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Abstract. In this paper, we introduce the notions of µ-statistically lacu-
nary convergence of generalized difference sequence in probabilistic normed
spaces and investigate some characterizations. Furthermore, the notion
of µ-statistically lacunary Cauchy for generalized difference sequences has
been developed in the settings of probabilistic norm and investigated some
of its properties.
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1 Introduction

In numerous branches of mathematics, it has been found much convenient to have a
idea of distance that is applicable for the members of abstract sets. In context to this,
Fréchet [11] introduced the metric space theory in 1906. In this theory, by associating
a non-negative real number, he described the concept of distance between two elements
of a set satisfying some conditions. But it is not always possible for associating such
a unique number to each pair of members of the set. In such type of conditions, it is
better to view the distance concept as a statistical instead of a determinate one. In
this context, summing up the idea of metric space, Menger [19] presented the notion
of statistical metric space, now called probabilistic metric space. Utilizing the idea
of statistical metric, and summing up the concept of ordinary normed linear space,
Šerstnev [33] presented the idea of probabilistic normed space (in short PN-space)
in 1962, in which norm of a vector is expressed by distribution function instead of
a positive number. Situations in which the usual norm is not been able to compute
the length of a vector precisely, the idea of probabilistic norm [1, 16] happens to be
valuable. The concept of statistical convergence was first introduced by Steinhaus [34]
as well as by Fast [10] in 1951 and then studied by many authors [13, 27]. In 2007,
Karakus [17] has given an analogous extension for the idea of statistical convergence
into the probabilistic normed spaces. As an important generalization of statistical
convergence [5, 22, 37], Fridy and Orhan [14, 15] presented the idea of lacunary
statistical convergence in 1993, which was extended to the idea of probabilistic normed
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spaces by Rafi [26] in 2009. Further, this theory was studied by numerous authors [8,
20, 23, 24, 25, 31, 38] from different aspects. The idea of lacunary strong convergence
was introduced by Freedman et al. [12] and investigated by other authors [2, 25, 35].
The concept of difference sequence was first proposed by Kizmaz [18] in 1981 and then
in 1995, it was generalized by Et and Çolak [9] to termed as generalized difference
sequence. Then Tripathy and Mahanta [36] have studied the concept of generalized
difference sequence from lacunary sequence point of view and then the statistical
analog of this notions has been examined by numerous authors [2, 21, 32] in different
aspects.

An intriguing generalization to the theory of statistical convergence is to think
about the idea of statistical convergence employing a complete two valued measure
µ which is defined on a field of subsets of natural numbers as introduced by Connor
[3, 4]. Some recent works in this field can be found in [6, 7, 28, 29]. As motivated by
the literature, we feel that the study of lacunary statistical convergence of generalized
difference sequence in PN-spaces using the two valued measure µ will provide a more
general framework for the area. In context to that, we present the concept of µ-
statistically lacunary convergence of generalized difference sequence in PN-spaces and
investigate some results. Further, we introduce (∆n, µ)-statistically lacunary Cauchy
sequences in PN-spaces and study some properties.

A brief sketch of the article is described as follows : Section 2 gives some pre-
liminary definitions and examples which are going to be used during this investiga-
tion. We have defined µ-statistically lacunary convergence of generalized difference
sequences in PN-spaces and discussed some of their properties in section 3. In section
4, we introduce the notion of (∆n, µ)-statistically lacunary Cauchy sequences in the
framework of PN-spaces and investigate some characterizations.

2 Preliminaries

Throughout the article, R+, R, N and Z+ denote the sets of non-negative real, real,
natural numbers and non-negative integers, respectively.

Definition 2.1. [30] “A function f : R+ → [0, 1] is called a distribution function if
it is non-decreasing, left-continuous with inft∈R+ f(t) = 0 and supt∈R+ f(t) = 1. Let
D denotes the set of all distribution functions.”

Definition 2.2. [30] “A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous t-norm if it satisfies the following conditions, for all a, b, c, d ∈ [0, 1]:

(i) a ∗ 1 = a,

(ii) a ∗ b = b ∗ a,

(iii) a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d,

(iv) (a ∗ b) ∗ c = a ∗ (b ∗ c).”

Definition 2.3. [1] “A triplet (Y,M, ∗) is called a probabilistic normed space (in
short a PN-space) if Y is a real vector space, M a mapping from Y into D (for y ∈ Y ,
the distribution function M(y) is denoted by My and My(t) is the value of My at
t ∈ R+) and ∗ a t-norm satisfying the following conditions:
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(i) My(0) = 0,

(ii) My(t) = 1, for all t > 0 if and only if y = 0,

(iii) Mαy(t) = My

(
t

|α|

)
, for all α ∈ R \ {0},

(iv) Mx+y(s+ t) ≥ Mx(s) ∗My(t), for all x, y ∈ Y and s, t ∈ R+.”

Example 2.4. [17] “Let (Y, ||.||) be a normed linear space. Let a ∗ b = min{a, b}, for
all a, b ∈ [0, 1] and My(t) =

t

t+ ||y||
, y ∈ Y and t ≥ 0. Then (Y,M, ∗) is a PN-space.”

Definition 2.5. [9] “For an integer m ∈ Z+, the generalized difference operator ∆nxi

is defined as ∆nxi = ∆n−1xi −∆n−1xi+1, where ∆0xi = xi and ∆xi = xi − xi+1, for
all i ∈ N.”

With the help of above definition, we introduce the following three definitions.

Definition 2.6. We say that a sequence y = (yi) in a PN-space (Y,M, ∗) is ∆n-
convergent to y0 ∈ Y in terms of the probabilistic norm M , if for every λ ∈ (0, 1)
and ε > 0, there is an i0 ∈ N such that M∆nyi−y0(ε) > 1 − λ, whenever i ≥ i0. It is
denoted by M − lim∆ny = y0.

Definition 2.7. We say that a sequence y = (yi) in a PN-space (Y,M, ∗) is ∆n-
Cauchy sequence in terms of the probabilistic norm M , if for every λ ∈ (0, 1) and
ε > 0, there is an i0 ∈ N such that M∆nyi−∆nyj (ε) > 1− λ, for all i, j ≥ i0.

Definition 2.8. We say that a sequence y = (yi) in a PN-space (Y,M, ∗) is ∆n-
bounded in terms of the probabilistic norm N , if there exists λ ∈ (0, 1) and ε > 0
such that M∆nyi(ε) > 1 − λ, for all i. We denote the collection of all ∆n-bounded
sequence in (Y,M, ∗) by ℓM∞(∆n).

Throughout the article, µ will mean a complete {0, 1}-valued finitely additive
measure defined on Γ, a field of all finite subsets of N and suppose that µ(P ) = 0, if
|P | < ∞; if P ⊂ Q and µ(Q) = 0, then µ(P ) = 0; and µ(N) = 1.

Using the above notion of µ, we introduce the next two definitions in the theory of
probabilistic normed space keeping in mind that these notions are going to be useful
in the next section.

Definition 2.9. We say that a sequence y = (yi) in a PN-space (Y,M, ∗) is µ-
statistically convergent to y0 in terms of the probabilistic norm M , if for every λ ∈
(0, 1) and ε > 0,

µ({i ∈ N : Myi−y0
(ε) ≤ 1− λ}) = 0.

It is denoted by µ− statM − lim y = y0.

Definition 2.10. We say that a sequence y = (yi) in a PN-space (Y,M, ∗) is µ-
statistically Cauchy in terms of the probabilistic norm M , provided that for every
λ ∈ (0, 1) and ε > 0, there is a integer j ∈ N satisfying

µ({i ∈ N : Myi−yj (ε) ≤ 1− λ}) = 0.
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Definition 2.11. [14] “An increasing sequence θ = {kr}, r = 0, 1, 2, . . . with k0 = 0
of non-negative integers is said to be a lacunary sequence such that hr = kr−kr−1 →
∞ whenever r → ∞. The intervals governed by θ will be denoted by Ir = (kr−1, kr]
and the ratio kr

kr−1
will be denoted by qr.”

In view of the above idea, we define the following notions in a PN-space.

Definition 2.12. We say that a sequence y = (yi) in a PN-space (Y,M, ∗) is lacunary
convergent to y0 in terms of the probabilistic normM , if for every λ ∈ (0, 1) and ε > 0,
there is r0 ∈ N such that

1

hr

∑
i∈Ir

Myi−y0(ε) > 1− λ,

for all r ≥ r0. It is written as Mθ − lim y = y0.

Definition 2.13. We say that a sequence y = (yi) in a PN-space (Y,M, ∗) is ∆n-
lacunary convergent to y0 in terms of the probabilistic norm M , if for every λ ∈ (0, 1)
and ε > 0, there is r0 ∈ N such that

1

hr

∑
i∈Ir

M∆nyi−y0(ε) > 1− λ,

for all r ≥ r0. It is written as Mθ − lim∆ny = y0.

Definition 2.14. Suppose that θ is a lacunary sequence. Then we say that y = {yi}
in a PN-space (Y,M, ∗) is µ-statistically lacunary convergent to y0 in terms of the
probabilistic norm M , if for every λ ∈ (0, 1) and ε > 0, we have

µ

({
r ∈ N :

1

hr

∑
i∈Ir

Myi−y0(ε) ≤ 1− λ

})
= 0.

It is denoted by µθ − statM − lim y = y0.

Definition 2.15. Suppose that θ is a lacunary sequence. Then we say that y = {yi}
in a PN-space (Y,M, ∗) is µ-statistically lacunary Cauchy in terms of the probabilistic
norm M , if for every λ ∈ (0, 1) and ε > 0, there is a j ∈ N such that

µ

({
r ∈ N :

1

hr

∑
i∈Ir

Myi−yj (ε) ≤ 1− λ

})
= 0.

3 µ-statistically lacunary convergence of generalized
difference sequences in PN-spaces

In the current section, the idea of µ-statistically lacunary convergence of generalized
difference sequences in PN-spaces has been introduced and studied some properties.
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Definition 3.1. Suppose that θ is a lacunary sequence. Then we say that y = {yi}
in a PN-space (Y,M, ∗) is (∆n, µ)-statistically lacunary convergent to y0 in terms of
the probabilistic norm M , if for every λ ∈ (0, 1) and ε > 0, we have

µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≤ 1− λ

})
= 0.

It is denoted by µθ − statM − lim∆nyi = y0.

In view of the Definition 3.1 and other properties of measure, we state the next
result without proof.

Lemma 3.1. Suppose that θ is a lacunary sequence and let (Y,M, ∗) be a PN-space.
Then the following are equivalent for every λ ∈ (0, 1) and ε > 0:

(i) µθ − statM − lim∆nyi = y0,

(ii) µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≤ 1− λ

})
= 0,

(iii) µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) > 1− λ

})
= 1,

(iv) µθ − stat− limM∆nyi−y0(ε) = 1.

Using Lemma 3.1, the next results can easily be proved. So we omit the proof.

Theorem 3.2. Suppose that θ is a lacunary sequence and let (Y,M, ∗) be a PN-space.
If (yi) in Y is (∆n, µ)-statistically lacunary convergent in terms of the probabilistic
norm M , then µθ − statM−limit is unique.

Theorem 3.3. Suppose that θ is a lacunary sequence and let (Y,M, ∗) be a PN-space.
If Mθ − lim∆nyi = y0, then µθ − statM − lim∆nyi = y0.

The other way round of the Theorem 3.3 is not valid in general, which can be
shown with the help of succeeding example.

Example 3.2. Suppose that (R, ∥ · ∥) be the space of all real numbers with standard

norm. Let p ∗ q = pq, for p, q ∈ [0, 1] and My(s) =
s

s+ ∥ y ∥
, where y ∈ R and s ≥ 0.

Then we observe that (R,M, ∗) is a probabilistic normed space. Let θ = {kr} be a
lacunary sequence and A = {i ∈ N : kr − [

√
hr] + 1 ≤ i ≤ kr, r ∈ N} ⊂ N be such that

µ(A) = 0. We now define y = (yi) whose elements are given as follows:

∆nyi =

{
i, if kr − [

√
hr] + 1 ≤ i ≤ kr, r ∈ N

0, otherwise.

Now, for every λ ∈ (0, 1) and ε > 0, let

Ar(λ, ε) =

{
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi
(ε) ≤ 1− λ

}
.
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Then

Ar(λ, ε) =

{
r ∈ N :

1

hr

∑
i∈Ir

ε

ε+ ∥ ∆nyi ∥
≤ 1− λ

}

=

{
r ∈ N : hr

∑
i∈Ir

ε+ ∥ ∆nyi ∥
ε

≥ 1

1− λ

}

=

{
r ∈ N :

∑
i∈Ir

∥ ∆nyi ∥≥
1− h2

r(1− λ)

1− λ
· ε

hr
> 0

}
= {r ∈ N : ∆nyi = i}

=
{
i ∈ N : kr − [

√
hr] + 1 ≤ i ≤ kr, r ∈ N

}
.

Thus µ (Ar(λ, ε)) = 0 and consequently µθ − statM − lim∆nyi = 0. On the other
hand, the sequence {∆nyi} is not lacunary convergent to 0 in terms of the probabilistic
norm M since

M∆nyi(ε) =
ε

ε+ ∥ ∆nyi ∥

=

{ ε
ε+∥i∥ , for kr − [

√
hr] + 1 ≤ i ≤ kr, r ∈ N

1, otherwise,

and so
1

hr

∑
i∈Ir

M∆nyi(ε) ≤ 1, which completes the rest of the proof.

Lemma 3.4. Suppose that θ is a lacunary sequence and let (Y,M, ∗) be a PN-space.
Then

(a) If µθ − statM − lim∆nxi = x0 and µθ − statM − lim∆nyi = y0, then µθ −
statM − lim∆n(xi + yi) = x0 + y0.

(b) If µθ−statM − lim∆nxi = x0 and α ∈ R, then µθ−statM − lim∆n(αxi) = αx0.

(c) If µθ − statM − lim∆nxi = x0 and µθ − statM − lim∆nyi = y0, then µθ −
statM − lim∆n(xi − yi) = x0 − y0.

Theorem 3.5. Suppose that θ is a lacunary sequence and let (Y,M, ∗) be a PN-space.
Then µθ − statM − lim∆nyi = y0 iff there is an increasing index sequence of natural
numbers P = {ik} such that µ(P ) = 1 and Mθ − lim∆nyik = y0.

Proof. First we prove the necessary part. Let µθ − statM − lim∆nyi = y0. For any
ε > 0 and γ = 1, 2, . . . , we consider the succeeding two sets:

AM (γ, ε) =

{
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) > 1− 1

γ

}
,

BM (γ, ε) =

{
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≤ 1− 1

γ

}
.
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Then µ(BM (γ, ε)) = 0, by hypothesis. Also for ε > 0 and γ ∈ N, we observe that

(3.1) AM (γ + 1, ε) ⊂ AM (γ, ε),

and

(3.2) µ(AM (γ, ε)) = 1.

Now we need to show that Mθ − lim∆nyik = y0, for any r ∈ AM (γ, ε). Suppose
that Mθ − lim∆nyi ̸= y0, for some r ∈ AM (γ, ε). Then for all r0 ∈ N, there exists
λ ∈ (0, 1) and ε > 0 such that

1

hr

∑
i∈Ir

M∆nyi−y0
(ε) ≤ 1− λ, for r ≥ r0.

Suppose
1

hr

∑
i∈Ir

M∆nyi−y0
(ε) > 1− λ, for r < r0.

Then

µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) > 1− λ

})
= 0.

Since λ > 1/γ, so µ(AM (γ, ε)) = 0, which is a contradiction to (3.2). Thus we must
have Mθ − lim∆nyik = y0.

Conversely, suppose that there is an increasing index sequence P = {ik} of natural
numbers with µ(P ) = 1 and Mθ−lim∆nyik = y0. Then for every λ ∈ (0, 1) and ε > 0,
there is r0 ∈ N so that

1

hr

∑
i∈Ir

M∆nyi−y0(ε) > 1− λ, for all r ≥ r0.

Now, we define the following set as

BM (λ, ε) =

{
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≤ 1− λ

}
⊆ N− {ik+1, ik+2, . . . }.

Then µ(BM (λ, ε)) ≤ 1− 1 = 0. Hence µθ − statM − lim∆nyi = y0. �

Theorem 3.6. Suppose that θ is a lacunary sequence and let (Y,M, ∗) be a PN-
space. Then µθ − statM − lim∆nyi = y0 iff there is a sequence x = {xi} such that
Mθ − lim∆nxi = y0 and µ({i ∈ N : ∆nxi = ∆nyi}) = 1.

Proof. Suppose µθ − statM − lim∆nyi = y0. Then, by Theorem 3.5, we obtain
an increasing index sequence P = {ik} of natural numbers so that µ(P ) = 1 and
Mθ − lim∆nyik = y0. Now we define x whose terms are given as

(3.3) ∆nxi =

{
∆nyi, if i ∈ P
y0, otherwise



114 R. Haloi, M. Sen and B. C. Tripathy

serves our purpose.
Conversely, suppose that x = (xi) and y = (yi) are two sequences so that Mθ −

lim∆nxi = y0 and µ({i ∈ N : ∆nxi = ∆nyi}) = 1. Then, for every ε > 0 and
λ ∈ (0, 1), we have{

r ∈ N :
1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≤ 1− λ

}
⊆

{
r ∈ N :

1

hr

∑
i∈Ir

M∆nxi−y0(ε) ≤ 1− λ

}
∪ {i ∈ N : xi ̸= yi}.

Thus,

µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≤ 1− λ

})
≤ µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nxi−y0(ε) ≤ 1− λ

})
+ µ ({i ∈ N : xi ̸= yi}) .

Since Mθ − lim∆nxi = y0, so the set{
r ∈ N :

1

hr

∑
i∈Ir

M∆nxi−y0(ε) ≤ 1− λ

}

contains at most finite numbers of terms. Thus we have

µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nxi−y0(ε) ≤ 1− λ

})
= 0.

Also by hypothesis, µ({i ∈ N : ∆nxi ̸= ∆nyi}) = 0. Thus, we have

µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≤ 1− λ

})
= 0

and consequently, µθ − statM − lim∆nyi = y0. �

Theorem 3.7. Suppose that θ is a lacunary sequence and let (Y,M, ∗) be a PN-
space. Then µθ − statM − lim∆nxi = L iff there exist sequences {yi} and {zi} in
Y such that ∆nxi = ∆nyi + ∆nzi for all i ∈ N, where Mθ − lim∆nyi = L and
µθ − statM − lim∆nzi = 0.

Proof. Let µθ − statM − lim∆nxi = L. Then by Theorem 3.5, there is an in-
creasing index sequence P = {ik} of natural numbers such that µ(P ) = 1 and
Mθ − lim∆nxik = L. We define {yi} and {zi} whose terms are given as follows:

∆nyi =

{
∆nxi, if i ∈ P
L, otherwise,

and

∆nzi =

{
0, if i ∈ P
∆nxi − L, otherwise.
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Then {yi} and {zi} serve our purpose.
Conversely, suppose that {yi} and {zi} are two sequences so that ∆nxi = ∆nyi +

∆nzi for all i ∈ N, where Mθ − lim∆nyi = L and µθ − statM − lim∆nzi = 0. Then
by Theorem 3.3, we have µθ − statM − lim∆nyi = L. Also from Lemma 3.4(a), we
have

µθ − statM − lim∆nxi = µθ − statM − lim∆n(yi + zi)

= L+ 0 = L.

Hence the result. �

4 (∆n, µ)-statistically lacunary Cauchy sequences in
PN-spaces

In this section, we develop the concepts of (∆n, µ)-statistically lacunary Cauchy se-
quences in PN-spaces and study some properties.

Definition 4.1. Suppose that (Y,M, ∗) is a PN-space. Then a sequence y = (yn) in
Y is (∆n, µ)-statistically lacunary Cauchy in terms of the probabilistic norm M , if
there is a subsequence {yi(r)} with i(r) ∈ Ir, for each r such that M−lim

r
∆nyi(r) = y0

and for every λ ∈ (0, 1) and ε > 0, we have

µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−∆nyi(r)
(ε) ≤ 1− λ

})
= 0.

Theorem 4.1. Suppose that θ is a lacunary sequence and let (Y,M, ∗) be a PN-
space. Then y = {yi} ∈ Y is (∆n, µ)-statistically lacunary convergent in terms of
the probabilistic norm M iff it is (∆, µ)-statistically lacunary Cauchy in terms of the
probabilistic norm M .

Proof. Suppose that µθ − statM − lim∆nyi = y0. For each j, let

Kj =

{
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) > 1− 1

j

}
.

Then for each j, Kj+1 ⊆ Kj and µ(Kj ∩ Ir) = 1. So there exists q1 such that q1 ≤ r
implies K1 ∩ Ir ̸= ϕ. Again we choose q2 > q1 such that q2 ≤ r gives K2 ∩ Ir ̸= ϕ.
Then for each r with q1 ≤ r ≤ q2, we select i(r) ∈ Ir so that i(r) ∈ K1∩Ir. In general,
we select kj+1 > pj so that pj+1 < r with i(r) ∈ Kj ∩ Ir. Therefore, i(r) ∈ Ir for each
r and

1

hr

∑
i∈Ir

M∆nyi(r)−y0
(ε) > 1− 1

j
.

Consequently, Mθ − lim∆nyi(r) = y0. Then by Theorem 3.3 and Lemma 3.4(c) we
obtain

µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−∆nyi(r)
(ε) ≤ 1− λ

})
= 0.
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Conversely, we assume that y = {yi} be (∆n, µ)-statistically lacunary Cauchy in
Y . For λ > 0, we select γ ∈ (0, 1) so that (1 − γ) ∗ (1 − γ) > 1 − λ. Then for any
ε > 0, we define the following two sets:

KN,1 =

{
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−∆nyi(r)
(ε/2) ≤ 1− γ

}
,

KN,2 =

{
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi(r)−y0(ε/2) ≤ 1− γ

}
.

Let KN = KN,1 ∩KN,2. Then µ(KN ) = 1. Now for k ∈ KN ,

1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≥
1

hr

∑
i∈Ir

M∆nyi−∆nyi(r)
(ε/2) ∗ 1

hr

∑
i∈Ir

M∆nyi(r)−∆ny0(ε/2)

> (1− γ) ∗ (1− γ)

> 1− λ.

Hence,

µ

({
r ∈ N :

1

hr

∑
i∈Ir

M∆nyi−y0(ε) ≤ 1− λ

})
= 0.

Consequently, y = {yi} is a (∆n, µ)-statistically lacunary convergent in Y . �

Corollary 4.2. Any (∆n, µ)-statistically lacunary convergent sequence in a PN-space
(Y,M, ∗) has a ∆n-convergent subsequence in it.
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