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Abstract. In this paper, we get the set of symmetry of Zoomeron Differen-
tial Equation (ZDE). Using Lie symmetry method the classical symmetry
operators are obtained. Also, we will find the one-dimensional optimal
system of the ZDE. Furthermore, the reduction Lie invariants correspond-
ing to infinitesimal symmetries are obtained. Along them we will study
the conservation law for ZDE.
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1 Introduction

One of Sophus Lie’s most important discoveries in the case of differential equations
is that he was able to show it is possible to locally transform the complex non-linear
condition in one system of equation by infinitesimal invariants corresponding to the
symmetry group generator of the system to solvable linear condition [5]. This task is
of utmost important in physics. In this article, our aim is to obtain a set of symmetries
of ZDE [4, 13]:

ZDE :
(uxt

u

)
tt
−
(uxt

u

)
xx

+ 2(u2)xt = 0.

The classic Lie symmetries are obtain using the Lie symmetry method. This requires
the utilization of computer softwares because working with continuous groups has
computations that follow from the algorithmic process. Having the symmetry group
of a system of equations has a lot of advantages one of which would be the classifica-
tion of the solutions of the system. This classification is in this way that we consider
both of the solutions in one class on the condition that they can be converted to each
other by one element of the symmetry group. If we work with an ordinary system of
equation, the symmetry group will help us to obtain the exact solutions by integrat-
ing once through the reduction of the order of the equation to one. And if the given
equation is of order one type, it is also possible to obtain its general solution, but such
a thing is not the case for the PDE (partial differential equation); that is, it is not
possible to obtain the general solution of one PDE necessarily by having the symme-
try group unless in a case that the system is convertible to a linear system. Also, in
this condition, the solutions that are invariant whit respect to some of the subgroups
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of the symmetry group, are obtained. Another application of the symmetry group is
that the symmetry group for one PDE is probably able to reduce the number of inde-
pendent variables and in the ideal condition convert to one ODE (ordinary differential
equation). Also, another application of symmetry group is to calculate the conserva-
tion laws in physics. In a theorem, Noether showed how symmetry groups lead to the
production of the conservation laws for Euler-Lagrange equation. For instance, the
conservation laws of energy are a matter of invariance under the motion symmetry in
relation to time, whereas the conservation law of angular and linear movement is a
matter of invariance under the transformations of movement and circulation.

2 Method of Lie Symmetry of ZDE

In this part of the article, a general method for the determination of the symmetries
of a system of PDE has been given based on [8] and [3]. Let’s suppose that in the
general case we have a non-linear PDE system:

(2.1) Ξν(x, u
(n)) = 0, ν = 1, ..., l,

that has l equations of the order of n, each of which involving p independent variables
and q dependent variables. In it x = (x1, ..., xp), u = (u1, ..., uq) and involving
derivation of u in relation to x to the order of n which we show with u(n). Now, let’s
suppose that we have a one-parametric Lie group of infinitesimal transformations that
act on independent and dependent variables (x, t, u) ∈ M = J0

x,t,u
∼= R3 as follows:

(2.2) (x̃, t̃, ũ) = (x, t, u) + s(ξ1, ξ2, ϕ)(x, t, u) +O(s2).

In it s is the group parameter and ξ1, ξ2, and ϕ are the infinitesimals parts of transfor-
mations. To calculate the Lie symmetry group for ZDE, let’s suppose in the general
case v = ξ1(x, t, u) ∂x+ ξ2(x, t, u) ∂t+ϕ (x, t, u) ∂u, is the same infinitesimal transfor-
mation groups. Now, we prolong the vector field v to order four using the following
formula:

Pr(4)v = v + ϕx ∂ux
+ ϕt ∂ut

+ ϕxx ∂uxx
+ · · ·+ ϕtttt ∂utttt

,(2.3)

with coefficients

(2.4) ϕJ = DJQ +
2∑

i=1

ξi uJ,i,

in which Q = ϕ−
∑2

i=1 ξi uα
i and J = (j1, · · · , jk), 1 ≤ jk ≤ 4, 1 ≤ k ≤ 4 and the sum

is all over J ’s of order 0 < #J ≤ n and uα
i := ∂uα/xi and uα

J,i := ∂uα
J/x

i(Theorem
(2.36) in [8]). The invariant condition, based on the theorem (6.5) from the [9], for

the ZDE is the system consisting of Pr(4)v (∆) = 0 and ZDE itself, where ∆ is the left
hand side of ZDE. The solution of which yields the system of PDE from the functions
ξ1, ξ2, and ϕ. In it, the ZDE is a manifold in the jet space J4

x,t;u
∼= R17 and Pr(4)v is

prolongation to the order four from v. As a result, we have the PDE system:

ξ1x = −ϕ/u, ξ2x = 0, ξ1t = 0, ϕx = 0, ϕt = 0,

ξ2t = −ϕ/u, ϕu = ϕ/u, ξ2u = 0, ξ1u = 0.
(2.5)

We will have the following theorem by solving the system of above PDE’s.
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Theorem 2.1. The Lie group of point symmetries of the ZDE has a Lie algebra
generator in the form of the vector field v with the following functional coefficients.

(2.6) ξ1(x, t, u) = c1x+ c3, ξ2(x, t, u) = c1t+ c2, ϕ(x, t, u) = −c1u.

In it, the constant amounts ci, i = 1, 2, 3 are arbitrary.

Theorem 2.2. The infinitesimal generators from the Lie one-parameter group of the
symmetries of the ZDE are v1 = ∂x, v2 = ∂t, v3 = x ∂x + t ∂t − u ∂u. These vector
fields produce one Lie algebra space G with the following commutator table:

[,] v1 v2 v3

v1 0 0 v1

v2 0 0 v2

v3 - v1 - v2 0

3 Group Invariant Solutions of ZDE

To obtain the group of transformations which are generated by infinitesimal generators
vi for i = 1, 2, 3, we should solve the first order system involving first order equations
in correspondence to each of the generators simultaneously.

By solving this system, the one parameter group of gk(s) : M → M generated by
vi for i = 1, 2, 3 involved in theorem (2) is obtained in the following way;

g1 : (x, t, u) 7−→ (x− s, t, u),

g2 : (x, t, u) 7−→ (x, t− s, u),

g3 : (x, t, u) 7−→ (xe−s, te−s, ues).

(3.1)

therefore, we will have the following theorem:

Theorem 3.1. If u = f(x, t) is one solution of ZDE, then the following functions
that have been produced through acting gks on u = f(x, t) will also be the solution of
ZDE.

g1sf(x, t) = f(x− s, t), g2sf(x, t) = f(x, t− s), g3sf(x, t) = f(xe−s, te−s)e−s.

4 Optimal System of One-Dimensional Subalgebras
of ZDE

In this part of the article, we want to obtain the one-dimensional optimal system of
the ZDE using its symmetry group. The optimal system is in fact a standard method
for the classification of one-dimensional sub-algebras in which each class involves con-
jugate equivalent members [10]. Also, they involve the group adjoint representation
which establishes an equivalent relation among all conjugate sub-algebra elements.
In fact, the classification problem for one-dimensional sub-algebra is the same as the
problem of the classification of the representation of its adjoint orbits. In this way,
the optimal system is constructed. The set of invariant solutions corresponding to
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a one-dimensional sub-algebra is a list of minimal solutions by which all the other
invariant solutions can be obtained by the use of transformations [6]. To calculate
the adjoint representation, we consider the following Lie series

(4.1) Ad(exp(svi)vj) = vj − s advjvj +
s2

2
ad2vj

vj − · · · ,

for the favorite vector fields vi, vj in which advjvj = [vi,vj ] is the Lie algebra com-
municator and s is the group parameter; and i, j = 1, 2, 3 ([8],page 199). Therefore,we
will have the following table.

Ad(exp(s)vi)vj) v1 v2 v3

v1 v1 v2 v3 − sv1

v2 v1 v2 v3 − sv2

v3 esv1 esv2 v3

First, we consider a favorite member (an optional member) from G in the form of

(4.2) v = a1v1 + a2v2 + a3v3,

and for the simplicity of calculations, each G element in the form of (4.2) can be
corresponded to a vector a = (a1, a2, a3) ∈ R3; therefor, the adjoint action can be
considered the same as a type of linear transformation group of vectors, so we can
have the following theorem:

Theorem 4.1. The one-dimensional optimal system of Lie algebra G for the ZDE is
(i): Scaling: v3, and wave traveling solutons: (ii) v1− cv2, where c ∈ R is arbitrary
constant.

Proof: We define the map F s
i : G → G by v 7→ Ad(exp(svi)v) as a linear map, for

i = 1, 2, 3. So the matrices Ms
i corresponding to each of the F s

i , i = 1, 2, 3, in relation
to the basis {v1,v2,v3} will be as follows:

Ms
1 = I3 − sE13, Ms

2 = I3 − sE23, Ms
3 = es(E11 + E22) + E33.

In it, Eijs are 3 × 3-elementary matrixes, for i, j = 1, 2, 3; on the condition, that the
(i; j)-entry of Eij is 1, and others are zero. Suppose v = a1v1 + a2v2 + a3v3, in this
case, we will have the map combinations as follows:

F s
3 ◦ F s

2 ◦ F s
1 : v 7→ [esa1 − sa3]v1 + [esa2 − sa3]v2 + a3v3.

We can simplify the v as follows: If a3 ̸= 0 then we can vanish the coefficient of v1

and v2 using F s
1 , and F s

2 by substitution s = a1

a3
, and s = a2

a3
. And if necessary, we

can suppose a3 = 1 through the Scaling of v. In this case v is reduced to form (i),
and if a3 = 0, then v is reduced to form (ii).

5 Similarity Reduction of ZDE

The ZDE has been stated with the (x, t;u) coordinate, but we are looking for a
new coordinate that the equation will reduce if we write it in new coordinate.This
new coordinate is obtained through (y; v) dependent invariant corresponding to the
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infinitesimal symmetry generator. If we state the ZDE with the new coordinate,
using the chain rule, a reduced equation will result.Now we calculate the invariants
corresponding to the symmetry generators existing in the optimal system. The first
status for the first element of the optimal system is v3. It has the determining
equation in the form: dx/x = dt/t = −du/u. Solving this equation will result in the
two invariants of y = x/t, v = tu. Now, if we consider u(x, t) = v(y)/t as a function
of y = x/t, we can state the derivatives of u with respect to x and t, in the form of
v and y and the derivatives of v with respect to y, and substituting it in the ZDE,
turns the ZDE to an ordinary equation one as follows:

−(2y(y2 − 1)v′ + 2v(y2 + 2) + yv)vv′′′ − y(y2 − 1)vv′′
2

+(2y(y2 − 1)v′2 + 2(4− 7y2)vv′ − 4v2y(v2 + 3))v′′

+4v′((y2 − 1)v′2 − yv(v2 + 3)v′ − 3v2(v2 + 1) = 0.

The second status for the second element of the optimal system is v1 − cv2. It has
the determining equation in the form dx/1 = dt/1 = du/0. Solving this equation will
result in the two invariants of y = cx + t, v = u. Now, if we consider u(x, t) = v(y)
as a function of y = cx + t, we can state the derivatives of u with respect to x and
t, in the form of v and y and the derivatives of v with respect to y, and substituting
it in the ZDE, turns the ZDE to an ordinary equation −2vv′v′′′ − vv′′

2
+ 2v′

2
v′′ +

v′′′′v2 − 2c2v′
2
v′′ + 2c2vv′v′′′ + c2vv′′

2
+ 4v3v′

2
+ 4v4v′′ = 0. Let c = 1, then we have

the following ODE v′′′ + 4v(v′
2
+ vv′′) = 0 and v = 0.

6 Characterization of differential invariants

Let’s suppose G that acts on the manifold M ⊂ X×U is a local group of transforma-
tion. A differential invariant of order n from group G is defined as a smooth function
having the form, I : Jn

x,t,u −→ R. It is dependent on x, u and derivatives of u up to

order n. If I is a differential invariant of order n, then I(Pr(n)g.(x, u(n)) = I(x, u(n))
for (x, u(n)) ∈ Jn

x,t,u and g ∈ G, [8]. To obtain the differential invariant of the ZDE,
up to order two, we solve the system Ix = 0, It = 0, −uIu = 0, where, I is a smooth
function of (x, t, u). And

(6.1) (I1)x = 0, (I1)t = 0, u(I1)u + 2ux(I1)ux + 2ut(I1)ut = 0,

where I1 is a smooth function of (x, t, u, ux, ut),

(6.2) (I2)x = 0, (I2)t = 0, u(I2)u + · · ·+ 3uxt(I2)uxt + 3utt(I2)utt = 0,

where I2 is a smooth function of (x, t, u, ux, ut, uxx, uxt, utt). The solution of these
systems are listed in order in table:

Vector field Ordinary invariant 1st order 2nd order
X1 t, u ∗, ux, ut ∗, ∗∗, uxx, uxt, utt

X2 x, u ∗, ux, ut ∗, ∗∗, uxx, uxt, utt

X3 t/x, xu ∗, x2ux, x
2ut ∗, ∗∗, x3uxx, x

3uxt, x
3utt

In it, ∗ and ∗∗ refer back to ordinary invariants and order two of the columns
before them respectively.
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7 Conservation laws for ZDE

There are various methods to calculate the conservation laws, some of these methods
are: Noether’s basic method, multiplier method, direct method, etc.[8, 2, 1, 11, 7].
In this part of the article, we will obtain the conservation laws of the ZDE using the
multiplier method. A conservation law for system (2.1) is defined as a divergence
expression: DiΦ

i[u] = D1Φ
1[u] + · · · +DnΦ

n[u], that is true for all of the solutions
of system (2.1). In it, Φi[u] = Φi(x, u(r)), i = 1, · · · , n, are called the fluxes of the
conservation law, and the highest-order derivative (r) in the fluxes statement Φi[u] is
called the order of the conservation law [2].

A set of multipliers {Λν [U ]}lν=1 = {Λν(x, U
(r))}lν=1 results in the existence of the

divergence expression for the system Ξν [u] = Ξν(x, u(n)), on the condition that if the
identity Λν [U ]Ξν [U ] ≡ DiΦ

i[U ] holds for the arbitrary functions U(x). Then there will
be one conservation law as Λν [u]Ξν [u] = DiΦ

i[u] = 0 for the solution of system (2.1),
that is written as U(x) = u(x); providing Λν [U ] is non-singular. The Euler operator
in respect to U j is defined as EUj = ∂Uj −Dj∂Uj + · · ·+(−1)sDi1 · · ·Din∂Uj

i1···is
+ · · · ,

for j = 1, · · · , q [2]. The equations EUjF (x,U (s)) ≡ 0, j = 1, · · · , q hold for every
function U(x) if and only if the relation F (x,U (s)) ≡ DiΨ

i(x,U (s−1)) holds for some
of functions Ψi(x,U (s−1)), i = 1, · · · , q (Theorem 1.3.2, [2]).

A set of non-singular local multipliers {Λµ(x,U
(r))}lν=1 results in the production

of the locally conservation law for the system Ξν(x, u
(n)) if and only if the set of

identities

(7.1) EUj (Λν(x,U
(r))Ξν(x, u

(n))) ≡ 0, j = 1, · · · , q,

hold for every optional function U(x) (Theorem 1.3.3, [2]). The set of equations (7.1)
results in the linear determining equations, from the solution of which a set of locally
conservation law multipliers for system Ξν(x, u

(n)) is produced. Now, we want to
obtain the local multipliers of the conservation law in the form Λ = ξ(x, t, u) for the
ZDE. The determining equations (7.1) for the ZDE is as follows

(7.2) EU [ξ(x, t, U)∆] ≡ 0,

where ∆ is the left hand side of ZDE and U(x, t) is an arbitrary function.

The calculation of equation (7.2) yields the PDE system. Through solving the
determining equation produced from (7.2), we will have the following solution ξ =
c1x+c3t+c4(t

2+x2)+c2, where c1, · · · , c4 are arbitrary constants, so local multipliers
are obtained as (i) ξ = 1, (ii) ξ = x, (iii) : ξ = t, (iv) ξ = (t2 + x2)/2. Each of
the local multipliers ξ determine a non-trivial local conservation law DtΨ+DxΦ = 0
with a determining form of DtΨ + DxΦ = ξ(x, t, U)(∆). To calculate the Ψand
Φ we should invert the operator and this involves getting multi-dimensions integral
from the statement involving the optional function and its derivatives and this is
practically difficult in direct manner. Here, we use the homotopy operators to achieve
this end [12]. The homotpy operator is powerful algorithmic device originated from
homological algebra and variational bi-complexes. The two-dimensional homotpy
operator is a vector operator with two components in the form of (Hx

uf,Ht
uf), defined
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in the following form

(7.3) Hx
uf =

∫ 1

0

1

λ

( q∑
j=1

Ix
ujf
)
[λu] dλ, Ht

uf =

∫ 1

0

1

λ

( q∑
j=1

It
ujf
)
[λu] dλ.

Which Ix
ujf , is obtained in the following way by getting integral from it

(7.4) Ix
ujf =

Mj
1∑

k1=1

Mj
2∑

k2=0

( k1−1∑
i1=0

k2∑
i2=0

Bxuj
xi1 ti2

(−Dx)
k1−i1−1(−Dt)

k2−i2
) ∂f

∂uj
xk1 tk2

In it M j
1 , M j

2 are the order of f in uj to x and t respectively, which in ZDE,

j = 1, M j
1 = M j

2 = 3, and combinatorial coefficient Bx = B(i1, i2, k1, k2) =(
i1+i2
i1

)
.
(
k1+k2−i1−i2−1

k1−i1−1

)
/
(
k1+k2

k1

)
. Similarly, the t-integrand, It

ujf , is defined as

It
ujf =

Mj
1∑

k1=0

Mj
2∑

k2=1

(
k1∑

i1=0

k2−1∑
i2=0

Btuj
xi1 ti2

(−Dx)
k1−i1(−Dt)

k2−i2−1

)
∂f

∂uj
xk1 tk2

,

where Bt = B(i2, i1, k2, k1). We apply homotopy operator to find conserved quantities
Ψ and Φ which yield of multiplier ξ = 1. Now f is the left hand side of ZDE. The
integrands Ix

ujf and It
ujf are

1

12

(
2u2(uxxt + 3uttt) + 12uutt(ut − 1) + 9uuxuxt

+12u4ut − 8u3
t (2ut + 5) + 57utu

2
x

)
,

1

12

(
48uxut + 48u4ux + uuxt(48− 13ut)− 62uxu

2
t(7.5)

−4u2uxtt + 4uuxutt − 24uuxuxx + 72u3
x

)
.

Apply (7.4) to the integrands (7.5), therefore Ψ := Hx
ujf is

1

9
u2(3uxxt + uttt)−

2

9
u2
t (5ut − 9) +

19

6
utu

2
x +

1

5
u4ut +

1

6
uutt(2ut − 3) +

3

4
uuxuxt,

and Φ := Ht
ujf is

−1

9
u2uxtt −

13

36
uuxt(ut − 132) +

1

9
uux(utt − 6uxx)−

31

18
uxut(ut − 36) +

1

5
u4ux + 2u3

x.

So, we have the first conservation low of the ZDE respect to multiplier ξ = 1 leads

Dx

(1
9
u2(3uxxt + uttt)−

2

9
u2
t (5ut − 9) +

19

6
utu

2
x +

1

5
u4ut +

1

6
uutt(2ut − 3)

+
3

4
uuxuxt

)
+ Dt

(
− 1

9
u2uxtt −

13

36
uuxt(ut − 132) +

1

9
uux(utt − 6uxx)

−31

18
uxut(ut − 36) +

1

5
u4ux + 2u3

x

)
= 0.
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Now we find conservation law respect to multiplier ξ = x, in this cases we have:

Dx

(1
5
xutu

4 − 10

6
xu3

t −
15

12
uuxut +

3

4
xuxuxtu+

1

3
xuututt+

19

6
xutu

2
x + 2xu2

t

−1

2
xuutt +

1

3
xuxxtu

2 +
1

9
xutttu

2
)
+Dt

(
− 1

9
xuxttu

2 +
1

5
xuxu

4 + 2xu3
x

−1

2
uut +

1

9
xuuxutt −

2

3
xuuxuxx − 31

18
xuxu

2
t −

1

9
uttu

2 − uu2
x +

19

36
uu2

t

−2

5
u5 + 2xutux − 13

36
xuutuxt +

1

2
xuuxt

)
= 0.

And to multiplier ξ = t we have:

Dx

(
− 2

5
u5 − 1

9
uttu

2 − 11

12
uu2

x +
4

9
uu2

t −
1

2
uut + 2tu2

t −
1

2
tuutt +

1

3
tuxxtu

2

+
1

9
tutttu

2 +
1

3
tutu

2 − 10

9
tu3

t +
3

4
tuuxuxt +

1

3
tuututt +

19

6
tutu

2
x

)
+Dt

(
− 13

36
tuutuxt +

2

9
uxtu

2 +
1

9
tuuxutt −

2

3
tuuxuxx − 31

18
tuxu

2
t

−1

9
tuxttu

2 +
1

5
uxu

4 + 2tu3
x − 5

36
uuxut +

1

2
tuuxt + 2tuxut

)
= 0.

And to multiplier ξ = (t2 + x2)/2 we have:

Dx

(
− 1

2
tuut −

1

9
tu2utt −

11

12
tuu2

x − 1

4
(t2 + x2)uutt +

19

12
(t2 + x2)utu

2
x +

2

3
utu

2

+
1

10
(t2 + x2)utu

4 +
1

6
(t2 + x2)uxxtu

2 +
1

18
(t2 + x2)utttu

2 − 2

5
tu5 + (t2 + x2)u2

t

−5

6
(t2 + x2)u3

t −
5

4
xuutux +

1

6
(t2 + x2)uututt +

3

8
(t2 + x2)uuxuxt +

4

9
tuu2

t

)
+Dt

(
− 2

5
xu5 + (t2 + x2)u3

x +
2

3
uxu

2 − 1

9
xu2utt − xuu2

x +
1

10
(t2 + x2)uxu

4

− 1

18
(t2 + x2)uxttu

2 +
19

36
xuu2

t −
31

36
(t2 + x2)uxu

2
t −

1

2
xuut + (t2 + x2)utux

+
1

4
(t2 + x2)uuxt +

1

18
(t2 + x2)uuxutt −

1

3
(t2 + x2)uuxuxx +

2

9
tuxtu

2

−13

72
(t2 + x2)uutuxt −

5

36
tuutux

)
= 0.

Conclusion

In this paper we obtained the Lie point symmetries of the Zoomeron equation by using
the Lie symmetry method. Also computed the one dimensional optimal system. This
led to reducing the Zoomeron equation to ODE’s and computing the invariants and
conservation law of Zoomeron equation.
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