Strong insertion of a contra-continuous function between two comparable real-valued functions

M. Mirmiran and B. Naderi

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

M.S.C. 2010: Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30. **Key words**: Insertion, strong binary relation; C-open set; semi-preopen set, α -open set; contra-continuous function; lower cut set.

1 Introduction

The concept of a C-open set in a topological space was introduced by E. Hatir, T. Noiri and S. Yksel in [12]. The authors define a set S to be a C-open set if $S = U \cap A$, where U is open and A is semi-preclosed. A set S is a C-closed set if its complement (denoted by S^c) is a C-open set or equivalently if $S = U \cup A$, where U is closed and A is semi-preopen. The authors show that a subset of a topological space is open if and only if it is an α -open set and a C-open set or equivalently a subset of a topological space is closed if and only if it is an α -closed set and a C-closed set. This enables them to provide the following decomposition of continuity: a function is continuous if and only if it is contra- α -continuous and contra-C-continuous.

Recall that a subset A of a topological space (X, τ) is called α -open if A is the difference of an open and a nowhere dense subset of X. A set A is called α -closed if its complement is α -open or equivalently if A is the union of a closed and a nowhere dense set. Sets which are dense in some regular closed subspace are called *semi-preopen or* β -open. A set is *semi-preclosed or* β -closed if its complement is semi-preopen or β -open.

In [7] it was shown that a set A is β -open if and only if $A \subseteq Cl(Int(Cl(A)))$. A generalized class of closed sets was considered by Maki in [20]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ -sets [20].

Applied Sciences, Vol. 21, 2019, pp. 159-169.

[©] Balkan Society of Geometers, Geometry Balkan Press 2019.

Recall that a real-valued function f defined on a topological space X is called A-continuous [25] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [5] introduced a new class of mappings called contra-continuity.S. Jafari and T. Noiri in [13, 14] exhibited and studied among others a new weaker form of this class of mappings called contra- α -continuous. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 23].

Hence, a real-valued function f defined on a topological space X is called *contra-continuous* (resp. *contra-C-continuous*, *contra-\alpha-continuous*) if the preimage of every open subset of \mathbb{R} is closed (resp. *C*-closed, α -closed) in X[5].

Results of Katětov [15, 16] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contracontinuous function between two comparable real-valued functions on such topological spaces that Λ -sets or kernel of sets are open [20].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [17].

A property P defined relative to a real-valued function on a topological space is a cc-property provided that any constant function has property P and provided that the sum of a function with property P and any contra-continuous function also has property P. If P_1 and P_2 are cc-properties, the following terminology is used:(i) A space X has the weak cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a contra-continuous function h such that $g \leq h \leq f$.(ii) A space X has the strong cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a contra-continuous function h such that $g \leq h \leq f$.(ii) A space X has the strong cc-insertion property P_1 and f has property P_2 , then there exists a contra-continuous function h such that $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x).

In this paper, for a topological space whose Λ -sets or kernel of sets are open, is given a sufficient condition for the weak cc-insertion property. Also for a space with the weak cc-insertion property, we give necessary and sufficient conditions for the space to have the strong cc-insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the insertion of a contra-continuous function between two comparable contra-precontinuous real-valued functions has also recently considered by the author in [21].

2 The main result

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated. The abbreviations cc, $c\alpha c$ and cCc are used for contra-continuous, contra- α -continuous and contra-C-continuous, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows:

 $\begin{array}{l} A^{\Lambda} = \cap \{O : O \supseteq A, O \in (X, \tau)\} \text{ and } A^{V} = \cup \{F : F \subseteq A, F^{c} \in (X, \tau)\}.\\ \text{In [6, 19, 22], } A^{\Lambda} \text{ is called the } kernel \text{ of } A. \end{array}$

The family of all α -open, α -closed, C-open and C-closed will be denoted by $\alpha O(X, \tau)$, $\alpha C(X, \tau)$, $CO(X, \tau)$ and $CC(X, \tau)$, respectively.

We define the subsets $\alpha(A^{\Lambda}), \alpha(A^{V}), C(A^{\Lambda})$ and $C(A^{V})$ as follows: $\alpha(A^{\Lambda}) = \cap \{O : O \supseteq A, O \in \alpha O(X, \tau)\},\$ $\alpha(A^{V}) = \cup \{F : F \subseteq A, F \in \alpha C(X, \tau)\},\$ $C(A^{\Lambda}) = \cap \{O : O \supseteq A, O \in CO(X, \tau)\}\$ and $C(A^{V}) = \cup \{F : F \subseteq A, F \in CC(X, \tau)\}.\$ $\alpha(A^{\Lambda})$ (resp. $C(A^{\Lambda})$) is called the α - kernel (resp. C - kernel) of A.

The following first two definitions are modifications of conditions considered in [15, 16].

Definition 2.2. If ρ is a binary relation in a set S then $\overline{\rho}$ is defined as follows: $x \overline{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

1) If $A_i \ \rho \ B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in P(X) such that $A_i \ \rho \ C$ and $C \ \rho \ B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

2) If $A \subseteq B$, then $A \bar{\rho} B$.

3) If $A \ \rho \ B$, then $A^{\Lambda} \subseteq B$ and $A \subseteq B^{V}$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f,\ell)$ is called a *lower indefinite cut set* in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which kernel of sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \ \rho \ A(g,t_2)$, then there exists a contra-continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By

hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of Xby F(t) = A(f, t) and G(t) = A(g, t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [16] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \leq h \leq f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g,t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = H(t_2)^V \setminus H(t_1)^{\Lambda}$. Hence $h^{-1}(t_1, t_2)$ is closed in X, i.e., h is a contra-continuous function on X.

The above proof used the technique of theorem 1 in [15].

If a space has the strong *cc*-insertion property for (P_1, P_2) , then it has the weak *cc*-insertion property for (P_1, P_2) . The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak *cc*-insertion property to satisfy the strong *cc*-insertion property.

Theorem 2.2. Let P_1 and P_2 be cc-property and X be a space that satisfies the weak cc-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that $g \leq f, g$ has property P_1 and f has property P_2 . The space X has the strong cc-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f-g, 2^{-n})$ and there exists a sequence $\{F_n\}$ of subsets of X such that (i) for each n, F_n and $A(f-g, 2^{-n})$ are completely separated by contra-continuous functions, and (ii) $\{x \in X : (f-g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$.

Proof. Suppose that there is a sequence $(A(f - g, 2^{-n}))$ of lower cut sets for f - g and suppose that there is a sequence (F_n) of subsets of X such that

$$\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$$

and such that for each n, there exists a contra-continuous function k_n on X into $[0, 2^{-n}]$ with $k_n = 2^{-n}$ on F_n and $k_n = 0$ on $A(f - g, 2^{-n})$. The function k from X into [0, 1/4] which is defined by

$$k(x) = 1/4 \sum_{n=1}^{\infty} k_n(x)$$

is a contra-continuous function by the Cauchy condition and the properties of contracontinuous functions, (1) $k^{-1}(0) = \{x \in X : (f-g)(x) = 0\}$ and (2) if (f-g)(x) > 0then k(x) < (f-g)(x): In order to verify (1), observe that if (f-g)(x) = 0, then $x \in A(f-g, 2^{-n})$ for each n and hence $k_n(x) = 0$ for each n. Thus k(x) = 0. Conversely, if (f - g)(x) > 0, then there exists an n such that $x \in F_n$ and hence $k_n(x) = 2^{-n}$. Thus $k(x) \neq 0$ and this verifies (1). Next, in order to establish (2), note that

$$\{x \in X : (f-g)(x) = 0\} = \bigcap_{n=1}^{\infty} A(f-g, 2^{-n})$$

and that $(A(f-g, 2^{-n}))$ is a decreasing sequence. Thus if (f-g)(x) > 0 then either $x \notin A(f-g, 1/2)$ or there exists a smallest n such that $x \notin A(f-g, 2^{-n})$ and $x \in A(f-g, 2^{-j})$ for j = 1, ..., n-1. In the former case,

$$k(x) = 1/4 \sum_{n=1}^{\infty} k_n(x) \le 1/4 \sum_{n=1}^{\infty} 2^{-n} < 1/2 \le (f-g)(x),$$

and in the latter,

$$k(x) = 1/4 \sum_{j=n}^{\infty} k_j(x) \le 1/4 \sum_{j=n}^{\infty} 2^{-j} < 2^{-n} \le (f-g)(x).$$

Thus $0 \le k \le f - g$ and if (f - g)(x) > 0 then (f - g)(x) > k(x) > 0. Let $g_1 = g + (1/4)k$ and $f_1 = f - (1/4)k$. Then $g \le g_1 \le f_1 \le f$ and if g(x) < f(x) then $g(x) < g_1(x) < f_1(x) < f(x)$.

Since P_1 and P_2 are cc-properties, then g_1 has property P_1 and f_1 has property P_2 . Since by hypothesis X has the weak cc-insertion property for (P_1, P_2) , then there exists a contra-continuous function h such that $g_1 \leq h \leq f_1$. Thus $g \leq h \leq f$ and if g(x) < f(x) then g(x) < h(x) < f(x). Therefore X has the strong cc-insertion property for (P_1, P_2) . (The technique of this proof is by Lane [17].)

Conversely, assume that X satisfies the strong cc-insertion for (P_1, P_2) . Let gand f be functions on X satisfying P_1 and P_2 respectively such that $g \leq f$. Thus there exists a contra-continuous function h such that $g \leq h \leq f$ and such that if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). We follow an idea contained in Powderly [24]. Now consider the functions 0 and f - h.0 satisfies property P_1 and f - h satisfies property P_2 . Thus there exists a contra-continuous function h_1 such that $0 \leq h_1 \leq f - h$ and if 0 < (f - h)(x) for any x in X, then $0 < h_1(x) < (f - h)(x)$. We next show that

$$\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}.$$

If x is such that (f - g)(x) > 0, then g(x) < f(x). Therefore g(x) < h(x) < f(x). Thus f(x) - h(x) > 0 or (f - h)(x) > 0. Hence $h_1(x) > 0$. On the other hand, if $h_1(x) > 0$, then since $(f - h) \ge h_1$ and $f - g \ge f - h$, therefore (f - g)(x) > 0. For each n, let $A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \le 2^{-n}\}$, $F_n = \{x \in X : h_1(x) \ge 2^{-n+1}\}$ and $k_n = \sup\{\inf\{h_1, 2^{-n+1}\}, 2^{-n}\} - 2^{-n}$. Since $\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}$, it follows that ∞

$$\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n.$$

We next show that k_n is a contra-continuous function which completely separates F_n and $A(f - g, 2^{-n})$. From its definition and by the properties of contra-continuous functions, it is clear that k_n is a contra-continuous function. Let $x \in F_n$. Then, from the definition of $k_n, k_n(x) = 2^{-n}$. If $x \in A(f - g, 2^{-n})$, then since $h_1 \leq f - h \leq$ $f - g, h_1(x) \leq 2^{-n}$. Thus $k_n(x) = 0$, according to the definition of k_n . Hence k_n completely separates F_n and $A(f - g, 2^{-n})$.

Theorem 2.3. Let P_1 and P_2 be cc-properties and assume that the space X satisfied the weak cc-insertion property for (P_1, P_2) . The space X satisfies the strong cc-insertion property for (P_1, P_2) if and only if X satisfies the strong cc-insertion property for (P_1, cc) and for (cc, P_2) .

Proof. Assume that X satisfies the strong cc-insertion property for (P_1, cc) and for (cc, P_2) . If g and f are functions on X such that $g \leq f, g$ satisfies property P_1 , and f satisfies property P_2 , then since X satisfies the weak cc-insertion property for (P_1, P_2) there is a contra-continuous function k such that $g \leq k \leq f$. Also, by hypothesis there exist contra-continuous functions h_1 and h_2 such that $g \leq h_1 \leq k$ and if g(x) < k(x) then $g(x) < h_1(x) < k(x)$ and such that $k \leq h_2 \leq f$ and if k(x) < f(x) then $k(x) < h_2(x) < f(x)$. If a function h is defined by $h(x) = (h_2(x) + h_1(x))/2$, then h is a contra-continuous function, $g \leq h \leq f$, and if g(x) < f(x) then g(x) < h(x) < f(x). Hence X satisfies the strong cc-insertion property for (P_1, P_2) .

The converse is obvious since any contra-continuous function must satisfy both properties P_1 and P_2 . (The technique of this proof is by Lane [18].)

3 Applications

Before stating the consequences of Theorems 2.1, 2.2 and 2.3 we suppose that X is a topological space whose kernel of sets are open.

Corollary 3.1. If for each pair of disjoint α -open (resp. *C*-open) sets G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the weak *cc*-insertion property for (*cac*, *cac*) (resp. (*cCc*, *cCc*)).

Proof. Let g and f be real-valued functions defined on X, such that f and g are $c\alpha c$ (resp. cCc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $\alpha(A^{\Lambda}) \subseteq \alpha(B^{V})$ (resp. $C(A^{\Lambda}) \subseteq C(B^{V})$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is an α -open (resp. C-open) set and since $\{x \in X : g(x) < t_2\}$ is an α -closed (resp. C-closed) set, it follows that $\alpha(A(f,t_1)^{\Lambda}) \subseteq \alpha(A(g,t_2)^V)$ (resp. $C(A(f,t_1)^{\Lambda}) \subseteq C(A(g,t_2)^V)$). Hence $t_1 < t_2$ implies that $A(f,t_1) \ \rho \ A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint α -open (resp. C-open) sets G_1, G_2 , there exist closed sets F_1 and F_2 such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then every contra- α -continuous (resp. contra-C-continuous) function is contra-continuous. **Proof.** Let f be a real-valued contra- α -continuous (resp. contra-C-continuous) function defined on X. Set g = f, then by Corollary 3.1, there exists a contracontinuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint α -open (resp. *C*-open) sets G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the strong *cc*-insertion property for (*cac*, *cac*) (resp. (*cCc*, *cCc*)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are $c\alpha c$ (resp. cCc), and $g \leq f$. Set h = (f + g)/2, thus $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). Also, by Corollary 3.2, since g and f are contra-continuous functions hence h is a contra-continuous function.

Corollary 3.4. If for each pair of disjoint subsets G_1, G_2 of X, such that G_1 is α -open and G_2 is C-open, there exist closed subsets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X have the weak cc-insertion property for $(c\alpha c, cCc)$ and $(cCc, c\alpha c)$.

Proof. Let g and f be real-valued functions defined on X, such that g is $c\alpha c$ (resp. cCc) and f is cCc (resp. $c\alpha c$), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $C(A^{\Lambda}) \subseteq \alpha(B^{V})$ (resp. $\alpha(A^{\Lambda}) \subseteq C(B^{V})$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a *C*-open (resp. α -open) set and since $\{x \in X : g(x) < t_2\}$ is an α -closed (resp. *C*-closed) set, it follows that $C(A(f,t_1)^{\Lambda}) \subseteq \alpha(A(g,t_2)^V)$ (resp. $\alpha(A(f,t_1)^{\Lambda}) \subseteq C(A(g,t_2)^V)$). Hence $t_1 < t_2$ implies that $A(f,t_1) \ \rho \ A(g,t_2)$. The proof follows from Theorem 2.1.

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets G_1, G_2 of X, such that G_1 is α -open and G_2 is C-open, there exist closed subsets F_1, F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$.

(ii) If G is a C-open (resp. α -open) subset of X which is contained in an α -closed (resp. C-closed) subset F of X, then there exists a closed subset H of X such that $G \subseteq H \subseteq H^{\Lambda} \subseteq F$.

Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are C-open (resp. α -open) and α -closed (resp. C-closed) subsets of X, respectively. Hence, F^c is an α -open (resp. C-open) and $G \cap F^c = \emptyset$.

By (i) there exists two disjoint closed subsets F_1, F_2 such that $G \subseteq F_1$ and $F^c \subseteq F_2$. But

$$F^c \subseteq F_2 \Rightarrow F_2^c \subseteq F,$$

and

$$F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c$$

hence

$$G \subseteq F_1 \subseteq F_2^c \subseteq F$$

and since F_2^c is an open subset containing F_1 , we conclude that $F_1^{\Lambda} \subseteq F_2^c$, i.e.,

$$G \subseteq F_1 \subseteq F_1^{\Lambda} \subseteq F_2^{\Lambda}$$

By setting $H = F_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that G_1, G_2 are two disjoint subsets of X, such that G_1 is α -open and G_2 is C-open.

This implies that $G_2 \subseteq G_1^c$ and G_1^c is an α -closed subset of X. Hence by (ii) there exists a closed set H such that $G_2 \subseteq H \subseteq H^{\Lambda} \subseteq G_1^c$. But

$$H \subseteq H^{\Lambda} \Rightarrow H \cap (H^{\Lambda})^c = \&$$

and

$$H^{\Lambda} \subseteq G_1^c \Rightarrow G_1 \subseteq (H^{\Lambda})^c.$$

Furthermore, $(H^{\Lambda})^c$ is a closed subset of X. Hence $G_2 \subseteq H, G_1 \subseteq (H^{\Lambda})^c$ and $H \cap (H^{\Lambda})^c = \emptyset$. This means that condition (i) holds.

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is α -open and G_2 is C-open, can be separated by closed subsets of X then there exists a contra-continuous function $h: X \to [0, 1]$ such that $h(G_2) = \{0\}$ and $h(G_1) = \{1\}$.

Proof. Suppose G_1 and G_2 are two disjoint subsets of X, where G_1 is α -open and G_2 is C-open. Since $G_1 \cap G_2 = \emptyset$, hence $G_2 \subseteq G_1^c$. In particular, since G_1^c is an α -closed subset of X containing the C-open subset G_2 of X, by Lemma 3.1, there exists a closed subset $H_{1/2}$ such that

$$G_2 \subseteq H_{1/2} \subseteq H_{1/2}^{\Lambda} \subseteq G_1^c.$$

Note that $H_{1/2}$ is also an α -closed subset of X and contains G_2 , and G_1^c is an α -closed subset of X and contains the C-open subset $H_{1/2}^{\Lambda}$ of X. Hence, by Lemma 3.1, there exists closed subsets $H_{1/4}$ and $H_{3/4}$ such that

$$G_2 \subseteq H_{1/4} \subseteq H_{1/4}^{\Lambda} \subseteq H_{1/2} \subseteq H_{1/2}^{\Lambda} \subseteq H_{3/4} \subseteq H_{3/4}^{\Lambda} \subseteq G_1^c.$$

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain closed subsets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function hon X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin G_1$ and h(x) = 1 for $x \in G_1$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D, G_2 \subseteq H_t$; hence $h(G_2) = \{0\}$. Furthermore, by definition, $h(G_1) = \{1\}$. It remains only to prove that h is a contra-continuous function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \cup \{H_t : t < \alpha\}$, hence, they are closed subsets of X. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \leq \alpha$ then $\{x \in X : h(x) > \alpha\} = \cup \{(H_t^{\Lambda})^c : t > \alpha\}$ hence, every of them is a closed subset. Consequently h is a contra-continuous function.

Lemma 3.3. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is α -open and G_2 is C-open, can separate by closed subsets

of X, and G_1 (resp. G_2) is a closed subsets of X, then there exists a contra-continuous function $h: X \to [0, 1]$ such that, $h^{-1}(0) = G_1$ (resp. $h^{-1}(0) = G_2$) and $h(G_2) = \{1\}$ (resp. $h(G_1) = \{1\}$).

Proof. Suppose that G_1 (resp. G_2) is a closed subset of X. By Lemma 3.2, there exists a contra-continuous function $h : X \to [0,1]$ such that, $h(G_1) = \{0\}$ (resp. $h(G_2) = \{0\}$) and $h(X \setminus G_1) = \{1\}$ (resp. $h(X \setminus G_2) = \{1\}$). Hence, $h^{-1}(0) = G_1$ (resp. $h^{-1}(0) = G_2$) and since $G_2 \subseteq X \setminus G_1$ (resp. $G_1 \subseteq X \setminus G_2$), therefore $h(G_2) = \{1\}$ (resp. $h(G_1) = \{1\}$).

Lemma 3.4. Suppose that X is a topological space such that every two disjoint C-open and α -open subsets of X can be separated by closed subsets of X. The following conditions are equivalent:

(i) For every two disjoint subsets G_1 and G_2 of X, where G_1 is α -open and G_2 is C-open, there exists a contra-continuous function $h: X \to [0,1]$ such that, $h^{-1}(0) = G_1$ (resp. $h^{-1}(0) = G_2$) and $h^{-1}(1) = G_2$ (resp. $h^{-1}(1) = G_1$).

(ii) Every α -open (resp. C-open) subset of X is a closed subsets of X.

(iii) Every α -closed (resp. *C*-closed) subset of *X* is an open subsets of *X*. **Proof.** (i) \Rightarrow (ii) Suppose that *G* is an α -open (resp. *C*-open) subset of *X*. Since \emptyset is a *C*-open (resp. α -open) subset of *X*, by (i) there exists a contra-continuous function $h: X \rightarrow [0, 1]$ such that, $h^{-1}(0) = G$. Set $F_n = \{x \in X : h(x) < \frac{1}{n}\}$. Then for every $n \in \mathbb{N}$, F_n is a closed subset of *X* and $\bigcap_{n=1}^{\infty} F_n = \{x \in X : h(x) = 0\} = G$.

(ii) \Rightarrow (i) Suppose that G_1 and G_2 are two disjoint subsets of X, where G_1 is α -open and G_2 is C-open. By Lemma 3.3, there exists a contra-continuous function $f: X \rightarrow [0,1]$ such that, $f^{-1}(0) = G_1$ and $f(G_2) = \{1\}$. Set $G = \{x \in X : f(x) < \frac{1}{2}\}$, $F = \{x \in X : f(x) = \frac{1}{2}\}$, and $H = \{x \in X : f(x) > \frac{1}{2}\}$. Then $G \cup F$ and $H \cup F$ are two open subsets of X and $(G \cup F) \cap G_2 = \emptyset$. By Lemma 3.3, there exists a contracontinuous function $g: X \rightarrow [\frac{1}{2}, 1]$ such that, $g^{-1}(1) = G_2$ and $g(G \cup F) = \{\frac{1}{2}\}$. Define h by h(x) = f(x) for $x \in G \cup F$, and h(x) = g(x) for $x \in H \cup F$. Then h is well-defined and a contra-continuous function, since $(G \cup F) \cap (H \cup F) = F$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to [0, 1]. Also, we have $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$.

(ii) \Leftrightarrow (iii) By De Morgan law and noting that the complement of every open subset of X is a closed subset of X and complement of every closed subset of X is an open subset of X, the equivalence is hold.

Corollary 3.5. If for every two disjoint subsets G_1 and G_2 of X, where G_1 is α -open (resp. C-open) and G_2 is C-open (resp. α -open), there exists a contra-continuous function $h: X \to [0,1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$ then X has the strong *cc*-insertion property for ($c\alpha c, cCc$) (resp. ($cCc, c\alpha c$)).

Proof. Since for every two disjoint subsets G_1 and G_2 of X, where G_1 is α -open (resp. C-open) and G_2 is C-open (resp. α -open), there exists a contra-continuous function $h: X \to [0, 1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$, define $F_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $F_2 = \{x \in X : h(x) > \frac{1}{2}\}$. Then F_1 and F_2 are two disjoint closed subsets of X that contain G_1 and G_2 , respectively. Hence by Corollary 3.4, X has the weak cc-insertion property for $(c\alpha c, cCc)$ and $(cCc, c\alpha c)$. Now, assume that g and f are functions on X such that $g \leq f, g$ is $c\alpha c$ (resp. cCc) and f is cc. Since f - g is $c\alpha c$ (resp. cCc), therefore the lower cut set $A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \leq 2^{-n}\}$

is an α -open (resp. C-open) subset of X. Now setting $H_n = \{x \in X : (f-g)(x) > 2^{-n}\}$ for every $n \in \mathbb{N}$, then by Lemma 3.4, H_n is an open subset of X and we have $\{x \in X : (f-g)(x) > 0\} = \bigcup_{n=1}^{\infty} H_n$ and for every $n \in \mathbb{N}, H_n$ and $A(f-g, 2^{-n})$ are disjoint subsets of X. By Lemma 3.2, H_n and $A(f-g, 2^{-n})$ can be completely separated by contra-continuous functions. Hence by Theorem 2.2, X has the strong cc-insertion property for $(c\alpha c, cc)$ (resp. (cCc, cc)).

By an analogous argument, we can prove that X has the strong cc-insertion property for (cc, cCc) (resp. $(cc, c\alpha c)$). Hence, by Theorem 2.3, X has the strong cc-insertion property for $(c\alpha c, cCc)$ (resp. $(cCc, c\alpha c)$).

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

- A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
- [2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
- [3] M. Caldas and S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
- [4] J. Dontchev, The characterization of some peculiar topological space via α and β -sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
- [5] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
- [6] J. Dontchev, and H. Maki, On sg-closed sets and semi-λ-closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
- [7] J. Dontchev, Between α and β -sets, Math. Balkanica (N.S), 12(3-4)(1998), 295-302.
- [8] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.
- [9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.
- [10] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
- [11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
- [12] E. Hatir, T. Noiri and S. Yksel, A decomposition of continuity, Acta Math. Hungar., 70(1-2)(1996), 145-150.

- [13] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
- [14] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
- [15] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
- [16] M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
- [17] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
- [18] E. Lane, PM-normality and the insertion of a continuous function, Pacific J. of Math., 82(1979), 155-162.
- [19] S. N. Maheshwari and R. Prasad, On $R_{Os}-{\rm spaces},$ Portugal. Math., 34(1975), 213-217.
- [20] H. Maki, Generalized Λ -sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
- [21] M. Mirmiran, Insertion of a contra-continuous function between two comparable contra-precontinuous real-valued functions, Applied Sciences, 20(2018), 129-138.
- [22] M. Mrsevic, On pairwise R and pairwise R_1 bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
- [23] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
- [24] M. Powderly, On insertion of a continuous function, Proceedings of the A.M.S., 81(1981), 119-120.
- [25] M. Przemski, A decomposition of continuity and α -continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.

Authors' addresses:

Majid Mirmiran Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. E-mail: mirmir@sci.ui.ac.ir

Binesh Naderi Department of General Courses, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail: naderi@mng.mui.ac.ir