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Abstract. Within the framework of linear water wave theory, the diffrac-
tion of water waves by a hollow circular cylinder in an infinite ocean depth
is considered. The whole fluid domain is divided into two regions: interior
and exterior regions. Using separation of variables technique, Fourier sine
transform and Havelock’s expansion theorem, the diffracted potentials in
each region are obtained, and consequently the exciting forces and their
phase angles are evaluated for different draft and different radius of the
cylinder. It is observed that the forces attain higher values in the lower
frequency range for higher draft and also for higher radius values. The free
surface elevation for both exterior and interior regions is also discussed.
As the distance from the cylinder surface increases, the elevation of waves
reduces. All the observations are validated through suitable graphs.
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1 Introduction

Ocean waves are a huge but largely untapped energy resource and therefore efforts
have been undertaken to explore the potential for extracting energy from these waves.
Recently, significant progress has been accomplished on the front of interaction of
surface waves with floating structures. A great deal of effort has been made in studying
and modelling the wave energy converters for utilization of ocean waves. The present
investigation is related to the diffraction of water waves by a vertical hollow cylinder
in water of infinite depth. From a practical point of view, emphasis must be laid on
the proper positioning of the device so that it is possible to capture waves as large
as possible. The efficiency of wave energy and estimation of exciting forces for the
wave energy device (oscillating water column) receive considerable attention from the
designer of such devices.

A reasonable number of theoretical studies have been performed to analyze the
wave motion and wave forces/moments on a structure in finite or infinite water depth.
Most of the investigations of water wave diffraction problem are found to be concerned
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mainly with one structure, usually a circular cylinder. The problem for a long floating
horizontal cylinder oscillating with small amplitudes about a mean position in water of
infinite depth was solved in [17]. By using potential or stream function, he deduced the
wave-amplitude at a distance from the cylinder and the added mass of the cylinder due
to the fluid motion. Yeung [20] presented a set of added mass and damping coefficients
for heave, sway and roll motions of a circular cylinder in finite water depth. He used
the method of matched eigenfunctions to solve the hydrodynamic problem in the
exterior and the interior regions. Finnegan et al. [4] derived an analytical solution
for heave, surge and pitch wave excitation on a floating cylinder in water of infinite
depth. They used the method of separation of variables and Havelock’s expansion
theorem to derive the velocity potentials throughout the fluid domain and presented
the wave excitation forces with respect to incident wave frequencies for various draft
to radius ratios. Bhatta and Rahman [1] calculated the wave loading due to scattering
and radiation for a floating cylinder in water of finite depth. They decomposed the
total velocity potential into four: one due to scattering and the other three due to
radiation. For each case, they derived the velocity potential by considering interior
and exterior regions. Zhu and Mitchell [23] derived a first order analytical solution
for the diffraction problem around a hollow cylinder in finite water depth. They used
a new approach to analyze the dependence of the solution upon various parameters,
as well as the rate of convergence of the series solution. Garrett [5] presented the
results for the horizontal and vertical forces and torque on a circular dock. The
problem was formulated in terms of potential on the cylindrical surface containing
the dock. He used Galerkin’s method to solve the problem numerically. Karmakar
and Sahoo [10] investigated wave scattering by an articulated floating elastic plate
in infinite water depth within the framework of linearized theory of water waves.
They presented phase and group velocities, reflection and transmission coefficients
and the vertical displacement response of the plate. Martins-Rivas and Mei [15]
described linear theory of an oscillating water column installed on a straight coast
and calculated the added mass and damping coefficients and chamber pressure. Lovas
et al. [12] considered a large circular oscillating water column installed at the tip of
a coastal corner in water of uniform depth and solved the diffraction and radiation
problems by eigenfunction expansions for an arbitrary apex angle. Chakrabarti and
Sahoo [3] solved the problem of obliquely incident surface water waves by a vertical
cliff for both the cases of infinite and finite depth. The method of solution was
based on the exploitation of logarithmic singularity of the velocity potential at the
corner points, where the water surface met the wall in a rather natural manner,
while applying Havelock’s expansion theorem. Zhang et al. [21] used the method of
separation of variables and eigenfunction expansion matching technique to derive the
diffracted velocity potentials when linear waves were scattered by an infinitely long
rectangular structure parallel to a vertical wall in oblique seas. They presented the
influences of the various parameters on the wave force of the structure. The extension
of this work, which includes the radiation and diffraction problems of infinitely long
submerged rectangular structure parallel to a vertical wall, was also investigated by
Zhang et al. [22]. The radiation problem for a floating half immersed sphere in water
of infinite depth was solved in [9].

Various works have also been accomplished by researchers for multiple structures.
Sahoo [16] investigated the generation of cylindrical surface wave in water of infinite
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depth of an impermeable circular cylinder surrounded by a coaxial permeable cylinder
immersed vertically in the fluid region. He employed Havelock’s expansion theorem
and various properties of Bessel functions. He also presented the scattering problem
when both the cylinders were fixed. Wu et al. [18, 19] investigated the problem of
diffraction and radiation for two solid cylinders under different considerations. They
obtained the expression for the velocity potential by using the eigenfunction expansion
method and investigated the effect of the caisson, approximated by a solid cylinder on
the floating cylinder. Hassan and Bora [6, 7] investigated the diffraction problem of
water waves by a pair of a coaxial hollow cylinder and a solid cylinder below it in water
of finite depth for two cases - when the lower cylinder is bottom-mounted and when it
is raised to a finite height. They used the method of matched eigenfunction expansions
and separation of variables; and presented sets of exciting forces for different radii
of the cylinders and for different gaps between the cylinders. Hassan and Bora [8]
also discussed the roll motion for a radiating hollow cylinder placed above a solid
cylinder. The dependence of the hydrodynamic coefficients on various parameters was
investigated. Chakrabarti [2] solved the mixed boundary value problem of scattering
of two dimensional time-harmonic surface water waves in the case of infinite depth
and derived the expression for reflection and transmission coefficients. The absolute
value of reflection and transmission coefficients were presented graphically. Mandal
and Chakrabarti [14] generalised the hybrid Fourier transform for discontinuous but
integrable functions. Manam et al. [13] derived mode-coupling relations by using
the Fourier integral theorem for the solution of Laplace’s equation with higher order
derivatives in the boundary conditions for both the cases of finite and infinite water
depth. They investigated the problem of wavemaker by oblique water wave scattering
caused by cracks in an ice-sheet in the case of infinite depth. As far as the diffraction
problem involving a vertical hollow cylinder in water of infinite depth is concerned,
the current authors have not come across any investigation that has employed an
analytical approach such as Havelock’s expansion.

In the present work, the diffraction problem for a semi-submerged vertical hollow
cylinder in water of infinite depth is solved. This problem is subsequently modelled
based on the assumption of the linearized water wave theory. The method of so-
lution employs the separation of variables technique, Fourier sine transform and a
suitable application of Havelock’s expansion theorem. The analytical expressions for
the diffracted potentials are derived. Using the analytical solutions for the diffraction
problem, the effect of radius and draft of the cylinder on the wave force of the cylinder
is investigated. Further, the surface wave elevation and its effects are also studied.
The results that are obtained are expected to provide some useful information to the
designer/engineer of such devices. To produce the maximum benefit, it is important
to design structures with proper parameters. The forces and free surface elevation
due to diffraction are evaluated and it is hoped that the results will be helpful in
designing a suitable device and also in finding an appropriate position for the device
so as to extract the maximum energy.

2 Mathematical formulation of the problem

We consider a vertical hollow cylinder of radius R and draft e1 in water of infinite
depth. It is to be noted that some part of the cylinder is above the free surface as
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shown in Fig. 1. The fluid is assumed to be inviscid, incompressible and homogenous,
and the motion irrotational. A right-handed Cartesian coordinate system is defined
with z = 0 coincident with the centre of the cylinder on undisturbed free surface,
x−direction pointing in the direction of incoming wave and the z−direction pointing
vertically downwards. We follow the technique of Yeung [20], Bhatta and Rahman [1]
and Zhu and Mitchell [23] of dividing the whole region into two regions. Therefore
the problem consists of two regions: an interior region defined by r ≤ R, 0 ≤ θ ≤
2π, 0 ≤ z < ∞ and an exterior region defined by r ≥ R, 0 ≤ θ ≤ 2π, 0 ≤ z < ∞.
The motion is described by the velocity potential Φ(r, θ, z, t) = Re[φ(r, θ, z)e−iωt]
where Re denotes the real part, ω the angular wave frequency and φ(r, θ, z) the
spatial part of the velocity potential. The incident velocity potential of amplitude A
and angular frequency ω propagating along the positive x−direction in deep water
is given by [Kim [11]]

(2.1) φinc = −gA
ω

e−Kz
∞∑
m=0

εm im+1Jm(Kr) cosmθ,

where i =
√
−1, g the gravitational acceleration, K the infinite depth wave number

defined by K = ω2/g, Jm(.) the Bessel function of first kind of order m, and εm,
which is Neumann symbol, defined by

(2.2) εm =

{
1 m = 0,
2 m ≥ 1.

Figure 1: Schematic diagram and definition of fluid subdomains

2.1 The boundary value problem

The boundary value problem is to be set up with appropriate conditions in order to
find the diffracted potentials.
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2.1.1 The governing equation and boundary conditions

The diffracted velocity potential Φd can be written as Φd=Re[φd(r, θ, z)e
−iωt], where

the spatial part φd satisfies the following boundary value problem:
(i) governing equation:

1

r

∂

∂r

(
r
∂φd
∂r

)
+

1

r2
∂2φd
∂θ2

+
∂2φd
∂z2

= 0, in the fluid region,(2.3)

(ii) linearized free surface condition:

∂φd
∂z

+Kφd = 0, (z = 0),(2.4)

(iv) bottom condition:

φd, |∇φd| → 0, as z →∞,(2.5)

(v) radiation condition:

(2.6) lim
r→∞

√
r

(
∂φd
∂r
− iKφd

)
= 0.

3 Method of solution

In order to find the solutions for the boundary value problem, we divide the whole
region into two regions, one is the interior region and the other is the exterior region
as indicated in Fig. 1. The solutions for the boundary value problem are obtained in
these two regions. Therefore the velocity potential φ is decomposed into two potentials
defined on r ≤ R and r ≥ R, respectively, [Zhu and Mitchell, [23]]:

(3.1) φ =

{
φint, r ≤ R,
φext, r ≥ R,

where φint and φext denote the velocity potential in the interior and exterior regions,
respectively. For the continuity of the flow, appropriate matching conditions along
the interface between the regions are to be considered.

3.1 Diffracted potentials

The velocity potential in the exterior region is the sum of the incident and diffracted
velocity potentials, i.e, φext = φinc+φextd .We apply the method separation of variables
and Fourier sine transform to derive the expressions of diffracted velocity potentials.
The Fourier sine transform of φ(r, z) with respect to z is defined by

Fs{φ(r, z)} = φ̄(r, ξ) = −
∫ ∞
0

φ(r, z) sin ξz dz,(3.2)

and its inverse transform by

φ(r, z) = − 2

π

∫ ∞
0

φ̄(r, ξ) sin ξz dξ.(3.3)
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Application of Fourier sine transform to the BVP is justified since the diffracted
velocity potential φd vanishes as z → ∞ (Condition (2.5)). Applying Fourier sine
transform to the boundary value problem for φ(r, z), it is transformed to one for
φ̄(r, ξ). Inverting appropriately, we obtain the expressions for the diffracted potentials
in interior and exterior regions, based on the result of Manam et al. [13], as

φint =

∞∑
m=0

[
am

Jm(Kr)

Jm(KR)
e−Kz +

2

π

∫ ∞
0

Am(ξ)Im(rξ)L(ξ, z) dξ

Im(ξR) (ξ2 +K2)

]
cosmθ,(3.4)

φext =

∞∑
m=0

−gA
ω

εmi
m+1

[(
Jm(Kr) + bm

H
(1)
m (Kr)

H
(1)
m (KR)

)
e−Kz

+
2

π

∫ ∞
0

Bm(ξ)Km(rξ)L(ξ, z) dξ

Km(ξR) (ξ2 +K2)

]
cosmθ,(3.5)

where L(ξ, z) = ξ cos ξz −K sin ξz, H
(1)
m (.) the first kind Hankel function of order m,

Im(.) and Km(.) are, respectively, the first and second kind modified Bessel functions
of order m. Here am and bm are unknown constant coefficients while Am(ξ) and
Bm(ξ) are unknown functions to be determined.

4 Solution for the unknown coefficients

We introduce the appropriate matching conditions by means of continuity of pressure
and velocity potentials along the vertical boundary r = R as well as the body surface
condition. These conditions are used to find the unknown coefficients. At r = R, the
conditions which are to be satisfied at physical boundary and interface between the
regions are:

∂φext

∂r
= 0, 0 ≤ z ≤ e1,(4.1)

φext = φint, e1 ≤ z <∞,(4.2)

∂φext

∂r
=

∂φint

∂r
, e1 ≤ z <∞.(4.3)

We use the following procedure [Finnegan et al., [4]] to derive an analytical approxi-
mation for exterior and interior velocity potentials. In order to derive expressions for
bm and Bm(ξ), large draft values of the cylinder are considered, i.e., e1 → ∞ in the
boundary condition (4.1), which corresponds to evaluating the velocity potential in
the exterior region for a cylinder of infinite draft. Now from the boundary condition
(4.1) and (3.5), we have

K

[
J ′m(KR) + bm

H
(1)′

m (KR)

H
(1)
m (KR)

]
e−kz +

2

π

∫ ∞
0

Bm(ξ)
ξK ′m(ξR)L(ξ, z)

Km(ξR)(ξ2 +K2)
dξ = 0,

(4.4)
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or,

bm
KH

(1)′

m (KR)

H
(1)
m (KR)

e−kz +
2

π

∫ ∞
0

Bm(ξ)
ξK ′m(ξR)L(ξ, z)

Km(ξR)(ξ2 +K2)
dξ = −KJ ′m(KR)e−kz,

(4.5)

where ′ denotes differentiation with respect to r. Note that the Havelock’s expansion
theorem [Chakrabarti and Sahoo [3], Chakrabarti [2]], states that if

g(z) = C0e
−Kz +

2

π

∫ ∞
0

C(ξ)[ξ cos(ξz)−K sin(ξz)]dξ

ξ2 +K2
, 0 < ξ <∞,(4.6)

then,

C0 = 2K

∫ ∞
0

g(z)e−Kzdz,(4.7)

C(ξ) =

∫ ∞
0

g(z)[ξ cos(ξz)−K sin(ξz)]dz,(4.8)

where C0 and K are constants, and g(z) and its derivative are continuous and inte-
grable in the range (0,∞). Utilizing this result, we have from (4.5):

bm H
(1)′

m (KR)

H
(1)
m (KR)

= −2KJ ′m(KR)

∫ ∞
0

e−2Kzdz,(4.9)

which implies

bm = −J ′m(KR)
H

(1)
m (KR)

H
(1)′
m (KR)

,(4.10)

and,

Bm(ξ) = −KJ
′
m(KR)Km(ξR)

ξ K ′m(ξR)

∫ ∞
0

e−Kz(ξ cos ξz −K sin ξz)dz(4.11)

giving Bm(ξ) = 0.(4.12)

The result (4.12) is due to∫ ∞
0

e−Kz(ξ cos ξz −K sin ξz)dz = 0.(4.13)

Now using these values of bm and Bm(ξ) in (3.5) and then applying (4.2),

−gAεmim+1

ω

[
Jm(KR)− J ′m(KR)

H
(1)
m (KR)

H
(1)′
m (KR)

]
e−Kz = ame

−Kz

+
2

π

∫ ∞
e1

Am(ξ)
L(ξ, z)

ξ2 +K2
dξ.(4.14)
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From the Wronskian of the Bessel’s function,

Jm(KR)H(1)′

m (KR)− J ′m(KR)H(1)
m (KR) = − 2

iπKR
.(4.15)

Therefore from Eq. (4.14),

2gAεmi
m+1

ωiπKRH
(1)′
m (KR)

e−Kz = ame
−Kz +

2

π

∫ ∞
e1

Am(ξ)
L(ξ, z)

ξ2 +K2
dξ.(4.16)

From the Havelock’s expansion theorem,

Am(ξ) =
2gAεmi

m+1

ωiπKRH
(1)′
m (KR)

∫ ∞
e1

e−Kz(ξ cos(ξz)−K sin(ξz))dz,(4.17)

since ∫ ∞
e1

e−Kz(ξ cos(ξz)−K sin(ξz))dz = −e−Ke1 sin(ξe1).(4.18)

Therefore,

Am(ξ) =
−2gAεmi

m+1

iωπKRH
(1)′
m (KR)

e−Ke1 sin(ξe1),(4.19)

and

am =
4KgAεmi

m+1

ωiπKRH
(1)′
m (KR)

∫ ∞
e1

e−2Kzdz.(4.20)

After simplifying and using Wronskian of the Bessel’s function from (4.15),

am =
2 εm im+1 gA e−2Ke1

ωiπKR H
(1)′
m (KR)

.(4.21)

Therefore, from (3.4), (4.19) and (4.21), the velocity potential in the interior region
is obtained as

φint =

∞∑
m=0

2εmi
m+1gAe−Ke1

iωπKRH
(1)′
m (KR)

[
Jm(Kr)e−Ke1e−kz

Jm(KR)

− 2

π

∫ ∞
0

Im(rξ)L(ξ, z) sin(ξe1) dξ

Im(ξR) (ξ2 +K2)

]
cosmθ.(4.22)

From (3.5), (4.10) and (4.12), the velocity potential in the exterior region is obtained
as

φext =

∞∑
m=0

−gA
ω

εmi
m+1

[(
Jm(Kr)− J ′m(KR)H

(1)
m (Kr)

H
(1)′
m (KR)

)
e−Kz

]
cosmθ.

(4.23)
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5 Wave force

The horizontal exciting force acting on the cylinder can be expressed as F = Re[Fc e
−iωt],

where Fc is the horizontal exciting force independent of time and can be calculated
by

Fc = iρω

∫
S

(φext(R, θ, z)− φint(R, θ, z)) nxds,(5.1)

where S is wetted surface of the cylinder, ρ is the uniform density of water and nx
is the x-component of the unit normal to the surface of the cylinder. The expression
of Fc in brackets in (5.1) indicates that by considering this expression, the effect
of the internal fluid domain is appropriately taken into account. For the horizontal
exciting force, nx = − cos θ and by using the orthogonality of cosine function, the

only non-zero value of the integral
∫ 2π

0
cosmθ cos θdθ is the one corresponding to

m = 1. Therefore, the horizontal exciting force Fc from the (5.1) with the use of the
Wronskian of Bessel’s function from (4.15), is given by

Fc =
4ρgA

KH
(1)′

1 (KR)

[
(1− e−Ke1)

K
− e−Ke1

{
e−Ke1(1− e−Ke1)

K

− 2

π

∫ ∞
0

sin(ξe1)(ξ sin(ξe1) +K cos(ξe1)−K)dξ

ξ3 + ξK

}]
.(5.2)

The dimensionless horizontal exciting force Fc/µ, where µ = ρgπR2A, is given by

Fc/µ =
4

πR2KH
(1)′

1 (KR)

[
(1− e−Ke1)

K
− e−Ke1

{
e−Ke1(1− e−Ke1)

K

− 2

π

∫ ∞
0

sin(ξe1)(ξ sin(ξe1) +K cos(ξe1)−K)dξ

ξ3 + ξK

}]
.(5.3)

However, when forces are calculated for a fixed draft and varying radius, the non-
dimensionalizing parameter is taken as λ = ρgπe21A.
Free surface elevation in the exterior region is given by

η = Re

[
iω

g
φexte−iωt

]
.(5.4)

Therefore the non-dimensional free surface elevation for m = 1, in the exterior region,
can be obtained as

η/A = Re

[
2i

(
J1(Kr)− J ′1(KR)

H
(1)′

1 (KR)
H

(1)
1 (Kr)

)
e−iωt

]
cos θ.(5.5)

In a similar way, free surface elevation in the interior region corresponding to m = 1
is given by

η/A = Re

[
−4e−Ke1

πKRH
(1)′

1 (KR)

(
J1(Kr)e−Ke1

J1(KR)

− 2

π

∫ ∞
0

I1(rξ)L(ξ, z) sin(ξe1) dξ

I1(ξR) (ξ2 +K2)

)
e−iωt

]
cos θ.(5.6)
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6 Numerical results and discussions

Having obtained the unknown coefficients am, bm, Am(ξ) and Bm(ξ) appearing in
(3.4)-(3.5) and consequently in (5.1), we proceed to study the horizontal exciting
forces acting on the cylinder and the corresponding phase angle and free surface
elevation. We investigate the various effects of different parameters on the force and
wave elevation for this infinite depth problem.
Figure 2 shows the non-dimensional horizontal exciting force Fc/µ on the cylinder
against KR with different values of the draft of the cylinder, to be precise for e1/R =
0.5, 1.0, 3.0. It is observed that the exciting force increases within the lower values
of wave numbers as the draft of the cylinder increases and that for higher values of
wave numbers, the values of the exciting force steadily diminish. Consequently, the
peak value occurs for the highest draft value, e1/R = 3.0 to be precise.
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Figure 2: Non-dimensional horizontal exciting forces (Fc/µ) versus KR for different
values of draft of the cylinder with fixed radius R = 1.2 metre.

Figure 3 shows the phase angle of the exciting forces Fc/µ for different drafts of
the cylinder for a fixed radius, R = 1.2 metre, corresponding to the exciting forces
in Figure 2. It is observed that, irrespective of the draft values of the cylinder, the
phase angle reduces rapidly as wave number increases. Moreover, the phase angle has
the same values for all drafts considered. Figures 4 and 5 show the non-dimensional
exciting forces Fc/λ and their corresponding phase angles against the wave number
for different values of the radius of the cylinder for a fixed draft e1 = 0.8 metre. In
Figure 4, it is observed that the exciting forces increase as the radius of the cylinder
increases in the lower range of wave number. For higher range, the forces decrease
steadily and each force tends to a fixed value later on. For higher radius values, the
exciting force attains higher values. Also, as the values of the radius increases, the
peak value shifts towards left. Figure 5 shows that the absolute value of the phase
angle is higher for higher radius value. As the wave number increases, the phase angle
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Figure 3: Phase angle of the force Fc/µ, versus wave number for different values of
draft of the cylinder with fixed radius of the cylinder R = 1.2 metre.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

K e
1

N
on

−
di

m
en

si
on

al
 fo

rc
e

R=0.75e
1

R=1.5e
1

R=3.5e
1

Figure 4: Non-dimensional force Fc/λ, versus wave number for different values of the
radius of the cylinder with fixed draft e1 = 0.8 metre.
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Figure 5: Phase angle of the force Fc/λ, versus wave number for different values of
the radius of the cylinder with fixed draft e1 = 0.8 metre.
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Figure 6: Non-dimensional exciting forces versus draft of the cylinder for different
values of wave numbers with fixed radius of the cylinder R = 1.2 metre.
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Figure 7: Phase angle of the force Fc/µ, against e1/R for different values of wave
number with fixed R = 1.2 metre.
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Figure 9: Surface plot for wave elevation in exterior region with K =
2.5493 metre−1, θ = 0,m = 1.
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decreases and there is no appreciable change in the values of the phase angle for very
low wave numbers, i.e., for long waves.

Figures 6 and 7 show the non-dimensional exciting forces Fc/µ and their phase
angles against draft of the cylinder for different values of wave numbers for a fixed
radius R = 1.2 metre. It is observed from Figure 6 that the exciting force increases as
the draft increases and each force attains a constant value for very high draft values. It
is also seen that the force values are higher corresponding to the lower values of wave
number. It is also interesting to note that the greater variation of increase takes place
for smaller values of e1/R. Further, this increase is much more noticeable for long
waves. For shallow water, the change in force values is much more significant than
those for intermediate and deep water depth. Figure 7 shows that the phase angle is
constant for each wave number. It does not depend on the draft of the cylinder and it
is further observed that the absolute value of the phase angle is higher for higher wave
numbers. Figure 8 shows the plots of wave elevation inside the cylinder for a fixed
draft and a fixed radius. It is observed that for higher wave numbers, the elevation
is less and the highest elevation corresponds to the wave number KR = 6.10. Figures
9 and 10 give us the surface plot and contour plot, respectively, for the free surface
elevation in the exterior region.

7 Conclusion

The diffraction problem of water waves by a semi-submerged hollow cylinder is for-
mulated and solved to analyze wave motion/force in water of infinite depth under
the assumptions of linearized theory of water waves. The whole fluid domain is di-
vided into two regions: interior and exterior ones. We derive the expressions for the
diffracted potentials in each region by using the method of separation of variables
and Fourier sine transform. In order to determine the unknown coefficients, which
are present in the expressions of diffracted potentials, Havelock’s expansion theorem
and matching conditions along the virtual boundary are utilized. The hydrodynamic
influences of various parameters on exciting forces, their phase angles and free surface
elevation are discussed. With regard to the effect of the draft of the cylinder, it is
observed that the exciting force increases as the draft of the cylinder increases and the
peak value occurs only for the lower values of wave numbers. The same observation is
noticed for various values of the radius of the cylinder for a fixed draft. With regard to
the phase angle of the exciting forces, it decreases as the wave number increases for a
fixed radius. We also graphically present the free surface elevation in the interior and
exterior regions. It is observed that as the distance from the surface of the cylinder
increases in the exterior region, the amplitude of the oscillation decreases.
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