Strong insertion of a contra-continuous function between two comparable real-valued functions

M. Mirmiran and B. Naderi

Abstract

Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

M.S.C. 2010: Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30.

Key words: Insertion, strong binary relation; C-open set; semi-preopen set, α-open set; contra-continuous function; lower cut set

1 Introduction

The concept of a C-open set in a topological space was introduced by E. Hatir, T. Noiri and S. Yksel in [12]. The authors define a set S to be a C-open set if $S=U \cap A$, where U is open and A is semi-preclosed. A set S is a C-closed set if its complement (denoted by S^{c}) is a C-open set or equivalently if $S=U \cup A$, where U is closed and A is semi-preopen. The authors show that a subset of a topological space is open if and only if it is an α-open set and a C-open set or equivalently a subset of a topological space is closed if and only if it is an α-closed set and a C-closed set. This enables them to provide the following decomposition of continuity: a function is continuous if and only if it is α-continuous and C-continuous or equivalently a function is contra-continuous if and only if it is contra- α-continuous and contra- C-continuous.

Recall that a subset A of a topological space (X, τ) is called α-open if A is the difference of an open and a nowhere dense subset of X. A set A is called α-closed if its complement is α-open or equivalently if A is the union of a closed and a nowhere dense set. Sets which are dense in some regular closed subspace are called semi-preopen or β-open. A set is semi-preclosed or β-closed if its complement is semi-preopen or β-open.

In [7] it was shown that a set A is β-open if and only if $A \subseteq C l(\operatorname{Int}(C l(A)))$. A generalized class of closed sets was considered by Maki in [20]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [20].

[^0]Recall that a real-valued function f defined on a topological space X is called A-continuous [25] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to $[4,11]$. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.
J. Dontchev in [5] introduced a new class of mappings called contra-continuity.S. Jafari and T. Noiri in $[13,14]$ exhibited and studied among others a new weaker form of this class of mappings called contra- α-continuous. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers $[1,3,8,9,10,23]$.

Hence, a real-valued function f defined on a topological space X is called contracontinuous (resp. contra- C-continuous, contra- $\alpha-$ continuous) if the preimage of every open subset of \mathbb{R} is closed (resp. C-closed, α-closed) in $X[5]$.

Results of Katětov [15, 16] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contracontinuous function between two comparable real-valued functions on such topological spaces that Λ-sets or kernel of sets are open [20].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [17].
A property P defined relative to a real-valued function on a topological space is a $c c-$ property provided that any constant function has property P and provided that the sum of a function with property P and any contra-continuous function also has property P. If P_{1} and P_{2} are $c c-$ properties, the following terminology is used:(i) A space X has the weak cc-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a contra-continuous function h such that $g \leq h \leq f$.(ii) A space X has the strong cc-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a contra-continuous function h such that $g \leq h \leq f$ and if $g(x)<f(x)$ for any x in X , then $g(x)<h(x)<f(x)$.

In this paper, for a topological space whose Λ-sets or kernel of sets are open, is given a sufficient condition for the weak $c c$-insertion property. Also for a space with the weak $c c$-insertion property, we give necessary and sufficient conditions for the space to have the strong $c c$-insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the insertion of a contra-continuous function between two comparable contra-precontinuous real-valued functions has also recently considered by the author in [21].

2 The main result

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated.

The abbreviations $c c, c \alpha c$ and $c C c$ are used for contra-continuous, contra- $\alpha-$ continuous and contra- C-continuous, respectively.
Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{V} as follows:
$A^{\Lambda}=\cap\{O: O \supseteq A, O \in(X, \tau)\}$ and $A^{V}=\cup\left\{F: F \subseteq A, F^{c} \in(X, \tau)\right\}$.
In $[6,19,22], A^{\Lambda}$ is called the kernel of A.

The family of all α-open, α-closed, C-open and C-closed will be denoted by $\alpha O(X, \tau), \alpha C(X, \tau), C O(X, \tau)$ and $C C(X, \tau)$, respectively.

We define the subsets $\alpha\left(A^{\Lambda}\right), \alpha\left(A^{V}\right), C\left(A^{\Lambda}\right)$ and $C\left(A^{V}\right)$ as follows:
$\alpha\left(A^{\Lambda}\right)=\cap\{O: O \supseteq A, O \in \alpha O(X, \tau)\}$,
$\alpha\left(A^{V}\right)=\cup\{F: F \subseteq A, F \in \alpha C(X, \tau)\}$,
$C\left(A^{\Lambda}\right)=\cap\{O: O \supseteq A, O \in C O(X, \tau)\}$ and
$C\left(A^{V}\right)=\cup\{F: F \subseteq A, F \in C C(X, \tau)\}$.
$\alpha\left(A^{\Lambda}\right)\left(\right.$ resp. $\left.C\left(A^{\Lambda}\right)\right)$ is called the $\alpha-$ kernel (resp. $C-$ kernel) of A.
The following first two definitions are modifications of conditions considered in $[15,16]$.

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1) If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
2) If $A \subseteq B$, then $A \bar{\rho} B$.
3) If $A \rho B$, then $A^{\Lambda} \subseteq B$ and $A \subseteq B^{V}$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X$: $f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leq \ell\}$ for a real number ℓ, then $A(f, \ell)$ is called a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main result:
Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which kernel of sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a contra-continuous function h defined on X such that $g \leq h \leq f$.
Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By
hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \bar{\rho} F\left(t_{2}\right), G\left(t_{1}\right) \bar{\rho} G\left(t_{2}\right)$, and $F\left(t_{1}\right) \rho G\left(t_{2}\right)$. By Lemmas 1 and 2 of [16] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_{1} and t_{2} are any rational numbers with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho H\left(t_{2}\right), H\left(t_{1}\right) \rho H\left(t_{2}\right)$ and $H\left(t_{1}\right) \rho G\left(t_{2}\right)$.

For any x in X, let $h(x)=\inf \{t \in \mathbb{Q}: x \in H(t)\}$.
We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x is in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x) \leq t^{\prime}$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_{1} and t_{2} with $t_{1}<t_{2}$, we have $h^{-1}\left(t_{1}, t_{2}\right)=$ $H\left(t_{2}\right)^{V} \backslash H\left(t_{1}\right)^{\Lambda}$. Hence $h^{-1}\left(t_{1}, t_{2}\right)$ is closed in X, i.e., h is a contra-continuous function on X.
The above proof used the technique of theorem 1 in [15].
If a space has the strong $c c$-insertion property for $\left(P_{1}, P_{2}\right)$, then it has the weak $c c$-insertion property for $\left(P_{1}, P_{2}\right)$.The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak $c c$-insertion property to satisfy the strong $c c$-insertion property.

Theorem 2.2. Let P_{1} and P_{2} be $c c-$ property and X be a space that satisfies the weak $c c$-insertion property for $\left(P_{1}, P_{2}\right)$. Also assume that g and f are functions on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}. The space X has the strong $c c$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if there exist lower cut sets $A\left(f-g, 2^{-n}\right)$ and there exists a sequence $\left\{F_{n}\right\}$ of subsets of X such that (i) for each n, F_{n} and $A\left(f-g, 2^{-n}\right)$ are completely separated by contra-continuous functions, and (ii) $\{x \in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty} F_{n}$.

Proof. Suppose that there is a sequence $\left(A\left(f-g, 2^{-n}\right)\right)$ of lower cut sets for $f-g$ and suppose that there is a sequence $\left(F_{n}\right)$ of subsets of X such that

$$
\{x \in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty} F_{n}
$$

and such that for each n, there exists a contra-continuous function k_{n} on X into [$0,2^{-n}$] with $k_{n}=2^{-n}$ on F_{n} and $k_{n}=0$ on $A\left(f-g, 2^{-n}\right)$. The function k from X into $[0,1 / 4]$ which is defined by

$$
k(x)=1 / 4 \sum_{n=1}^{\infty} k_{n}(x)
$$

is a contra-continuous function by the Cauchy condition and the properties of contracontinuous functions, (1) $k^{-1}(0)=\{x \in X:(f-g)(x)=0\}$ and (2) if $(f-g)(x)>0$ then $k(x)<(f-g)(x)$: In order to verify (1), observe that if $(f-g)(x)=0$, then $x \in A\left(f-g, 2^{-n}\right)$ for each n and hence $k_{n}(x)=0$ for each n. Thus $k(x)=0$.

Conversely, if $(f-g)(x)>0$, then there exists an n such that $x \in F_{n}$ and hence $k_{n}(x)=2^{-n}$. Thus $k(x) \neq 0$ and this verifies (1). Next, in order to establish (2), note that

$$
\{x \in X:(f-g)(x)=0\}=\bigcap_{n=1}^{\infty} A\left(f-g, 2^{-n}\right)
$$

and that $\left(A\left(f-g, 2^{-n}\right)\right)$ is a decreasing sequence. Thus if $(f-g)(x)>0$ then either $x \notin A(f-g, 1 / 2)$ or there exists a smallest n such that $x \notin A\left(f-g, 2^{-n}\right)$ and $x \in A\left(f-g, 2^{-j}\right)$ for $j=1, \ldots, n-1$.
In the former case,

$$
k(x)=1 / 4 \sum_{n=1}^{\infty} k_{n}(x) \leq 1 / 4 \sum_{n=1}^{\infty} 2^{-n}<1 / 2 \leq(f-g)(x),
$$

and in the latter,

$$
k(x)=1 / 4 \sum_{j=n}^{\infty} k_{j}(x) \leq 1 / 4 \sum_{j=n}^{\infty} 2^{-j}<2^{-n} \leq(f-g)(x) .
$$

Thus $0 \leq k \leq f-g$ and if $(f-g)(x)>0$ then $(f-g)(x)>k(x)>0$. Let $g_{1}=g+(1 / 4) k$ and $f_{1}=f-(1 / 4) k$. Then $g \leq g_{1} \leq f_{1} \leq f$ and if $g(x)<f(x)$ then

$$
g(x)<g_{1}(x)<f_{1}(x)<f(x) .
$$

Since P_{1} and P_{2} are $c c$-properties, then g_{1} has property P_{1} and f_{1} has property P_{2}. Since by hypothesis X has the weak $c c$-insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a contra-continuous function h such that $g_{1} \leq h \leq f_{1}$. Thus $g \leq h \leq f$ and if $g(x)<f(x)$ then $g(x)<h(x)<f(x)$. Therefore X has the strong $c c$-insertion property for $\left(P_{1}, P_{2}\right)$. (The technique of this proof is by Lane [17].)

Conversely, assume that X satisfies the strong $c c$-insertion for $\left(P_{1}, P_{2}\right)$. Let g and f be functions on X satisfying P_{1} and P_{2} respectively such that $g \leq f$. Thus there exists a contra-continuous function h such that $g \leq h \leq f$ and such that if $g(x)<f(x)$ for any x in X, then $g(x)<h(x)<f(x)$. We follow an idea contained in Powderly [24]. Now consider the functions 0 and $f-h .0$ satisfies property P_{1} and $f-h$ satisfies property P_{2}. Thus there exists a contra-continuous function h_{1} such that $0 \leq h_{1} \leq f-h$ and if $0<(f-h)(x)$ for any x in X, then $0<h_{1}(x)<(f-h)(x)$. We next show that

$$
\{x \in X:(f-g)(x)>0\}=\left\{x \in X: h_{1}(x)>0\right\} .
$$

If x is such that $(f-g)(x)>0$, then $g(x)<f(x)$. Therefore $g(x)<h(x)<f(x)$. Thus $f(x)-h(x)>0$ or $(f-h)(x)>0$. Hence $h_{1}(x)>0$. On the other hand, if $h_{1}(x)>0$, then since $(f-h) \geq h_{1}$ and $f-g \geq f-h$, therefore $(f-g)(x)>0$. For each n, let $A\left(f-g, 2^{-n}\right)=\left\{x \in X:(f-g)(x) \leq 2^{-n}\right\}$,
$F_{n}=\left\{x \in X: h_{1}(x) \geq 2^{-n+1}\right\}$ and
$k_{n}=\sup \left\{\inf \left\{h_{1}, 2^{-n+1}\right\}, 2^{-n}\right\}-2^{-n}$.
Since $\{x \in X:(f-g)(x)>0\}=\left\{x \in X: h_{1}(x)>0\right\}$, it follows that

$$
\{x \in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty} F_{n}
$$

We next show that k_{n} is a contra-continuous function which completely separates F_{n} and $A\left(f-g, 2^{-n}\right)$. From its definition and by the properties of contra-continuous functions, it is clear that k_{n} is a contra-continuous function. Let $x \in F_{n}$. Then, from the definition of $k_{n}, k_{n}(x)=2^{-n}$. If $x \in A\left(f-g, 2^{-n}\right)$, then since $h_{1} \leq f-h \leq$ $f-g, h_{1}(x) \leq 2^{-n}$. Thus $k_{n}(x)=0$, according to the definition of k_{n}. Hence k_{n} completely separates F_{n} and $A\left(f-g, 2^{-n}\right)$.

Theorem 2.3. Let P_{1} and P_{2} be $c c-$ properties and assume that the space X satisfied the weak $c c$-insertion property for $\left(P_{1}, P_{2}\right)$. The space X satisfies the strong $c c$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if X satisfies the strong $c c$-insertion property for $\left(P_{1}, c c\right)$ and for $\left(c c, P_{2}\right)$.
Proof. Assume that X satisfies the strong $c c$-insertion property for $\left(P_{1}, c c\right)$ and for $\left(c c, P_{2}\right)$. If g and f are functions on X such that $g \leq f, g$ satisfies property P_{1}, and f satisfies property P_{2}, then since X satisfies the weak $c c$-insertion property for $\left(P_{1}, P_{2}\right)$ there is a contra-continuous function k such that $g \leq k \leq f$. Also, by hypothesis there exist contra-continuous functions h_{1} and h_{2} such that $g \leq h_{1} \leq k$ and if $g(x)<k(x)$ then $g(x)<h_{1}(x)<k(x)$ and such that $k \leq h_{2} \leq f$ and if $k(x)<f(x)$ then $k(x)<h_{2}(x)<f(x)$. If a function h is defined by $h(x)=\left(h_{2}(x)+h_{1}(x)\right) / 2$, then h is a contra-continuous function, $g \leq h \leq f$, and if $g(x)<f(x)$ then $g(x)<h(x)<f(x)$. Hence X satisfies the strong $c c$-insertion property for $\left(P_{1}, P_{2}\right)$.

The converse is obvious since any contra-continuous function must satisfy both properties P_{1} and P_{2}. (The technique of this proof is by Lane [18].)

3 Applications

Before stating the consequences of Theorems 2.1, 2.2 and 2.3 we suppose that X is a topological space whose kernel of sets are open.

Corollary 3.1. If for each pair of disjoint α-open (resp. C-open) sets G_{1}, G_{2} of X , there exist closed sets F_{1} and F_{2} of X such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$ then X has the weak $c c$-insertion property for ($c \alpha c, c \alpha c$) (resp. $(c C c, c C c)$).
Proof. Let g and f be real-valued functions defined on X, such that f and g are $c \alpha c$ (resp. $c C c$), and $g \leq f$.If a binary relation ρ is defined by $A \rho B$ in case $\alpha\left(A^{\Lambda}\right) \subseteq \alpha\left(B^{V}\right)\left(\right.$ resp. $\left.C\left(A^{\Lambda}\right) \subseteq C\left(B^{V}\right)\right)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right)
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is an α-open (resp. C-open) set and since $\{x \in X: g(x)<$ $\left.t_{2}\right\}$ is an α-closed (resp. C-closed) set, it follows that $\alpha\left(A\left(f, t_{1}\right)^{\Lambda}\right) \subseteq \alpha\left(A\left(g, t_{2}\right)^{V}\right)$ (resp. $\left.C\left(A\left(f, t_{1}\right)^{\Lambda}\right) \subseteq C\left(A\left(g, t_{2}\right)^{V}\right)\right)$. Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint α-open (resp. C-open) sets G_{1}, G_{2}, there exist closed sets F_{1} and F_{2} such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$ then every contra- α-continuous (resp. contra- $C-$ continuous) function is contra-continuous.
Proof. Let f be a real-valued contra- α-continuous (resp. contra- C-continuous)
function defined on X. Set $g=f$, then by Corollary 3.1, there exists a contracontinuous function h such that $g=h=f$.

Corollary 3.3. If for each pair of disjoint α-open (resp. C-open) sets G_{1}, G_{2} of X , there exist closed sets F_{1} and F_{2} of X such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$ then X has the strong $c c$-insertion property for $(c \alpha c, c \alpha c)$ (resp. $(c C c, c C c)$).
Proof. Let g and f be real-valued functions defined on the X, such that f and g are $c \alpha c$ (resp. $c C c$), and $g \leq f$. Set $h=(f+g) / 2$, thus $g \leq h \leq f$ and if $g(x)<f(x)$ for any x in X, then $g(x)<h(x)<f(x)$. Also, by Corollary 3.2, since g and f are contra-continuous functions hence h is a contra-continuous function.

Corollary 3.4. If for each pair of disjoint subsets G_{1}, G_{2} of X, such that G_{1} is α-open and G_{2} is C-open, there exist closed subsets F_{1} and F_{2} of X such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$ then X have the weak $c c$-insertion property for $(c \alpha c, c C c)$ and $(c C c, c \alpha c)$.
Proof. Let g and f be real-valued functions defined on X, such that g is $c \alpha c$ (resp. $c C c$) and f is $c C c$ (resp. $c \alpha c$), with $g \leq f$.If a binary relation ρ is defined by $A \rho B$ in case $C\left(A^{\Lambda}\right) \subseteq \alpha\left(B^{V}\right)$ (resp. $\alpha\left(A^{\Lambda}\right) \subseteq C\left(B^{V}\right)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right)
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is a C-open (resp. α-open) set and since $\{x \in X: g(x)<$ $\left.t_{2}\right\}$ is an α-closed (resp. C-closed) set, it follows that $C\left(A\left(f, t_{1}\right)^{\Lambda}\right) \subseteq \alpha\left(A\left(g, t_{2}\right)^{V}\right)$ (resp. $\left.\alpha\left(A\left(f, t_{1}\right)^{\Lambda}\right) \subseteq C\left(A\left(g, t_{2}\right)^{V}\right)\right)$. Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2.1.

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas.
Lemma 3.1. The following conditions on the space X are equivalent:
(i) For each pair of disjoint subsets G_{1}, G_{2} of X, such that G_{1} is α-open and G_{2} is C-open, there exist closed subsets F_{1}, F_{2} of X such that $G_{1} \subseteq F_{1}, G_{2} \subseteq F_{2}$ and $F_{1} \cap F_{2}=\varnothing$.
(ii) If G is a C-open (resp. α-open) subset of X which is contained in an α-closed (resp. C-closed) subset F of X, then there exists a closed subset H of X such that $G \subseteq H \subseteq H^{\Lambda} \subseteq F$.

Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are C-open (resp. α-open) and α-closed (resp. C-closed) subsets of X, respectively. Hence, F^{c} is an α-open (resp. C-open) and $G \cap F^{c}=\varnothing$.

By (i) there exists two disjoint closed subsets F_{1}, F_{2} such that $G \subseteq F_{1}$ and $F^{c} \subseteq F_{2}$. But

$$
F^{c} \subseteq F_{2} \Rightarrow F_{2}^{c} \subseteq F,
$$

and

$$
F_{1} \cap F_{2}=\varnothing \Rightarrow F_{1} \subseteq F_{2}^{c}
$$

hence

$$
G \subseteq F_{1} \subseteq F_{2}^{c} \subseteq F
$$

and since F_{2}^{c} is an open subset containing F_{1}, we conclude that $F_{1}^{\Lambda} \subseteq F_{2}^{c}$, i.e.,

$$
G \subseteq F_{1} \subseteq F_{1}^{\Lambda} \subseteq F
$$

By setting $H=F_{1}$, condition (ii) holds.
(ii) \Rightarrow (i) Suppose that G_{1}, G_{2} are two disjoint subsets of X, such that G_{1} is α-open and G_{2} is C-open.

This implies that $G_{2} \subseteq G_{1}^{c}$ and G_{1}^{c} is an α-closed subset of X. Hence by (ii) there exists a closed set H such that $G_{2} \subseteq H \subseteq H^{\Lambda} \subseteq G_{1}^{c}$.
But

$$
H \subseteq H^{\Lambda} \Rightarrow H \cap\left(H^{\Lambda}\right)^{c}=\varnothing
$$

and

$$
H^{\Lambda} \subseteq G_{1}^{c} \Rightarrow G_{1} \subseteq\left(H^{\Lambda}\right)^{c}
$$

Furthermore, $\left(H^{\Lambda}\right)^{c}$ is a closed subset of X. Hence $G_{2} \subseteq H, G_{1} \subseteq\left(H^{\Lambda}\right)^{c}$ and $H \cap\left(H^{\Lambda}\right)^{c}=\varnothing$. This means that condition (i) holds.

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_{1}, G_{2} of X, where G_{1} is α-open and G_{2} is C-open, can be separated by closed subsets of X then there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that $h\left(G_{2}\right)=\{0\}$ and $h\left(G_{1}\right)=\{1\}$.
Proof. Suppose G_{1} and G_{2} are two disjoint subsets of X, where G_{1} is α-open and G_{2} is C-open. Since $G_{1} \cap G_{2}=\varnothing$, hence $G_{2} \subseteq G_{1}^{c}$. In particular, since G_{1}^{c} is an α-closed subset of X containing the C-open subset G_{2} of X, by Lemma 3.1, there exists a closed subset $H_{1 / 2}$ such that

$$
G_{2} \subseteq H_{1 / 2} \subseteq H_{1 / 2}^{\Lambda} \subseteq G_{1}^{c}
$$

Note that $H_{1 / 2}$ is also an α-closed subset of X and contains G_{2}, and G_{1}^{c} is an α-closed subset of X and contains the C-open subset $H_{1 / 2}^{\Lambda}$ of X. Hence, by Lemma 3.1, there exists closed subsets $H_{1 / 4}$ and $H_{3 / 4}$ such that

$$
G_{2} \subseteq H_{1 / 4} \subseteq H_{1 / 4}^{\Lambda} \subseteq H_{1 / 2} \subseteq H_{1 / 2}^{\Lambda} \subseteq H_{3 / 4} \subseteq H_{3 / 4}^{\Lambda} \subseteq G_{1}^{c}
$$

By continuing this method for every $t \in D$, where $D \subseteq[0,1]$ is the set of rational numbers that their denominators are exponents of 2 , we obtain closed subsets H_{t} with the property that if $t_{1}, t_{2} \in D$ and $t_{1}<t_{2}$, then $H_{t_{1}} \subseteq H_{t_{2}}$. We define the function h on X by $h(x)=\inf \left\{t: x \in H_{t}\right\}$ for $x \notin G_{1}$ and $h(x)=1$ for $x \in G_{1}$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into [0,1$]$. Also, we note that for any $t \in D, G_{2} \subseteq H_{t}$; hence $h\left(G_{2}\right)=\{0\}$. Furthermore, by definition, $h\left(G_{1}\right)=\{1\}$. It remains only to prove that h is a contra-continuous function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X: h(x)<\alpha\}=\varnothing$ and if $0<\alpha$ then $\{x \in X: h(x)<\alpha\}=\cup\left\{H_{t}: t<\alpha\right\}$, hence, they are closed subsets of X. Similarly, if $\alpha<0$ then $\{x \in X: h(x)>\alpha\}=X$ and if $0 \leq \alpha$ then $\{x \in X: h(x)>\alpha\}=\cup\left\{\left(H_{t}^{\Lambda}\right)^{c}: t>\alpha\right\}$ hence, every of them is a closed subset. Consequently h is a contra-continuous function.

Lemma 3.3. Suppose that X is a topological space. If each pair of disjoint subsets G_{1}, G_{2} of X, where G_{1} is α-open and G_{2} is C-open, can separate by closed subsets
of X, and G_{1} (resp. G_{2}) is a closed subsets of X, then there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that, $h^{-1}(0)=G_{1}\left(\right.$ resp. $\left.h^{-1}(0)=G_{2}\right)$ and $h\left(G_{2}\right)=\{1\}$ (resp. $h\left(G_{1}\right)=\{1\}$).
Proof. Suppose that G_{1} (resp. G_{2}) is a closed subset of X. By Lemma 3.2, there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that, $h\left(G_{1}\right)=\{0\}$ (resp. $\left.h\left(G_{2}\right)=\{0\}\right)$ and $h\left(X \backslash G_{1}\right)=\{1\}$ (resp. $h\left(X \backslash G_{2}\right)=\{1\}$). Hence, $h^{-1}(0)=G_{1}$ (resp. $h^{-1}(0)=G_{2}$) and since $G_{2} \subseteq X \backslash G_{1}$ (resp. $G_{1} \subseteq X \backslash G_{2}$), therefore $h\left(G_{2}\right)=\{1\}\left(\right.$ resp. $\left.h\left(G_{1}\right)=\{1\}\right)$.

Lemma 3.4. Suppose that X is a topological space such that every two disjoint C-open and α-open subsets of X can be separated by closed subsets of X. The following conditions are equivalent:
(i) For every two disjoint subsets G_{1} and G_{2} of X, where G_{1} is α-open and G_{2} is C-open, there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that, $h^{-1}(0)=G_{1}\left(\right.$ resp. $\left.h^{-1}(0)=G_{2}\right)$ and $h^{-1}(1)=G_{2}\left(\right.$ resp. $\left.h^{-1}(1)=G_{1}\right)$.
(ii) Every α-open (resp. C-open) subset of X is a closed subsets of X.
(iii) Every α-closed (resp. C-closed) subset of X is an open subsets of X.

Proof. (i) \Rightarrow (ii) Suppose that G is an α-open (resp. C-open) subset of X. Since \varnothing is a C-open (resp. α-open) subset of X, by (i) there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that, $h^{-1}(0)=G$. Set $F_{n}=\left\{x \in X: h(x)<\frac{1}{n}\right\}$. Then for every $n \in \mathbb{N}, F_{n}$ is a closed subset of X and $\bigcap_{n=1}^{\infty} F_{n}=\{x \in X: h(x)=0\}=G$.
(ii) \Rightarrow (i) Suppose that G_{1} and G_{2} are two disjoint subsets of X, where G_{1} is α-open and G_{2} is C-open. By Lemma 3.3, there exists a contra-continuous function $f: X \rightarrow[0,1]$ such that, $f^{-1}(0)=G_{1}$ and $f\left(G_{2}\right)=\{1\}$. Set $G=\left\{x \in X: f(x)<\frac{1}{2}\right\}$, $F=\left\{x \in X: f(x)=\frac{1}{2}\right\}$, and $H=\left\{x \in X: f(x)>\frac{1}{2}\right\}$. Then $G \cup F$ and $H \cup F$ are two open subsets of X and $(G \cup F) \cap G_{2}=\varnothing$. By Lemma 3.3, there exists a contracontinuous function $g: X \rightarrow\left[\frac{1}{2}, 1\right]$ such that, $g^{-1}(1)=G_{2}$ and $g(G \cup F)=\left\{\frac{1}{2}\right\}$. Define h by $h(x)=f(x)$ for $x \in G \cup F$, and $h(x)=g(x)$ for $x \in H \cup F$. Then h is well-defined and a contra-continuous function, since $(G \cup F) \cap(H \cup F)=F$ and for every $x \in F$ we have $f(x)=g(x)=\frac{1}{2}$. Furthermore, $(G \cup F) \cup(H \cup F)=X$, hence h defined on X and maps to $[0,1]$. Also, we have $h^{-1}(0)=G_{1}$ and $h^{-1}(1)=G_{2}$.
(ii) \Leftrightarrow (iii) By De Morgan law and noting that the complement of every open subset of X is a closed subset of X and complement of every closed subset of X is an open subset of X, the equivalence is hold.

Corollary 3.5. If for every two disjoint subsets G_{1} and G_{2} of X, where G_{1} is α-open (resp. C-open) and G_{2} is C-open (resp. α-open), there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that, $h^{-1}(0)=G_{1}$ and $h^{-1}(1)=G_{2}$ then X has the strong $c c$-insertion property for ($c \alpha c, c C c$) (resp. ($c C c, c \alpha c)$).
Proof. Since for every two disjoint subsets G_{1} and G_{2} of X, where G_{1} is α-open (resp. C-open) and G_{2} is C-open (resp. α-open), there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that, $h^{-1}(0)=G_{1}$ and $h^{-1}(1)=G_{2}$, define $F_{1}=\{x \in$ $\left.X: h(x)<\frac{1}{2}\right\}$ and $F_{2}=\left\{x \in X: h(x)>\frac{1}{2}\right\}$. Then F_{1} and F_{2} are two disjoint closed subsets of X that contain G_{1} and G_{2}, respectively. Hence by Corollary 3.4, X has the weak $c c$-insertion property for $(c \alpha c, c C c)$ and $(c C c, c \alpha c)$. Now, assume that g and f are functions on X such that $g \leq f, g$ is $c \alpha c$ (resp. $c C c$) and f is $c c$. Since $f-g$ is $c \alpha c$ (resp. $c C c$), therefore the lower cut set $A\left(f-g, 2^{-n}\right)=\left\{x \in X:(f-g)(x) \leq 2^{-n}\right\}$
is an α-open (resp. C-open) subset of X. Now setting $H_{n}=\{x \in X:(f-g)(x)>$ $\left.2^{-n}\right\}$ for every $n \in \mathbb{N}$, then by Lemma 3.4, H_{n} is an open subset of X and we have $\{x \in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty} H_{n}$ and for every $n \in \mathbb{N}, H_{n}$ and $A\left(f-g, 2^{-n}\right)$ are disjoint subsets of X. By Lemma 3.2, H_{n} and $A\left(f-g, 2^{-n}\right)$ can be completely separated by contra-continuous functions. Hence by Theorem $2.2, X$ has the strong $c c$-insertion property for $(c \alpha c, c c)$ (resp. $(c C c, c c)$).

By an analogous argument, we can prove that X has the strong $c c$-insertion property for ($c c, c C c$) (resp. ($c c, c \alpha c$)). Hence, by Theorem 2.3, X has the strong $c c$-insertion property for $(c \alpha c, c C c)$ (resp. $(c C c, c \alpha c))$

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

[1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
[2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
[3] M. Caldas and S. Jafari, Some properties of contra- β-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
[4] J. Dontchev, The characterization of some peculiar topological space via $\alpha-$ and β-sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
[5] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
[6] J. Dontchev, and H. Maki, On sg-closed sets and semi- λ-closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
[7] J. Dontchev, Between α - and β-sets, Math. Balkanica (N.S), 12(3-4)(1998), 295-302.
[8] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.
[9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 3745.
[10] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
[11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
[12] E. Hatir, T. Noiri and S. Yksel, A decomposition of continuity, Acta Math. Hungar., 70(1-2)(1996), 145-150.
[13] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
[14] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
[15] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
[16] M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
[17] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
[18] E. Lane, PM-normality and the insertion of a continuous function, Pacific J. of Math., 82(1979), 155-162.
[19] S. N. Maheshwari and R. Prasad, On $R_{O s}-$ spaces, Portugal. Math., 34(1975), 213-217.
[20] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
[21] M. Mirmiran, Insertion of a contra-continuous function between two comparable contra-precontinuous real-valued functions, Applied Sciences, 20(2018), 129-138.
[22] M. Mrsevic, On pairwise R and pairwise R_{1} bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
[23] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
[24] M. Powderly, On insertion of a continuous function, Proceedings of the A.M.S., 81(1981), 119-120.
[25] M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.

Authors' addresses:
Majid Mirmiran
Department of Mathematics,
University of Isfahan,
Isfahan 81746-73441, Iran.
E-mail: mirmir@sci.ui.ac.ir
Binesh Naderi
Department of General Courses,
School of Management and Medical Information Sciences,
Isfahan University of Medical Sciences, Isfahan, Iran.
E-mail: naderi@mng.mui.ac.ir

[^0]: Applied Sciences, Vol. 21, 2019, pp. 159-169
 (c) Balkan Society of Geometers, Geometry Balkan Press 2019

