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Abstract. We prove the null controllability of a parabolic system. The
single control is common to both PDEs, distributed and subject to con-
straints. The studied model can be applied in dynamics of biological
systems or in physics. First we study the problem associated to a similar
linearized system. Then appropriate Carleman inequalities and a fixed-
point argument are used to prove the null controllability results.
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1 Introduction

Let n ∈ N and Ω be a bounded domain of Rn with boundary Γ = ∂Ω of class C2.
Consider a non-empty open set ω ⊂ Ω and ν the outward unit normal to Γ. For a time
T > 0, consider Σ = Γ × (0, T ) the lateral boundary of the cylinder Q = Ω × (0, T ),
and G the small cylinder ω × (0, T ). We consider the following nonlinear parabolic
coupled system:

(1.1)


∂ty1 −A(t)y1 + a1y1 + b1y2 = f1 + kχω in Q,
∂ty2 −A(t)y2 + a2y1 + b2y2 = f2 + kχω in Q,

y1 = y2 = 0 on Σ,
y1(0) = y01 , y2(0) = y02 in Ω,

where fi ∈ L2(Q), y0i ∈ L2(Ω), ai, bi ∈ L∞(Q), i = 1, 2, k is the control acting on the
system through G and

(1.2) A(t)w =
n∑

κ,l=1

Bκl(w(., t), t)
∂2w

∂xκ∂xl
,

the functions Bκl : L
1(Ω)× [0, T ] → R are given ∀κ, l ∈ {1, . . . n}. We will make some

hypotheses on the Bκl in the remainder.
Such models can be applied in the context of dynamics of biological systems to describe
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the migration of population. They can also describe in physics the distribution of heat
in a conductor and the behavior in systems of interacting components in chemistry.
In the case of migration of populations, yi, i = 1, 2, can be the density of two bacterial
species, ∂tyi, i = 1, 2, stands for the population variation, the coefficients ai, bi, i =
1, 2, characterize the interactions of the two species and we can have:

Bκl(yi(., t), t) = aκl

(∫
Ω

yi(x, t)dx

)
where aκl is a positive and continuous real function depending on the population itself
and indicating the speed at which the movement is executed (see [2]). In the context
of biochemical reaction processes between two mobile species in Ω, yi, i = 1, 2 denotes
the concentration of the species. The operator Bκl can be written as:

Bκl(yi(., t), t) = aκl(⟨l0, yi(t)⟩L2(Ω),L2(Ω))

where l0 is a linear form on L2(Ω) and aκl is a real positive continuous function.
It is said that (1.1) is null controllable at time T if for any given y0i ∈ L2(Ω),

i = 1, 2, there exists a control k ∈ L2(G) such that the associated solution satisfied

yi(T ) = 0 in Ω, i = 1, 2,

with an estimate of the form

∥k∥L2(G) 6 C(∥y01∥L2(Ω) + ∥y02∥L2(Ω) + ∥f1∥L2(Q) + ∥f2∥L2(Q)), C > 0.

In this work, we study another type of controllability problem introduced by Nakoulima
in [11]. In addition to reach the null trajectory at time T , the control must satisfy
an additional condition that we will clarify. Let H be a finite dimensional vector
subspace of L2(G) and H⊥ the orthogonal of H in L2(G). We focus on the following
null controllability problem: for any given fi ∈ L2(Q) and y0i ∈ L2(Ω), i = 1, 2, find

(1.3) k ∈ H⊥

such that the associated solution (y1, y2) of (1.1) satisfies

(1.4) yi(T ) = 0 in Ω, i = 1, 2.

From this work, we deduce existence results of optimal control satisfying a null con-
trollability problem with constraints on the state.
In the linear case, we showed that the null controllability of two coupled diffusion
equations in the presence of constraints on the control holds (see [8]). We applied in
[9] this result to prove the existence of a control solving the null controllability of a
nonlinear system, the state being submitted to constraints.

The rest of the paper is organized as follows: In Section 2 we state the main result
of the paper. Theorem 2.2 reads the existence of a control under constraints solving
the null controllability problem. In Section 3 we give some intermediate estimates
arising from Carleman estimates. Then we prove an observability inequality which
will be useful to obtain the null controllability of the linearized system. In Section
4 we give the proof of the main result stated in Section 2. Section 5 is devoted to
an application of our work to a null controllability problem with integral constraints.
Finally we end with a conclusion.
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2 Preliminaries and main result

First let us introduce the following notations (see for instance [5, 10]).

• Let P be the orthogonal projection operator from L2(G) into H,

• C0(Ω) is the set of continuous functions defined on Ω,

• Cl(Ω) = {u : Ω → R; ∀α ∈ Nn, |α| 6 l,Dαu ∈ C0(Ω)}, with

Dαu =
∂α1+α2+...+αnu

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

, |α| =
n∑

i=1

αi,

• for δ ∈ (0, 1), u ∈ C0(Q): [u]δ, δ2
= sup

Q

x ̸=x′

|u(x, t)− u(x′, t)|
|x− x′|δ

+sup
Q

t̸=t′

|u(x, t)− u(x, t′)|
|t− t′|δ/2

• Cδ,δ/2(Q) = {u ∈ C0(Q) : [u]δ,δ/2 < ∞} is a Banach space with the norm
|u|δ,δ/2;Q = ∥u∥L∞(Q) + [u]δ,δ/2,

• C1+δ, 1+δ
2 (Q) =

{
u ∈ C0(Q) :

∂u

∂xi
∈ Cδ, δ2 (Q)∀i, sup

Q

t ̸=t′

|u(x, t)− u(x, t′)|
|t− t′| 1+δ

2

< ∞
}

is

a Banach space which the norm is denoted by |.|1+δ, 1+δ
2 ;Q,

• Z = {z ∈ L1(0, T ;L2(Ω)) : zt ∈ L∞(0, T ;L2(Ω))},

• X = {(k, (y1, y2)) : k ∈ Cδ,δ/2(ω × [0, T ]), (y1, y2) ∈ (C1+δ, 1+δ
2 (Q))2}.

We will need the result below which is due to Fursikov and Imanuvilov.

Lemma 2.1. ([4]) There exists a function β ∈ C2(Ω) satisfying
β(x) > 0 ∀x ∈ Ω,
β(x) = 0 ∀x ∈ Γ,

|∇β(x)| ̸= 0 ∀x ∈ Ω \ ω′,

where ω′ is a non-empty open set with ω′ b ω. By ω′ b ω we mean that ω′ is
compactly embedded in ω i.e. ω′ ⊆ ω′ ⊆ ω and ω′ is compact.

In addition for every λ > 0 and for (x, t) ∈ Q, let us introduce the functions:

ρ(x, t) =
eλβ(x)

t(T − t)
and α(x, t) =

e2λ∥β∥L∞(Ω) − eλβ(x)

t(T − t)
.

Note that ρ(., t) and α(., t) → +∞ when t → 0 or t → T .
We introduce the function ξ ∈ C∞(Rn) satisfying:

(2.1)

 ξ(x) = 1, ∀x ∈ ω′,
0 < ξ(x) 6 1, ∀x ∈ ω′′,
ξ(x) = 0, ∀x ∈ Rn \ ω′′,

where ω′ b ω′′ b ω b Ω. We will assume that for every κ, l ∈ {1, . . . , n},

(2.2) Bκl = Blκ,
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(2.3) −∞ < γ0 6 Bκl 6 γ1 < +∞.

Besides we suppose that for every κ, l ∈ {1, . . . , n}, Bκl is continuous and globally
Lipschitz in L2(Ω) × [0, T ]. By this, we mean that there is L > 0 such that for any
(z, t), (y, s) ∈ L2(Ω)× [0, T ], we have:

(2.4) |Bκl(z, t)−Bκl(y, s)| 6 L(∥z − y∥L2(Ω) + |t− s|).

We also suppose that there exists α0 > 0 such that for all z ∈ L2(Ω), almost every
(a.e.) in t ∈ (0, T ) and for all ϕ ∈ Rn,

(2.5) e−γαξ2
n∑

κ,l=1

Bκl(z, t)ϕκϕl > α0|ϕ|2, ∀γ > 0.

We use (2.5) particularly in Theorem 3.2 in Section 3.1 to obtain an observability
inequality from which we will deduce null controllability results for (1.1). We set

a = −1

2
(a1 + a2 + b1 + b2), b = −1

2
(a1 + a2 − b1 − b2),(2.6)

c = −1

2
(a1 − a2 + b1 − b2), d = −1

2
(a1 − a2 − b1 + b2),

and define Lξ =
∑n

κ,l=1 ξκl
∂2

∂xκ∂xl
, with ξκl ∈ R for each κ, l ∈ {1, . . . , n}.

We assume that for pκl, qκl ∈ R, any function φ ∈ H such that (φ, σ) satisfies

−∂tφ− 1

2
(Lpφ+ Lqσ)− aφ− cσ(2.7)

= −∂tσ − 1

2
(Lqφ+ Lpσ)− bφ− dσ = 0

in G for some σ, is null in G.

Such an assumption was used by Lions in [6] (p.33) to solve a problem of discrim-
inating sentinel. We are now able to state the main result of this work.

Theorem 2.2. Let A(t)(.) be the operator defined by (1.2) with each function Bκl

satisfying (2.2)-(2.5). Assume (2.7) and that there exist a constant c0 > 0 and a set
ωc such that

ωc b ω and |c| > c0 in ωc × (0, T0) for T0 > 0.

Then there exists a positive continuous function θ in Q, such that for every f1, f2 ∈
L2(Q) with θf1, θf2 ∈ L2(Q), the null controllability problem (1.1),(1.3),(1.4) admits
a unique solution. (The definition of θ is given later by (3.11)).

3 Controllability of the linearized system

This section is devoted to the proof of the null controllability problem of the linearized
system. For given z = (z1, z2) ∈ Z × Z, we will consider the linearized system

(3.1)


∂ty1 −B(t; z1)y1 + a1y1 + b1y2 = f1 + kχω in Q,
∂ty2 −B(t; z2)y2 + a2y1 + b2y2 = f2 + kχω in Q,

y1 = y2 = 0 on Σ,
y1(0) = y01 , y2(0) = y02 in Ω,
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where B(t; y)w =
∑n

κ,l=1 Bκl(y(t), t)
∂2w

∂xκ∂xl
. Note that for z fixed in Z, the function

t 7→ Bκl(z(t), t) is a.e. differentiable and because of (2.4), we have for 1 6 κ, l 6 n,

π(z) = max
16κ,l6n

∥(Bκ,l)t(z(t), t)∥L∞(0,T ) 6 L(1 + ∥zt∥L∞(0,T ;L2(Ω))).

Under (2.2)-(2.5) and the above assumptions, for each y01 , y
0
2 ∈ L2(Ω), f1, f2 ∈ L2(Ω)

and each k ∈ L2(G), the system (3.1) possesses exactly one solution (y1, y2) in
C([0, T ];L2(Ω)2) ∩ L2(0, T ;H1

0 (Ω)
2) (see [2]). Let (y1, y2) be a solution of (3.1).

Setting

(3.2) u = y1 + y2, v = y1 − y2, f = f1 + f2, g = f1 − f2, h = 2k,

one gets that (u, v) is solution of

(3.3)


ut − (B(t; z1)y1 +B(t; z2)y2)− au− bv = f + hχω in Q,
vt − (B(t; z1)y1 −B(t; z2)y2)− cu− dv = g in Q,

u = v = 0 on Σ,
u(0) = u0, v(0) = v0 in Ω.

Note that: B(t; z1)y1 +B(t; z2)y2 =
1

2

(
(B(t; z1)+B(t; z2))u+(B(t; z1)−B(t; z2))v

)
and B(t; z1)y1 −B(t; z2)y2 =

1

2

(
(B(t; z1)−B(t; z2))u+ (B(t; z1) +B(t; z2))v

)
.

3.1 Carleman estimates

An observability inequality is established in this part, the obtention of such an esti-
mate being useful for the study of exact controllability problems.
For z ∈ Z, f ∈ L2(Q) and yT ∈ L2(Ω), consider the parabolic system

(3.4)

 ∂ty +B(t; z)y = f in Q,
y = 0 on Σ,
y(T ) = yT in Ω.

Then the following Carleman inequality holds.

Theorem 3.1 ([3], Theorem 2.1). There are positive constants s0, λ0 and C0 such
that for any s > s0, λ > λ0, f ∈ L2(Q) and yT ∈ L2(Ω), the associated solution to
(3.4) satisfies

(3.5)

∫
Q

e−2sα
[
(sρ)−1

(
|∂ty|2 +

n∑
i,j=1

∣∣∣ ∂2y

∂xi∂xj

∣∣∣2)+ sλ2ρ|∇y|2 + λ4(sρ)3|y|2
]
dxdt

6 C0

(∫
Q

e−2sα|f |2dxdt+
∫ T

0

∫
y′
e−2sαλ4(sρ)3|y|2dxdt

)
.

Furthermore ,C0 and λ0 only depend on Ω, ω, γ0, γ1 and α0; s0 can be chosen on the
form s0 = σ0(T + T 2) + σ1π(z)T

2, where σ0 and σ1 depend on Ω, ω, γ0, γ1 and α0.
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Now let us introduce the following notations for z = (z1, z2) ∈ Z × Z,
(3.6)

V = {φ ∈ C∞(Q);φ|Σ = 0},
W = V × V,

M(φ, σ) = −∂tφ− 1

2

(
(B(t; z1) +B(t; z2))φ+ (B(t; z1)−B(t; z2))σ

)
− aφ− cσ,

N(φ, σ) = −∂tσ − 1

2

(
(B(t; z1)−B(t; z2))φ+ (B(t; z1) +B(t; z2))σ

)
− bφ− dσ,

and set ∥a, b, c, d∥2∞ = ∥a∥2L∞(Q) + ∥b∥2L∞(Q) + ∥c∥2L∞(Q) + ∥d∥2L∞(Q).

Moreover, the following observability inequality holds:

Theorem 3.2. Assume that there exist a constant c0 > 0 and a domain ωc such that

(3.7) ωc b ω and |c| > c0 in ωc × (0, T0) for some T0 > 0.

Then for r ∈ [0, 2), s > s0, λ > λ1 =
(

T 6C∥a,b,c,d∥2
∞

(2s)3

) 1
4

, φ = (φ1, φ2) ∈ W, there

exists a positive constant depending on γ0, γ1, n, c0, α0, ∥a, b, c, d∥∞, ∥β∥L∞(Ω) and
T such that for any φ = (φ1, φ2) ∈ W, we have

(3.8)

∫ T

0

∫
ω′
(|φ1|2 + |φ2|2)e−2αdxdt 6 C

(∫
G

|φ1|2e−rαdxdt

+

∫
Q

(|M(φ)|2 + |N(φ)|2)e−2αdxdt
)

for any ω′ such that ω′ b ωc b ω.

Proof. The proof of this result is technical. We followed the approach of Annex E in
[7]. The following is the main tools that we used to prove (3.8).
We assume for instance that c > c0 > 0 in ωc × (0, T ). We let ξ ∈ C∞(Rn) satisfy
(2.1). For β0, β1,m > 0, we define

Λ(t) =

∫
Ω

(e−2mαη
7
6 |φ2|2 − β0e

−2αηφ2φ1 + β1e
−2αη|φ1|2)dx.

Then we derive Λ with respect to t and replace (φ1)t and (φ2)t with their expressions
given by (3.6). Integrating by parts over (0, T ) and using Λ(0) = Λ(T ) = 0, we get

β0

∫
Q

e−2αηc|φ2|2dxdt =
∫
Q

{(2mαt + 2d)e−2mαη
7
6 |φ2|2

+[2β1(αt + a)e−2αη − β0e
−2αηb]|φ1|2(3.9)

−[β0(2αt + a+ d)e−2αη − 2β1e
−2αηc− 2e−2mαη7/6b]φ1φ2}dxdt

+

∫
Q

e−2mαη7/6φ2(B(t; z1) +B(t; z2))φ2dxdt

−β0

2

∫
Q

e−2αηφ2(B(t; z1)−B(t; z2))φ2dxdt

+

∫
Q

e−2mαη7/6φ2(B(t; z1)−B(t; z2))φ1dxdt

+β1

∫
Q

e−2αηφ1(B(t; z1)−B(t; z2))φ2dxdt



152 C. Louis-Rose

−β0

2

∫
Q

e−2αη
(
φ2(B(t; z1) +B(t; z2))φ1 + φ1(B(t; z1) +B(t; z2))φ2

)
dxdt

−β0

2

∫
Q

e−2αηφ1(B(t; z1)−B(t; z2))φ1dxdt

+β1

∫
Q

e−2αηφ1(B(t; z1) +B(t; z2))φ1dxdt

+2

∫
Q

e−2mαη7/6φ2N(φ)dxdt− β0

∫
Q

e−2αηφ2M(φ)dxdt

−β0

∫
Q

e−2αηφ1N(φ)dxdt+ 2β1

∫
Q

e−2αηφ1M(φ)dxdt = J1 + · · ·+ J12.(3.10)

Then we estimate each of the terms J1, . . . , J12, in particular, each time that the
integral

∫
G
e−2sαρ3(|φ1|2 + |φ2|2)dxdt appears, we estimate it by

∫
G
|φ1|2e−rαdxdt.

�

We set

(3.11)
1

θ2
= ρ3e−2sα.

We recall that P is the orthogonal projection operator from L2(G) into H.
The following observability inequality follows from (3.8).

Lemma 3.3. Assume (2.7). Then with the hypotheses of Theorem 3.2, there exists
a constant C depending on C0, λ1, s0, γ0, γ1, n, c0, α0, ∥a, b, c, d∥∞, T , ∥β∥L∞(Ω)

and on the Poincare constant K, such that for every φ = (φ1, φ2) ∈ W, we have

(3.12)

∫
Ω

(|φ1(0)|2 + |φ2(0)|2)dx+

∫
Q

1

θ2
(|φ1|2 + |φ2|2)dxdt

6 C
(∫

Q

(|M(φ)|2 + |N(φ)|2)dxdt+
∫
G

|φ1 − Pφ1|2dxdt
)
.

Proof. First we state the result for the norm of φ(x, 0) in Ω, where φ ∈ W. The
second part of the inequality (3.12) is a consequence of (3.8). �

3.2 Null controllability of the linearized system

In this part, we prove the controllability problem associated to (3.3). Consider the
bilinear form defined on W ×W by

B(φ, σ) =
∫
Q

M(φ)M(σ)dxdt +

∫
Q

N(φ)N(σ)dxdt +

∫
G

(φ1 − Pφ1)(σ1 − Pσ1)dxdt,

∀φ = (φ1, φ2), σ = (σ1, σ2) ∈ W. The bilinear form B(., .) is a scalar product on
W. Let W be the completion of the pre-Hilbert space W with respect to the norm
B(φ,φ). We deduce from the observability estimate (3.12) null controllability results
for (3.3). Proceeding as in the proof of Theorem 3.4.4. in [7], we show the

Theorem 3.4. Recall the notations (3.2) and (3.11). Assume (2.7) and (3.7). As-
sume also that f1, f2 ∈ L2(Q) are such that θf1, θf2 ∈ L2(Q). For all z ∈ Z × Z,
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there exists a unique control h̃ of minimal norm in L2(G) such that h̃ ∈ H⊥ and the
associated solution (ũ, ṽ) of (3.3) satisfies ũ(T ) = ṽ(T ) = 0 in Ω. The control h̃ is
given by

(3.13) h̃ = η̃1χω − P η̃1,

where η̃ = (η̃1, η̃2) satisfies

(3.14)

{
M(η̃1, η̃2) = N(η̃1, η̃2) = 0 in Q,

η̃1 = η̃2 = 0 on Σ.

Furthermore there exists a constant C > 0 depending on Ω, ω, c0, r, T , ∥β∥L∞(Ω)

and ∥a1, a2, b1, b2∥∞ such that

∥h̃∥L2(G) 6 C(∥θf∥L2(Q) + ∥θg∥L2(Q) + ∥u0∥L2(Ω) + ∥v0∥L2(Ω)),(3.15)

∥η̃∥W 6 C(∥θf∥L2(Q) + ∥θg∥L2(Q) + ∥u0∥L2(Ω) + ∥v0∥L2(Ω)),(3.16)

∥η̃1∥L2(G) 6 C(∥θf∥L2(Q) + ∥θg∥L2(Q) + ∥u0∥L2(Ω) + ∥v0∥L2(Ω)).(3.17)

The following result gives another estimate indicating that the control can be
chosen depending continuously on the initial data.

Lemma 3.5. For all z = (z1, z2) ∈ Z × Z there is k ∈ L2(G) satisfying k ∈ H⊥ and
such that the associated solution to (3.1) satisfies (1.4). Moreover

(3.18) ∥(k, (y1, y2))∥X 6 C(∥z∥Z×Z)(∥θf1∥L2(Q) + ∥θf2∥L2(Q) + ∥y01∥L2(Ω)

+ ∥y02∥L2(Ω)).

Proof. Let τ be such that 0 < τ < T and let us take k(x, t) = 0 for 0 < t < τ . From
the regularizing effect of the parabolic equations in (3.1), the associated state satisfies
(y1(., τ), y2(., τ)) ∈ (C2+δ(Ω))2, with

∥(y1(., τ), y2(., τ))∥C2+δ(Ω)×C2+δ(Ω) 6 C(∥z∥Z×Z)(∥θf1∥L2(Q) + ∥θf2∥L2(Q)

+ ∥y01∥L2(Ω) + ∥y02∥L2(Ω)).

Therefore, it is not restrictive to assume that y01 , y
0
2 ∈ C2+δ(Ω). We conclude, using

Lemma 3.4.5 of [7] (see also Theorem 2.3, [3]), that the control k(z) can be chosen
such that (k, (y1, y2)) is an element of X satisfying (3.18). �

4 Proof of the main result

We are now able to prove Theorem 2.2. Let R > 0 and BR the closed ball in Z of
radius R and center 0. According to Theorem 3.4, for each z = (z1, z2) ∈ Z × Z,

there is a unique control k̃(z) =
1

2
h̃(z) which solves (1.3),(1.4),(3.1), h̃ ∈ H⊥ being

defined by (3.13). In view of Lemma 3.5, the control k̃(z) can be chosen such that
(k̃, (ỹ1, ỹ2)) is an element of X satisfying

(4.1) ∥(k̃, (ỹ1, ỹ2))∥X 6 C(R)(∥θf1∥L2(Q) + ∥θf2∥L2(Q) + ∥y01∥L2(Ω) + ∥y02∥L2(Ω)).
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Let us set S(z) = {(y1(z), y2(z)) ∈ Z×Z : (k, (y1, y2))is a control-state, (k, (y1, y2)) ∈
X, (1.3), (1.4) and (4.1) hold}. The multi-valued mapping S : Z×Z → 2Z×Z satisfies
the hypotheses of the Kakutani fixed-point theorem.

First for each z ∈ BR × BR the mapping S is non-empty and convex, it is a
consequence of Theorem 3.4.

Then for all z ∈ BR × BR, S(z) is uniformly bounded in the Hölder space

C1+δ, 1+δ
2 (Q)2, δ ∈ (0, 1), since (ỹ1(z), ỹ2(z)) satisfies (4.1). The injection from

C1+δ, 1+δ
2 (Q) into Z being compact (see for instance [3]), there is K ⊂ Z×Z compact

such that S(z) ∈ K. Moreover if ∥θf1∥L2(Q), ∥θf2∥L2(Q), ∥y01∥L2(Ω) and ∥y02∥L2(Ω) are
small enough, there is R > 0 such that S(BR ×BR) ∈ BR ×BR.

The mapping S has a closed graph. Indeed, let (zn)n = ((z1n , z2n))n ∈ Z × Z
and (y1n , y2n)n ∈ S(zn). Assume that zn → z = (z1, z2) strongly in Z × Z and that
(y1n , y2n) → (y1, y2) strongly in Z×Z. We prove that (y1, y2) ∈ S(z). This concludes
the proof of Theorem 2.2.

5 Applications

This section is devoted to show that our work is used to solve a null controllability
problem with constraints on the state.
Let (ej)j=1,...,m be a family of m vectors of L2(Q) such that:

(5.1) the (ejχω)j=1,...,m are linearly independent.

Let us consider the following null controllability problem: Given ej ∈ L2(Q) j =
1, . . . ,m, find k ∈ L2(G) such that if (y1, y2) solves

(5.2)


∂ty1 −B(t; z1)y1 + a1y1 + b1y2 = f1 + kχω in Q,
∂ty2 −B(t; z2)y2 + a2y1 + b2y2 = f2 + kχω in Q,

y1 = y2 = 0 on Σ,
y1(0) = y01 , y2(0) = y02 in Ω,

then

(5.3)

∫
Q

y1ejdxdt =

∫
Q

y2ejdxdt = 0; j = 1, . . . ,m,

and

(5.4) y1(T ) = y2(T ) = 0 in Ω.

We introduce a family of adjoint systems of (5.2)

(5.5)


−∂tpj −B(t; z1)pj + a1pj + a2qj = ej in Q,
−∂tqj −B(t; z2)qj + b1pj + b2qj = ej in Q,

pj = qj = 0 on Σ,
pj(T ) = qj(T ) = 0 in Ω,

and define for each j = 1, . . . ,m: µj = pj + qj and νj = pj − qj . We assume that for
any z = (z1, z2) ∈ Z × Z,

(5.6) (a1 + b1 − a2 − b2)I = B(t; z1)−B(t; z2) in G with a2 ̸= b1,

I denoting the identity operator.
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Remark 5.1. Due to the notations (2.6), the assumption (5.6) can also be written
as cI = − 1

2 (B(t; z1)−B(t; z2)) in G for any z = (z1, z2) ∈ Z × Z.

Then the following lemma holds:

Lemma 5.1. Under hypotheses (5.1) and (5.6), let θ be the positive function given
by the formula (3.11). Then the functions µj and νj, j = 1, . . . ,m, are linearly

independent in G for any z ∈ Z × Z. Moreover, the functions
1

θ
µj and

1

θ
νj, j =

1, . . . ,m, are also linearly independent in G for any z ∈ Z × Z.

Proof. Let ξj ∈ R, j = 1, . . . ,m be such that
∑m

j=1 ξjµj = 0 in G, and let z ∈ Z ×Z.
Since

−∂tµj −
1

2
[(B(t; z1) +B(t; z2))µj + (B(t; z1)−B(t; z2))νj ]− aµj − cνj = 2ej

holds in Q for each j ∈ {1, . . . ,m}, we obtain in G:

−
(1
2
(B(t; z1)−B(t; z2)) + cI

) m∑
j=1

ξjνj = 2
m∑
j=1

ξjej .

In view of (5.6),
∑m

j=1 ξjej = 0 in G, and (5.1) implies that ξj = 0 for all j. So the
functions µj , j = 1, . . . ,m are linearly independent in G.

Now, let ξj ∈ R, j = 1, . . . ,m such that
∑m

j=1 ξjνj = 0 in G. Since

−∂tνj −
1

2
[(B(t; z1)−B(t; z2))µj + (B(t; z1) +B(t; z2))νj ]− bµj − dνj = 0

holds in Q, then (1
2
(B(t; z1)−B(t; z2)) + bI

) m∑
j=1

ξjµj = 0

in G. This implies that (b−c)I
∑m

j=1 ξjµj = 0 in G following (5.6). Thus
∑m

j=1 ξjµj =
0 in G, since b ̸= c in G. Finally, ξj = 0 for each j ∈ {1, . . . ,m}. The second assertion
of Lemma 5.1 follows. �

Now we prove the announced result in the following:

Proposition 5.2. With the hypotheses of Lemma 5.1, consider the vector subspace
1

θ
H of L2(G) generated by the functions

1

θ
µjχω, j = 1, . . . ,m. Then for any z ∈

Z × Z, there exists a unique h0 ∈ 1

θ
H such that the problem (5.2)-(5.4) is equivalent

to the following problem: Given ai, bi ∈ L∞(Q) and y0i ∈ L2(Ω) i = 1, 2, find a control

(5.7) h1 ∈ H⊥

such that if (y1, y2) solves

(5.8)


∂ty1 −B(t; z1)y1 + a1y1 + b1y2 = (

1

θ
h0 + h1)χω in Q,

∂ty2 −B(t; z2)y2 + a2y1 + b2y2 = (
1

θ
h0 + h1)χω in Q,

y1 = y2 = 0 on Σ,
y1(0) = y01 , y2(0) = y02 in Ω,
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then

(5.9) y1(T ) = y2(T ) = 0 in Ω.

Proof. Suppose that (5.2)-(5.4) holds. First we multiply (5.2) by the solution (pj , qj)
to (5.5), and we integrate by parts over Q. Then we add and substract the results.
In view of (5.3), it follows that

(5.10) −
∫
Ω

y01pj(0)dx−
∫
Ω

y02qj(0)dx =

∫
G

kµjdxdt,

(5.11) −
∫
Ω

y01pj(0)dx+

∫
Ω

y02qj(0)dx− 2

∫
Q

a2y1qjdxdt+ 2

∫
Q

b1y2pjdxdt

=

∫
G

kνjdxdt.

Let
1

θ
H and

1

θ
K be the vector subspaces of L2(G) respectively generated by the

functions
1

θ
µjχω and

1

θ
νjχω, j = 1, . . . ,m. Then there is one and only one (h0, l0) ∈

1

θ
H× 1

θ
K such that∫
G

1

θ
h0µjdxdt = −

∫
Ω

(y0
1pj(0) + y0

2qj(0))dx,(5.12) ∫
G

1

θ
l0νjdxdt = −

∫
Ω

(y0
1pj(0)− y0

2qj(0))dx− 2

∫
Q

a2y1qjdxdt+ 2

∫
Q

b1y2pjdxdt.(5.13)

Thus, according to (5.10) and (5.11), we have for any j ∈ {1, . . . ,m},∫
G

1

θ
h0µjdxdt =

∫
G

kµjdxdt,

∫
G

1

θ
l0νjdxdt =

∫
G

kνjdxdt.

Then (k − 1

θ
h0, k − 1

θ
l0) ∈ H⊥ × K⊥. There are (h1, l1) ∈ H⊥ × K⊥ such that

k =
1

θ
h0 + h1 =

1

θ
l0 + l1. Now, replacing k by

1

θ
h0 + h1 in (5.2), we obtain (5.8).

Conversely, assume that (5.7)-(5.9) holds. Let k ∈
( 1

θ2
H +H⊥

)
∩
( 1

θ2
K + K⊥

)
be such that k =

1

θ
h0 + h1, where h0 ∈ 1

θ
H is defined by relation (5.12). Multiplying

(5.8) by (pj , qj), then integrating by parts over Q and adding the results, we have∫
Q

(y1 + y2)ejdxdt =

∫
G

h1µjdxdt, for j ∈ {1, . . . ,m},

and since h1 ∈ H⊥, we get∫
Q

(y1 + y2)ejdxdt = 0, for any j ∈ {1, . . . ,m}.
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Now let l0 ∈ 1

θ
K be defined by (5.13) and let l1 satisfying l1 =

1

θ
h0 + h1 − 1

θ
l0.

Multiplying (5.8) by (pj , qj), then integrating by parts over Q and subtracting the
results, we obtain∫

Q

(y1 − y2)ejdxdt =

∫
G

l1νjdxdt, for j ∈ {1, . . . ,m},

which ends the proof of Proposition 5.2, since l1 ∈ K⊥ by construction. �

Remark 5.2. We will show that assuming the independence of the functions ej ,
j = 1, . . . ,m, the hypothese (2.7) will be useless.

Conclusion

In this paper we proved a null controllability problem associated to a nonlinear
parabolic system with a nonlocal operator. As a consequence of this work, a null
controllability problem with integral constraints will be the purpose of the next work.
Thus we generalized the results established in the linear case for the Laplacian. The
next step would be to focus on the equations governed by more general operators, as
fractional operators.
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