t1
t0

| X−1(s)Ψ−1(s) || Ψ(s)Z(s)B(s) +
∫ s

0
Ψ(s)F (s, u, Z(u))du | ds

]
+

+ ℓ θ+KM
2θ .

Letting t → ∞, we get

ℓ ≤ ℓ
θ +KM

2θ
< ℓ,

which is impossible.
Therefore, ℓ = 0.
From Definition of ℓ, it results that lim

t→∞
Ψ(t)Z(t) = Od.

Thus, the trivial solution of (1.1) is Ψ− asymptotically stable over R+. �

Remark 3.1. The Theorem 3.2 is no longer true if we require that the above equation
(1.2) is only Ψ− asymptotically stable over R+ instead of the sufficient condition (2)
of Theorem for Ψ− asymptotic stability of equation (1.2) (see Theorems 1 and 2, [4]).
To see this, we show the following simple example, adapted from Example 4, [4].

Example 3.2. Consider the equation (1.1) with

A(t) = O2, B(t) =

(
0 0
0 a√

t+1

)
, F (t, s, Z) = O2,

where a ia a positive constant.
A fundamental matrix X(t) for the matrix differential equation (1.2) is X(t) = I2.

Consider Ψ(t) =

( 1
t2+1 0

0 1
t+1

)
.

From lim
t→∞

Ψ(t)X(t) = O2 and Theorem 1, [4], it follows that the equation (1.2) is Ψ−
asymptotically stable over R+.
It is easy to see (by reduction to absurdity) that there is not a function φ to satisfy
the condition of Theorem 2.
Now, the equation (1.1) becomes Z ′ = ZB(t) and have the general solution

Z(t) = C

(
1 0

0 e2a
√
t+1

)
,

where C is a real 2× 2 constant matrix.
A particular solution of the equation is

Z0(t) = c

(
1 0

0 e2a
√
t+1

)
,
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where c is a real constant.
From lim

t→∞
| Ψ(t)Z0(t) |= +∞, it is easy to see that the equation is not Ψ− asymp-

totically stable over R+.

Theorem 3.3. Suppose that:
(1) the hypothesis (H) is fulfilled;
(2) the fundamental matrix Y (t) for the linear matrix differential equations (1.3) sat-
isfies the condition∫ t

0

φ(s)
∣∣(Y T (t)(Y T )−1(s)

)
⊗
(
Ψ(t)Ψ−1(s)

)∣∣ ds ≤ M, for all t ≥ 0,

where M is a positive constant and φ is a continuous function φ : R+ −→ (0,∞) such
that

∫∞
0

φ(t)dt = +∞;
(3) the matrix function F (t, s, Z) satisfies the inequality

| Ψ(t)F (t, s, Z) |≤ f(t, s) | Ψ(s)Z |,

for (t, s, Z) ∈ D, where f(t, s) is a continuous nonnegative function for t ≥ s ≥ 0
such that

K = sup
t≥0

[
| Ψ(t)A(t)Ψ−1(t) |

φ(t)
+ d

∫ t

0

f(t, s)

φ(t)
ds

]
<

1

M

and

lim
s→∞

∫ t

0

f(s, u)

φ(s)
du = 0, for all t > 0.

Then, the trivial solution of (1.1) is Ψ− asymptotically stable over R+.

Proof. We see equation (1.1) in the form

Z ′ = ZB(t) +

[
A(t)Z +

∫ t

0

F (t, s, Z(s))ds

]
, t ≥ 0.

With a similar proof as in Theorem 3.1, we have the conclusion. �

Remark 3.3. 1. The above Theorem is no longer true if we require that the above
equation (3) is only Ψ−asymptotically stable over R+, instead of the condition (2) of
Theorem. A simple example can shows this.
For Theorem 3.1, we have a similar situation.

2. On the other hand, if the assumption ” lim
s→∞

∫ t

0
f(s,u)
φ(s) du = 0, for all t > 0” is

omitted in Theorems, the trivial solution of (1.1) cannot be Ψ−asymptotically stable
over R+.

Remark 3.4. The above Theorems generalize the results from Theorem 4.2, [12],
Theorem 4.1, [9], and Theorem 5, [11], from differential systems to Lyapunov matrix
differential equations.

Remark 3.5. The above Theorems have very useful corollaries in the particular cases
when f(t, s) = h(t)g(s) or f(t, s) = k(t− s).

Remark 3.6. The function φ in the above Theorems can serve to weaken the required
hypotheses on the fundamental matrices X and Y or function F .
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