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Abstract. In this paper, first we prove the existence of invariant vec-
tor field on a homogeneous Finsler space with infinite series (α, β)-metric.
Next, we deduce an explicit formula for the the S-curvature of homoge-
neous Finsler space with infinite series (α, β)-metric. Using this formula,
we further derive the formula for mean Berwald curvature of the homoge-
neous Finsler space with this metric.
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The main purpose of this paper is to give a formula for S-curvature and mean
Berwald curvature of the homogeneous Finsler space with infinite series (α, β)-metric.
According to S. S. Chern ([4]), Finsler geometry is just the Riemannian geometry
without the quadratic restriction. The notion of (α, β)-metric in Finsler geometry
was introduced by M. Matsumoto in 1972 ([15]). An (α, β)-metric is a Finsler metric

of the form F = αϕ(s), s =
β

α
, where α =

√
aij(x)yiyj is a Riemannian metric on a

connected smooth n-manifold M and β = bi(x)y
i is a 1-form on M . It is well known

fact that (α, β)-metrics are the generalizations of the Randers metric introduced by
G. Randers in ([20]). (α, β)-metrics have various applications in physics and biology

([1]). Consider the rth series (α, β)-metric:

F (α, β) = β

r=∞∑
r=0

(
α

β

)r
.

If r = 1, then it is a Randers metric.
If r = ∞, then

F =
β2

β − α
.

This metric is called an infinite series (α, β)-metric. Interesting fact about this metric
is that, it is the difference of a Randers metric and a Matsumoto metric, and satisfies
Shen’s lemma (see lemma 1.1).
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Some other important class of (α, β)-metrics are Randers metric, Kropina metric,
Matsumoto metric and exponential metric etc. Many authors ([3], [16], [21], [22], [23]
etc.) have studied various properties of (α, β)-metrics. The study of various types
of curvatures of Finsler spaces such as S-curvature, mean Berwald curvature, flag
curvature always remain the central idea in the Finsler geometry. Z. Shen ([24]) in-
troduced the concept of S-curvature of a Finsler space, in 1997. Cheng and Shen ([3])
have given the formula of S-curvature of the Finsler space with (α, β)-metrics, in 2009.

Finsler geometry has been developing rapidly since last few decades, after its
emergence in 1917 ([11]). Finsler geometry has been influenced by group theory. The
celebrated Erlangen program of F. Klein, posed in 1872 ([13]), greatly influenced the
development of geometry. Klein proposed to categorize the geometries by their chac-
teristic group of transformations. The Myers-Steenrod theorem, published in 1939
([18]), extended the scope of applying Lie theory to all homogeneous Riemannian
manifolds.

Theorem 0.1. ( Myers-Steenrod) Let M be a connected Riemannian manifold.
Then the group of isometries I(M) of M admits a differentiable structure such that
I(M) is a Lie transformation group of M .

S. Deng and Z. Hou ([8]) have generalized this theorem to the Finslerian case, in
2002. This result opened the door for applying Lie theory to study Finsler geometry.
The current topics of research in Finsler geometry are homogeneous Finsler spaces,
Finsler spaces with (α, β)-metrics and symmetric spaces etc.

To compute the geometric quantities, specially, curvatures is an interesting prob-
lem in homogeneous spaces. In 1976, Milnor ([17]) studied the curvature properties
of such spaces by using the formula for the sectional curvature of a left invariant
Riemannian metric on a Lie group.

S. Deng ([6]) has derived an explicit formula to find S-curvature of homogeneous
Randers metric, in 2009. Later, Deng and Wang ([10]) deduced a formula for S-
curvature and mean Berwald curvature of the homogeneous Finsler space with an
(α, β)-metric, in 2010.
The paper consists of five sections arranged as follows:
Section 2 includes some preliminaries of Finsler geometry. In third section, we prove
the existence of invariant vector field in a homogeneous Finsler space with infinite
series (α, β)-metric. In fourth section, we derive a formula for S-curvature of homo-
geneous Finsler space with (α, β)-metric, without using local coordinates and also
deduce a formula for S-curvature of homogeneous Finsler space with infinite series
(α, β)-metric. Further, using it, we prove that homogeneous Finsler space with in-
finite series (α, β)-metric has isotropic S-curavture if and only if it has vanishing
S-curvature. Finally, in the last section, we deduce the formula for mean Berwald
curvature of homogeneous Finsler space with afore said metric.
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1 Preliminaries

In this section, we give some basic concepts of Finsler geometry that are required for
next sections. For symbols and notations , we refer ([2], [5]) and ([7]).

Definition 1.1. LetM be a smooth manifold of dimension n, TpM the tangent space
at any point p ∈M. A real valued bilinear function g : TpM×TpM −→ [0,∞) is called
a Riemannian metric if it is symmetric and positive-definite,i.e., ∀ X,Y ∈ X(M),

(i) g(X,Y ) = g(Y,X).

(ii) g(X,X) ≥ 0 and g(X,X) = 0 if and only if X = 0.

A smooth manifold with a given Riemannian metric is called a Riemannian manifold.

Definition 1.2. An n-dimensional real vector space V is called a Minkowski space if
there exists a real valued function F : V −→ R satisfying the following conditions:

(a) F is smooth on V \{0},

(b) F (v) ≥ 0 ∀ v ∈ V,

(c) F is positively homogeneous, i.e., F (λv) = λF (v), ∀ λ > 0,

(d) For a basis {v1, v2, ..., vn} of V and y = yivi ∈ V , the Hessian matrix
(
gij

)
=(

1

2
F 2
yiyj

)
is positive-definite at every point of V \{0}.

Here, F is called a Minkowski norm.

Definition 1.3. A connected smooth manifold M is called a Finsler space if there
exists a function F : TM −→ [0,∞) such that F is smooth on the slit tangent bundle
TM\{0} and the restriction of F to any Tp(M), p ∈ M , is a Minkowski norm. In
this case, F is called a Finsler metric.

Let (M,F ) be a Finsler space and let (xi, yi) be a standard coordinate system in
Tx(M). The induced inner product gy on Tx(M) is given by gy(u, v) = gij(x, y)u

ivj ,

where u = ui
∂

∂xi
, v = vi

∂

∂xi
∈ Tx(M). Also note that F (x, y) =

√
gy(y, y).

The condition for an (α, β)-metric to be a Finsler metric is given in following Shen’s
lemma:

Lemma 1.1. ([5]) Let F = αϕ(s), s = β/α, where α is a Riemannian metric and
β is a 1-form whose length with respect to α is bounded above, i.e., b := ∥β∥α < b0,
where b0 is a positive real number. Then F is a Finsler metric if and only if the
function ϕ = ϕ(s) is a smooth positive function on (−b0, b0) and satisfies the following
condition:

ϕ(s)− sϕ′(s) +
(
b2 − s2

)
ϕ′′(s) > 0, |s| ≤ b < b0.

Definition 1.4. Let (M,F ) be a Finsler space. A diffeomorphism ϕ : M −→ M is
called an isometry if F (ϕ(p), dϕp(X)) = F (p,X) for any p ∈M and X ∈ Tp(M).
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Let {ei} be a basis of an n-dimensional real vector space V and F be a Minkowski
norm on V . We denote the volume of a subset in Rn by Vol and Bn, the open unit
ball. The quantity

τ(y) = ln

√
det(gij(y))

σF
, y ∈ V \{0},

where

σF =
V ol (Bn)

V ol {(yi) ∈ Rn : F (yiei) < 1}
,

is called the distortion of (V, F ). Further, let τ(x, y) be the distortion of F on Tx(M).
For any tangent vector y ∈ Tx(M)\{0}, let γ(t) be the geodesic such that γ(0) =
x, γ̇(0) = y. The rate of change of distortion along the geodesic γ is called the
S-curvature and it is denoted by S(x, y), i.e.,

S(x, y) =
d

dt

[
τ

(
γ(t), γ̇(t)

)]
t=0

.

This quantity is positively homogeneous of degree one, i.e., S(x, λy) = λS(x, y), λ >
0. We can observe that any Riemannian manifold has vanishing S-curvature. There-
fore, we can say that S-curvature is a non-Riemannian quantity. Further, there is
another quantity that is related to S-curvature, called E-curvature or mean Berwald
curvature. The mean Berwald curvature is given by

Eij(x, y) =
1

2

∂2S(x, y)

∂yi∂yj
.

Definition 1.5. Let G be a Lie group and M a smooth manifold. If G has a smooth
action on M , then G is called a Lie transformation group of M .

Definition 1.6. A connected Finsler space (M,F ) is said to be homogeneous Finsler
space if the action of the group of isometries of (M,F ), denoted by I(M,F ), is
transitive on M .

2 Invariant vector fields

In this section, we prove the existence of invariant vector field corresponding to 1-form

β for a homogeneous Finsler space with infinite series (α, β)-metric F =
β2

β − α
. For

this, first we prove the following lemma:

Lemma 2.1. Let (M,α) be a Riemannian space. Then the infinite series Finsler

metric F =
β2

β − α
, β = biy

i, a 1-form with ∥β∥ =
√
bibi < 1 consists of a Riemannian

metric α alongwith a smooth vector field X on M with α (X|x) < 1, ∀ x ∈M , i.e.,

F (x, y) =
⟨X|x, y⟩2

⟨X|x, y⟩ − α (x, y)
, x ∈M, y ∈ TxM,

where ⟨ , ⟩ is the inner product induced by the Riemannian metric α.
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Proof. The definition of Riemannian metric assures that the bilinear form ⟨u, v⟩ =
aiju

ivj , u, v ∈ TxM is an inner product on TxM . Further, this inner product
induces an inner product on the cotangent space T ∗

x (M). With the help of this inner
product, we can define a linear isomorphism between T ∗

x (M) and TxM . Thus the
1-form β corresponds to a smooth vector field X on M , given by

X|x = bi
∂

∂xi
,where bi = aijbj .

Finally, we have

⟨X|x, y⟩ =
⟨
bi

∂

∂xi
, yj

∂

∂xj

⟩
= biyjaij = bjy

j = β(y).

Also, note that
α (X|x) = ∥β∥ < 1.

�

Lemma 2.2. Let (M,F ) be a Finsler space with infinite series Finsler metric F =
β2

β − α
. Then the group of isometries I(M,F ) of (M,F ) is a closed subgroup of the

group of isometries I(M,α) of the Riemannian space (M,α).

Proof. Let ψ be an isometry of (M,F ) and let x ∈M. Therefore, for every y ∈ TxM ,
we have

F (x, y) = F (ψ(x), dψx(y)).

Applying Lemma 2.1, we get

⟨X|x, y⟩2

⟨X|x, y⟩ − α (x, y)
=

⟨
X|ψ(x), dψx(y)

⟩2⟨
X|ψ(x), dψx(y)

⟩
− α (ψ(x), dψx(y))

,

which implies

⟨X|x, y⟩2
⟨
X|ψ(x), dψx(y)

⟩
− ⟨X|x, y⟩2 α (ψ(x), dψx(y))

= ⟨X|x, y⟩
⟨
X|ψ(x), dψx(y)

⟩2 − α (x, y)
⟨
X|ψ(x), dψx(y)

⟩2
.

(2.1)

Replacing y by −y in equation (2.1), we get

⟨X|x, y⟩2
⟨
X|ψ(x), dψx(y)

⟩
+ ⟨X|x, y⟩2 α (ψ(x), dψx(y))

= ⟨X|x, y⟩
⟨
X|ψ(x), dψx(y)

⟩2
+ α (x, y)

⟨
X|ψ(x), dψx(y)

⟩2
.

(2.2)

Adding equations (2.1) and (2.2), we get

(2.3) ⟨X|x, y⟩ =
⟨
X|ψ(x), dψx(y)

⟩
.

Subtracting equation (2.2) from equation (2.1) and using equation (2.3), we get

(2.4) α (x, y) = α (ψ(x), dψx(y)) .

Therefore ψ is an isometry with respect to the Riemannian metric α and dψx (X|x) =
X|ψ(x). Thus I(M,F ) is a closed subgroup of I(M,α). �
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Let (M,F ) be a homogeneous Finsler space with infinite series Finsler metric

F =
β2

β − α
, then from the Lemma (2.2), it is clear that the Riemannian manifold

(M,α) is homogeneous. M can be written as a coset space G/H, where G = I(M,F )
is a Lie transformation group ofM and H, the compact isotropy subgroup of I(M,F )
at some point x ∈ M([8]) . Let g and h be the Lie algebras of the Lie groups G and
H respectively. If g can be written as a direct sum of subspace h and subspace m of
g such that Ad(h)m ⊂ m ∀ h ∈ H, then (G/H,F ) is called a reductive homogeneous
manifold ([19]). Note that a Finsler metric F can be viewed as a G-invariant Finsler
metric onM . Thus, we can say that any homogeneous Finsler manifold can be written
as a coset space of a connected Lie group with an invariant Finsler metric.
Next, we prove the following lemma, necessary for further calculations.

Lemma 2.3. Let F =
β2

β − α
be a G-invariant infinite series metric on G/H. then

α is a G-invariant Riemannian metric and the vector field X corresponding to the
1-form β is a G-invariant vector field.

Proof. Since F is G-invariant, we have

F (y) = F (Ad (h) y) , ∀ h ∈ H, y ∈ m.

Applying the Lemma 2.1, we get

⟨X, y⟩2

⟨X, y⟩ − α (y)
=

⟨X,Ad (h) y⟩2

⟨X,Ad (h) y⟩ − α (Ad (h) y)
.

Simplifying the above equation, we get

⟨X, y⟩2 ⟨X,Ad (h) y⟩ − ⟨X, y⟩2 α (Ad (h) y)

= ⟨X,Ad (h) y⟩2 ⟨X, y⟩ − ⟨X,Ad (h) y⟩2 α (y) .
(2.5)

Replacing y by −y in equation (2.5), we get

⟨X, y⟩2 ⟨X,Ad (h) y⟩+ ⟨X, y⟩2 α (Ad (h) y)

= ⟨X,Ad (h) y⟩2 ⟨X, y⟩+ ⟨X,Ad (h) y⟩2 α (y) .
(2.6)

Adding equations (2.5) and (2.6), we get

(2.7) ⟨X,Ad (h) y⟩ = ⟨X, y⟩ .

Subtracting equation (2.6) from equation (2.5) and using equation (2.7), we get

(2.8) α (y) = α (Ad (h) y) .

Therefore α is a G-invariant Riemannian metric and Ad (h)X = X. �

Definition 2.1. A one-parameter subgroup of a Lie group G is a smooth map ϕ :
R −→ G such that ϕ(0) = e and ϕ (t1 + t2) = ϕ (t1)ϕ (t2) ∀ t1, t2 ∈ R, where e is
the identity of G.
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The following result, proved in ([7]) guarantees the existence of one-parameter
subgroup of a Lie group.

Theorem 2.4. Let G be a Lie group with g as its Lie algebra. Then for any v ∈ g,
there exists a unique one-parameter subgroup ϕv such that ϕ̇v(0) = ve, where e is the
identity of G.

Definition 2.2. The exponential map exp : g −→ G is defined by

exp(tv) = ϕv(t), ∀ t ∈ R.

We can identify the tangent space TeH (G/H) of G/H at the origin eH = H with
m through the following map:

m −→ TeH (G/H)

v −→ d

dt
(exp(tv)H)|t=0.

Observe that for any v ∈ g, the vector field ṽ =
d

dt
(exp(tv)H)|t=0 is called the

fundamental Killing vector field generated by v ([14]). The following proposition,
proved in ([9]), gives a complete description of invariant vector fields.

Proposition 2.5. There exists a one to one correspondence between the set of in-
variant vector fields on G/H and the subspace

V = {v ∈ m : Ad (h) v = v, ∀ h ∈ H} .

3 The S-curvature

The notion of S-curvature of a Finsler space is closely associated with a volume form.
There are mainly two important volume forms in Finsler geometry, namely : the
Busemann-Hausdorff volume form and the Holmes-Thompson volume form.
The Busemann-Hausdorff volume form dVBH = σ

BH
(x)dx is given by

σ
BH

(x) =
V ol (Bn)

V ol
{
(yi) ∈ Rn : F

(
x, yi ∂

∂xi

)
< 1

} .
The Holmes-Thompson volume form dVHT = σHT (x)dx is given by

σ
HT

(x) =
1

V ol (Bn)

∫
{(yi)∈Rn : F(x,yi ∂

∂xi )<1}
det (gij) dy.

Particularly, if F =
√
gij(x)yiyj is a Riemannian metric, then both the volume forms

are equal to the Riemannian volume form, i.e, dVHT = dVBH =
√
det (gij(x))dx.

Next, consider a function

T (s) = ϕ (ϕ− sϕ′)
n−2 {

(ϕ− sϕ′) +
(
b2 − s2

)
ϕ′′

}
.
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and let dVα =
√
det (aij)dx be the Riemannian volume form of α. Then the volume

form dV = dVBH or dVHT is given by dV = f(b)dVα, where

f(b) =



∫ π
0
sinn−2 t dt∫ π

0

sinn−2 t

ϕ (b cos t)
n dt

, if dV = dVBH ,

∫ π
0

(
sinn−2

)
T (b cos t) dt∫ π

0
sinn−2 t dt

, if dV = dVHT .

Cheng and Shen ([3]) have derived the formula for the S-curvature of (α, β)-metric
in a local coordinate system, given by

(3.1) S =

(
2ψ − f ′(b)

bf(b)

)
(r0 + so)−

Φ

2α∆2

(
r00 − 2αQs0

)
,

where

Q =
ϕ′

ϕ− sϕ′
,

∆ = 1 + sQ+
(
b2 − s2

)
Q′ ,

Φ = − (Q− sQ′) (n∆+ 1 + sQ)−
(
b2 − s2

)
(1 + sQ)Q′′,

ψ =
Q′

2∆
,

rij =
1

2

(
bi|j + bj|i

)
,

sij =
1

2

(
bi|j − bj|i

)
,

rj = birij , sj = bisij ,

r0 = riy
i , s0 = siy

i , r00 = rijy
iyj .

Also, in ([3]), it is proved that if the Riemannian length b is constant, then r0+s0 = 0.

Hence, in this case, S-curvature of an (α, β)-metric F = αϕ(s), s =
β

α
is given by

(3.2) S = − Φ

2α∆2

(
r00 − 2αQs0

)
.

In case of a homogeneous Finsler space, b is constant. Therefore, the S-curvature
of a homogeneous Finsler space with (α, β)-metric can be expressed by the equation
(3.2). Since the Finsler space is homogeneous, it is sufficient to compute S-curvature
of a homogeneous Finsler space with(α, β)-metric at origin H as follows:

Let v be a G-invariant vector field in m corresponding to 1-form β with length

c = |v|. Also, let {v1, v2, ..., vn} be an orthonormal basis of m such that vn =
v

c
. Then

there exists a neighbourhood N of origin eH = H in G/H such that the map(
expx1v1 expx

2v2... expx
nvn

)
H 7−→

(
x1, x2, ..., xn

)
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defines a local coordinate system on N([12]). In [6], it is proved that ṽ = c
∂

∂xn
. Now,

we calculate bi.

bi = β

(
∂

∂xi

)
=

⟨
ṽ,

∂

∂xi

⟩
= c

⟨
∂

∂xn
,
∂

∂xi

⟩
.

Clearly, bn = c and all other bi = 0 ∀ i ̸= n at the origin.
Further,

∂bi
∂xj

= c
∂

∂xj

⟨
∂

∂xn
,
∂

∂xi

⟩

= c

⟨
∇ ∂

∂xj

∂

∂xn
,
∂

∂xi

⟩
+

⟨
∂

∂xn
,∇ ∂

∂xj

∂

∂xi

⟩ ,

and

∂bj
∂xi

= c
∂

∂xi

⟨
∂

∂xn
,
∂

∂xj

⟩

= c

⟨
∇ ∂

∂xi

∂

∂xn
,
∂

∂xj

⟩
+

⟨
∂

∂xn
,∇ ∂

∂xi

∂

∂xj

⟩ .

The following formula proved in ([6]), is required for further computations:

Γlij(H) =
1

2

(
−

⟨
[vi, vj ]m , vl

⟩
+ ⟨[vl, vi]m , vj⟩+

⟨
[vl, vj ]m , vi

⟩)
, i ≥ j.

Next,

sij (H) =
1

2

(
bi|j − bj|i

)
=

1

2

(
∂bi
∂xj

− bkΓ
k
ij −

∂bj
∂xi

+ bkΓ
k
ji

)

=
c

2

⟨
∇ ∂

∂xj

∂

∂xn
,
∂

∂xi

⟩
+

⟨
∂

∂xn
,∇ ∂

∂xj

∂

∂xi

⟩
−

⟨
∇ ∂

∂xi

∂

∂xn
,
∂

∂xj

⟩
−

⟨
∂

∂xn
,∇ ∂

∂xi

∂

∂xj

⟩
=
c

2

⟨
∇ ∂

∂xn

∂

∂xj
,
∂

∂xi

⟩
−

⟨
∇ ∂

∂xn

∂

∂xi
,
∂

∂xj

⟩
+

⟨
∂

∂xn
,

[
∂

∂xj
,
∂

∂xi

]⟩
=
c

2

(⟨
Γknj

∂

∂xk
,
∂

∂xi

⟩
−
⟨
Γkni

∂

∂xk
,
∂

∂xj

⟩)
=
c

2

(
Γinj − Γjni

)
=
c

4

{(
−
⟨
[vn, vj ]m , vi

⟩
+ ⟨[vi, vn]m , vj⟩+

⟨
[vi, vj ]m , vn

⟩)
−
(
− ⟨[vn, vi]m , vj⟩+

⟨
[vj , vn]m , vi

⟩
+
⟨
[vj , vi]m , vn

⟩)}
=
c

2

⟨
[vi, vj ]m , vn

⟩
.
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Further,

sij (H) = aik (H) skj (H) =

n∑
k=1

δikskj (H) = sij (H)

and

si (H) = bl (H) sli (H) = csni (H) = csni (H) .

Therefore, for y = yivi ∈ m, we have

s0 (y) = si (H) yi

= csni (H) yi

=
c2

2
yi
⟨
[vn, vi]m , vn

⟩
=

1

2

⟨[
cvn, y

ivi
]
m
, cvn

⟩
=

1

2

⟨
[v, y]m , v

⟩
.

Further,

rij (H) =
1

2

(
bi|j + bj|i

)
=

1

2

(
∂bi
∂xj

− bkΓ
k
ij +

∂bj
∂xi

− bkΓ
k
ji

)
=

1

2

(
∂bi
∂xj

+
∂bj
∂xi

− 2bnΓ
n
ij

)
=

1

2

(
∂bi
∂xj

+
∂bj
∂xi

)
− cΓnij

=
c

2

{⟨
∇ ∂

∂xj

∂

∂xn
,
∂

∂xi

⟩
+

⟨
∂

∂xn
,∇ ∂

∂xj

∂

∂xi

⟩

+

⟨
∇ ∂

∂xi

∂

∂xn
,
∂

∂xj

⟩
+

⟨
∂

∂xn
,∇ ∂

∂xi

∂

∂xj

⟩}
− cΓnij

=
c

2

(
Γinj + Γjni + 2Γnij

)
− cΓnij

=
c

2

(
Γinj + Γjni

)
=
c

4

{(
−
⟨
[vn, vj ]m , vi

⟩
+ ⟨[vi, vn]m , vj⟩+

⟨
[vi, vj ]m , vn

⟩)
+

(
− ⟨[vn, vi]m , vj⟩+

⟨
[vj , vn]m , vi

⟩
+
⟨
[vj , vi]m , vn

⟩)}
= − c

2

(⟨
[vn, vi]m , vj

⟩
+

⟨
[vn, vj ]m , vi

⟩)
.



Homogeneous Finsler space with infinite series (α, β)-metric 229

Therefore,

r00 = rijy
iyj

= − c
2

(⟨
[vn, vi]m , vj

⟩
+

⟨
[vn, vj ]m , vi

⟩)
yiyj

= −1

2

(⟨[
cvn, y

ivi
]
m
, yjvj

⟩
+

⟨[
cvn, y

jvj
]
m
, yivi

⟩)
= −1

2

(⟨
[v, y]m , y

⟩
+

⟨
[v, y]m , y

⟩)
= −

⟨
[v, y]m , y

⟩
.

Finally, substituting the values of s0 and r00 in the equation (3.2), we obtain the
formula for S-curvature of a homogeneous Finsler space with (α, β)-metric.
The above discussion can be summarized in the following theorem:

Theorem 3.1. Let F = αϕ(s) be a G-invariant (α, β)-metric on the reductive homo-
geneous Finsler space G/H with a decomposition of the Lie algebra g = h+m. Then
the S-curvature is given by

(3.3) S(H, y) =
Φ

2α∆2

(⟨
[v, y]m , y

⟩
+ αQ

⟨
[v, y]m , v

⟩)
,

where v ∈ m corresponds to the 1-form β and m is identified with the tangent space
TH (G/H) of G/H at the origin H.

Here, we remark that the theorem 3.1 is modified vesion of the theorem 2.1 given
in ([10]). In referred theorem, the authors have wrongly taken c, which should not be
there.

Next, we compute the S-curvature of homogeneous Finsler space with infinite

series (α, β)-metric: F =
β2

β − α
= α

(
s2

s− 1

)
= αϕ(s),where ϕ(s) =

s2

s− 1
.

For infinite series (α, β)-metric, the identites given in the equation (3.1) reduce to the
following:

Q =
ϕ′

ϕ− sϕ′
= 1− 2

s
, Q′ =

2

s2
, Q′′ = − 4

s3
,

∆ = 1 + sQ+
(
b2 − s2

)
Q′

=
s3 − 3s2 + 2b2

s2
,

Φ = − (Q− sQ′) (n∆+ 1 + sQ)−
(
b2 − s2

)
(1 + sQ)Q′′

= −
(
1− 2

s
− s

2

s2

){
n

(
s3 − 3s2 + 2b2

s2

)
+ 1 + s

(
s− 2

s

)}
−
(
b2 − s2

){
1 + s

(
s− 2

s

)}(
− 4

s3

)
=

1

s3

{
− (n+ 1) s4 + (7n+ 1) s3 − 12ns2 + 2 (2− n) b2s+ 4 (2n− 1) b2

}
.
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Substituting the above values in the equation (3.3), we obtain the formula for S-
curvature of the homogeneous Finsler space with infinite series (α, β)-metric in the
form of following theorem:

Theorem 3.2. Let F =
β2

β − α
be a G-invariant infinite series metric on the reductive

homogeneous Finsler space G/H with a decomposition of the Lie algebra g = h + m.
Then the S-curvature is given by
(3.4)

S(H, y) =


− (n+ 1) s5 + (7n+ 1) s4 − 12ns3

+ 2 (2− n) b2s2 + 4 (2n− 1) b2s

2 (s3 − 3s2 + 2b2)
2

(
1

α
⟨[v, y]m , y⟩+

(
1− 2

s

)
⟨[v, y]m , v⟩

)
,

where v ∈ m corresponds to the 1-form β and m is identified with the tangent space
TH (G/H) of G/H at the origin H.

Definition 3.1. An n-dimensional Finsler space (M,F ) is said to have almost isotropic
S-curvature if there exists a smooth function c(x) on M and a closed 1-form ω such
that

S(x, y) = (n+ 1)

(
c(x)F (y) + ω(y)

)
, x ∈M, y ∈ Tx(M).

In addition, if ω is zero, then (M,F ) is said to have isotropic S-curvature.
Also, if ω is zero and c(x) is constant, then (M,F ) is said to have constant S-curvature.

Next, we give an application of Theorem (3.2).

Theorem 3.3. Let F =
β2

β − α
be a G-invariant infinite series metric on the reductive

homogeneous Finsler space G/H with a decomposition of the Lie algebra g = h + m.
Then (G/H,F ) has isotropic S-curvature if and only if it has vanishing S-curvature.

Proof. We only need to prove the necessary part. Suppose G/H has isotropic S-
curvature, then we have

S(x, y) = (n+ 1)c(x)F (y), x ∈ G/H, y ∈ Tx(G/H).

Letting x = H and y = v in the equation (3.4), we get c(H) = 0 and hence
S(H, y) = 0 ∀ y ∈ TH(G/H). Further, since F is a homogeneous metric, we have
S = 0 everywhere.
Therefore, G/H has vanishing S-curvature. �

4 Mean Berwald curvature

In this section, we find the mean Berwald curvature of the homogeneous Finsler space
with infinite series metric. We first discuss the notion of the mean Berwald curvature
([5]) of a Finsler space (M, F). For this, let

Eij(x, y) =
1

2

∂2S(x, y)

∂yi∂yj
.
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The E-tensor is a family of symmetric forms Ey : TxM × TxM −→ R defined by

Ey(u, v) = Eij(x, y)u
ivj , where u = ui

∂

∂xi
, v = vi

∂

∂xi
∈ TxM, x ∈ M. Then

E =
{
Ey : y ∈ TM\{0}

}
is called the E-curvature or the mean Berwald curvature.

To find it, we require the following computations:
At the origin, aij = δij and therefore yi = yi.

α
yi =

yi

α
, β

yi = bi,

s
yi =

∂

∂yi

(
β

α

)
=
biα− sy

i

α2
,

s
yiyj =

∂

∂yj

(
biα− syi

α2

)

=

α2

{
bi
yj

α
−
(
bjα− syj

α2

)
yi − sδij

}
− (biα− syi) 2α

yj

α

α4

=
− (biyj + bjyi)α+ 3syiyj − α2sδij

α4
,

A =

{
− (n+ 1) s5 + (7n+ 1) s4 − 12ns3 + 2 (2− n) b2s2 + 4 (2n− 1) b2s

}
2 (s3 − 3s2 + 2b2)

2 ,

∂A

∂yj
=



(
s3 − 3s2 + 2b2

)2
{−5 (n+ 1) s4 + 4 (7n+ 1) s3 − 36ns2 + 4 (2− n) b2s+ 4 (2n− 1) b2}

− (s3 − 3s2 + 2b2) (6s2 − 12s)

{− (n+ 1) s5 + (7n+ 1) s4 − 12ns3 + 2 (2− n) b2s2 + 4 (2n− 1) b2s}
2 (s3 − 3s2 + 2b2)

4


syj

=


(n+ 1)s7 + (−11n+ 1)s6 + 36ns5 − 2

{
(n+ 13)b2 + 18n

}
s4

+ 4(n+ 13)b2s3 − 36b2s2 + 8(2− n)b4s+ 8(2n− 1)b4

2 (s3 − 3s2 + 2b2)
3

 syj ,

∂2A

∂yi∂yj
=

∂

∂yi


(n+ 1)s7 + (−11n+ 1)s6 + 36ns5 − 2

{
(n+ 13)b2 + 18n

}
s4

+ 4(n+ 13)b2s3 − 36b2s2 + 8(2− n)b4s+ 8(2n− 1)b4

2 (s3 − 3s2 + 2b2)
3

 syj

+


(n+ 1)s7 + (−11n+ 1)s6 + 36ns5 − 2

{
(n+ 13)b2 + 18n

}
s4

+ 4(n+ 13)b2s3 − 36b2s2 + 8(2− n)b4s+ 8(2n− 1)b4

2 (s3 − 3s2 + 2b2)
3

 syiyj
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=



−2(n+ 1)s9 − 6(−5n+ 1)s8 − 144ns7 + 24
{
(n+ 6)b2 + 12n

}
s6

− 4 {(37n+ 114)b2 + 54n} s5 + 36(20 + 11n)b2s4

+ 48 {(−7 + n)b4 − (n+ 9)b2} s3 + 48(13− 5n)b4s2

+ 288(n− 1)b4s+ 16(2− n)b6

2 (s3 − 3s2 + 2b2)
4


syisyj

+


(n+ 1)s7 + (−11n+ 1)s6 + 36ns5 − 2

{
(n+ 13)b2 + 18n

}
s4

+ 4(n+ 13)b2s3 − 36b2s2 + 8(2− n)b4s+ 8(2n− 1)b4

2 (s3 − 3s2 + 2b2)
3

 syiyj .
From the equation (3.4), S- curvature at the origin is given by

S(H, y) =
A

α
⟨[v, y]m , y⟩+A

(
1− 2

s

)
⟨[v, y]m , v⟩ .

Further, we can write
S(H, y) = I + II,

where

I =
A

α
⟨[v, y]m , y⟩ and II = A

(
1− 2

s

)
⟨[v, y]m , v⟩ .

Therefore, the mean Berwald curvature is

1

2

∂2S

∂yi∂yj
=

1

2

(
∂2I

∂yi∂yj
+

∂2II

∂yi∂yj

)
,

where,

∂I

∂yj
=

∂

∂yj

(
A

α
⟨[v, y]m , y⟩

)
=

(
1

α

∂A

∂yj
− A

α2

yj
α

)
⟨[v, y]m , y⟩+

A

α

(⟨
[v, vj ]m , y

⟩
+ ⟨[v, y]m , vj⟩

)
,

∂2I

∂yi∂yj
=

∂

∂yi

{(
1

α

∂A

∂yj
− Ayj

α3

)
⟨[v, y]m , y⟩+

A

α

(⟨
[v, vj ]m , y

⟩
+ ⟨[v, y]m , vj⟩

)}
=

(
1

α

∂2A

∂yi∂yj
− 1

α2

yi
α

∂A

∂yj
− yj
α3

∂A

∂yi
− A

α3
δji +

3Ayj
α4

yi
α

)
⟨[v, y]m , y⟩

+

(
1

α

∂A

∂yj
− Ayj

α3

)(
⟨[v, vi]m , y⟩+ ⟨[v, y]m , vi⟩

)
+

(
1

α

∂A

∂yi
− A

α2

yi
α

)(⟨
[v, vj ]m , y

⟩
+ ⟨[v, y]m , vj⟩

)
+
A

α

(⟨
[v, vj ]m , vi

⟩
+ ⟨[v, vi]m , vj⟩

)
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=

(
1

α

∂2A

∂yi∂yj
− yi
α3

∂A

∂yj
− yj
α3

∂A

∂yi
− A

α3
δji +

3Ayiyj
α5

)
⟨[v, y]m , y⟩

+

(
1

α

∂A

∂yj
− Ayj

α3

)(
⟨[v, vi]m , y⟩+ ⟨[v, y]m , vi⟩

)
+

(
1

α

∂A

∂yi
− Ayi

α3

)(⟨
[v, vj ]m , y

⟩
+ ⟨[v, y]m , vj⟩

)
+
A

α

(⟨
[v, vj ]m , vi

⟩
+ ⟨[v, vi]m , vj⟩

)
,

and

∂II

∂yj
=

∂

∂yj

(
A

(
1− 2

s

)
⟨[v, y]m , v⟩

)
=

{(
1− 2

s

)
∂A

∂yj
+

2Asyj

s2

}
⟨[v, y]m , v⟩+A

(
1− 2

s

)⟨
[v, vj ]m , v

⟩
.

∂2II

∂yi∂yj
=

∂

∂yi

[{(
1− 2

s

)
∂A

∂yj
+

2Asyj

s2

}
⟨[v, y]m , v⟩+A

(
1− 2

s

)⟨
[v, vj ]m , v

⟩]
=

{(
1− 2

s

)
∂2A

∂yi∂yj
+

2syi

s2
∂A

∂yj
+

2syj

s2
∂A

∂yi
−

4Asyisyj

s3
+

2A

s2
syiyj

}
⟨[v, y]m , v⟩

+

{(
1− 2

s

)
∂A

∂yj
+

2Asyj

s2

}
⟨[v, vi]m , v⟩+

{(
1− 2

s

)
∂A

∂yi
+

2Asyi

s2

}⟨
[v, vj ]m , v

⟩
+ 0.

The above computations regarding mean Berwald curvature of the homogeneous
Finsler space with infinite series (α, β)-metric are summarized as follows:

Theorem 4.1. Let F =
β2

β − α
be a G-invariant infinite series (α, β)-metric on the

reductive homogeneous Finsler space G/H with a decomposition of the Lie algebra
g = h+m. Then the mean Berwald curvature of the homogeneous Finsler space with
infinite series metric is given by

Eij(H, y) =
1

2

[(
1

α

∂2A

∂yi∂yj
− yi
α3

∂A

∂yj
− yj
α3

∂A

∂yi
− A

α3
δji +

3Ayiyj
α5

)
⟨[v, y]m , y⟩

+

(
1

α

∂A

∂yj
− Ayj

α3

)(
⟨[v, vi]m , y⟩+ ⟨[v, y]m , vi⟩

)
+

(
1

α

∂A

∂yi
− Ayi

α3

)(⟨
[v, vj ]m , y

⟩
+ ⟨[v, y]m , vj⟩

)
+
A

α

(⟨
[v, vj ]m , vi

⟩
+ ⟨[v, vi]m , vj⟩

)
+

{(
1− 2

s

)
∂2A

∂yi∂yj
+

2syi

s2
∂A

∂yj
+

2syj

s2
∂A

∂yi
−

4Asyisyj

s3
+

2A

s2
syiyj

}
⟨[v, y]m , v⟩

+

{(
1− 2

s

)
∂A

∂yj
+

2Asyj

s2

}
⟨[v, vi]m , v⟩+

{(
1− 2

s

)
∂A

∂yi
+

2Asyi

s2

}⟨
[v, vj ]m , v

⟩ ]
,

where v ∈ m corresponds to the 1-form β and m is identified with the tangent space
TH (G/H) of G/H at the origin H.
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