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Abstract. In this work, we study decomposition of groups. Let G be a
group, and let N be a normal subgroup of G; we shall show how multi-
plication in G can be viewed as a two-step process consisting of multipli-
cation in the quotient G/N followed by multiplication in N . The object
of wreath product of permutation groups is defined by the actions on
Cartesian product of two sets. In this paper we consider S(Γ) and S(∆)
- the permutation groups on Γ and ∆ respectively, and S(Γ)∆ - the set of
all maps of ∆ into the permutations group S(Γ), to provide the wreath
product W of S(Γ) by S(∆), and the action of W on Γ×∆.
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1 Introduction

In Mathematics, the wreath product in group theory is a specialized product of two
groups. The wreath product is an important tool in the classification of permutation
groups, and also provides a way of constructing interesting examples of groups. The
wreath product and its generalizations play an important role in algebraic theory. For
example, it can be used to prove the theorem on the decomposition of every finite
semi-group automation into a step wise combination of flip-flop and simple group
automata.

The remainder of this paper is organized as follows. In Section 2 we introduce
the concept of decomposition of groups. In Section 3, we provide some mathematical
preliminaries. In Section 4, we give a proposition on wreath product of groups. In
Section 5, we introduce the wreath product of permutation groups and the notion of
group actions on a set, and adjacent concepts like the orbit and the stabilizer. Finally,
we draw our conclusions in Section 6.
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2 Preliminaries

Let S(X) be the set of one to one and onto functions on the n-element set X, with
multiplication to composition of functions. The elements of S(X) are called permu-
tations and S(X) is called the symmetric group on X.

A group homomorphism is a well-defined map φ : G −→ H between two groups
G and H, which preserves the multiplicative structure. In other words, φ(xy) =
φ(x)φ(y), for all x, y ∈ G. A bijective homomorphism is called an isomorphism.
When there is an isomorphism between two groups G and H, we say G and H are
isomorphic and we write G ∼= H.

Let G and H be group and φ : G −→ H be a homomorphism. Then N = ker φ is
a normal subgroup of G and the induced map φ̄ : G/N −→ Im(φ) ≤ H,Ng 7−→ φ(g)
is an isomorphism between the quotient group G/N and the image Im(φ).

Let G be a group and X be a non empty set. We say that G acts on the set X
if to each g in G and each x in X, there corresponds a unique point g · x in X such
that, for all x in X and g1, g2 in G, we have that

(g1g2) · x = g1 · (g2 · x) and 1G · x = x.

To be explicit, we assume that G acts on the set X on the left. The stabilizer of
an element x ∈ X under the action of G is defined by:

Gx = {g ∈ G : g · x = x}.

The kernel of an action G×X −→ X, (g, x) 7−→ g · x is given by:

Ker = {g ∈ G : g · x = x for all x ∈ X}.

We define the orbit containing x ∈ X to be G · x = {g · x, g ∈ G}.
Let G be a group acting on a setX. Then, for all x ∈ X, we have |Gx| |G · x| = |G|.
Let G and K be two groups. We say that G acts on K as a group if to each k in K

there corresponds a unique element kg in K such that for g1, g2, g in G and k1, k2, k
in K we have that

(kg1)
g2 = kg1g2 , k1G = k and (k1k2)

g
= kg1k

g
2 .

Given any groups G and H and a morphism θ : G −→ Aut (H), we denote the
automorphism θ (g) by θg, and then G×H is a group with the multiplication
(g1, h1) · (g2, h2) = (g1g2, h1θg1 (h2)), where g1, g2 ∈ G and h1, h2 ∈ H. The group
(G×H, ·) is called the semidirect product of G and H with respect to θ.

3 Decomposition of groups

In this section, we introduce the concept of decomposition of groups.

Proposition 3.1. Let (G, ·) be a group, and let N be a normal subgroup of G. Let
S = {gi : i ∈ I} be a complete set of coset representatives of N . If g ∈ G, then we
denote by [g] the chosen representative of Ng. Thus,
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1. for all n1, n2 ∈ N, gi, gj ∈ S : (n1gi) (n2gj) = ng, where g = [gigj ] and
n = n1

(
gin2g

−1
i

)
.

2. consider the set N × G/N the Cartesian product of N and G/N , and define a
multiplication ” ∗ ” on N ×G/N as follows:

(n1, Ngi) ∗ (n2, Ngj) =
(
n1gin2g

−1
i , Ngigj

)
The result is a group.

3. (N ×G/N, ∗) and (G, ·) are isomorphic.

Proof. 1) For all n1, n2 ∈ N, gi, gj ∈ S, we have n1gi ∈ Ngi, n2gj ∈ Ngj and
NgiNgj = Ngigj , then (n1gi) (n2gj) ∈ Ngigj . This implies that there exists n ∈ N
such that
(n1gi) (n2gj) = ngigj and consequently g = [gigj ] and n = n1

(
gin2g

−1
i

)
.

2) We will prove that the setN×G/N forms a group such that for any (n1, Ngi) , (n2, Ngj) ∈
N ×G/N, (n1, Ngi) ∗ (n2, Ngj) =

(
n1gin2g

−1
i , Ngigj

)
.

a) N ×G/N is non-empty and is closed with respect to multiplication.
b) We will prove that ” ∗ ” is associative on N ×G/N :
let (n1, Ngi) , (n2, Ngj) , (n3, Ngk) ∈ N ×G/N , we have
((n1, Ngi) ∗ (n2, Ngj)) ∗ (n3, Ngk) =

(
n1gin2g

−1
i , Ngigj

)
∗ (n3, Ngk)

=
(
n1gin2gjn3g

−1
j g−1

i , N (gigj) gk
)
. Also we have

(n1, Ngi) ∗ ((n2, Ngj) ∗ (n3, Ngk)) =
(
n1gin2gjn3g

−1
j g−1

i , Ngi (gjgk)
)
.

Then ” ∗ ” is associative on N ×G/N .
c) For (n,Ngi) ∈ N ×G/N , we have
(n,Ngi) ∗ (1G, N) = (1G, N) ∗ (n,Ngi) = (n,Ngi).
The identity element in (N ×G/N, ∗) is (1G, N).
d) We show that every element of (N ×G/N, ∗) is invertible.
Let (n,Ngi) ∈ N ×G/N . We have
(n,Ngi) ∗

(
g−1
i ngi, Ng

−1
i

)
=
(
g−1
i ngi, Ng

−1
i

)
∗ (n,Ngi) = (1G, N).

3) We define the mapping φ : N × G/N −→ G,φ (n,Ngi) = ngi; the mapping φ is
morphism because for all (n1, Ngi) , (n2, Ngj) ∈ N ×G/N,
φ ((n1, Ngi) ∗ (n2, Ngj)) = φ

(
n1gin2g

−1
i , Ngigj

)
= n1gin2g

−1
i gigj = n1gin2gj . It

is clear that φ is onto. The mapping φ is one-to-one, because we have for all
(n1, Ngi) , (n2, Ngj) ∈ N ×G/N,
φ (n1, Ngi) = φ (n2, Ngj) =⇒ n1gi = n2gj =⇒ n−1

2 n1 = gjg
−1
i =⇒ gjg

−1
i ∈ N

=⇒ gjg
−1
i = 1G =⇒ (n1 = n2 and Ngi = Ngj). �

Example 3.1. Let G = (S3, ◦) be the symmetric group on {1, 2, 3}, where
S3 = {e = (1), τ1 = (23), τ2 = (13), τ3 = (12), σ1 = (123), σ2 = (132)}.
The Cayley table of (S3, ◦) is defined as follows (see Table 1):

◦ e τ1 τ2 τ3 σ1 σ2
e e τ1 τ2 τ3 σ1 σ2
τ1 τ1 e σ1 σ2 τ2 τ3
τ2 τ2 σ2 e σ1 τ3 τ1
τ3 τ3 σ1 σ2 e τ1 τ2
σ1 σ1 τ3 τ1 τ2 σ2 e
σ2 σ2 τ2 τ3 τ1 e σ1
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Let N = 〈(123)〉 = 〈σ1〉 the subgroup of (S3, ◦) generated by σ1.
We have N = {e, σ1, σ2}. N is a normal subgroup of (S3, ◦) because the index of N
in S3 [S3 : N ] = 2.
The quotient S3/N = {N ◦ σ : σ ∈ S3} = {{τ1, τ2, τ3} , {e, σ1, σ2}} = {[e] , [τ1]}.
The Cayley table of (S3/N, ·) is defined as follows (see Table 2):

· [e] [τ1]
[e] [e] [τ1]
[τ1] [τ1] [e]

N × S3/N = {(e, [e]) , (e, [τ1]) , (σ1, [e]) , (σ1, [τ1]) , (σ2, [e]) , (σ2, [τ1])}.
The Cayley table of (N × S3/N, ∗) is defined as follows (see Table 3):

∗ (e, [e]) (e, [τ1]) (σ1, [e]) (σ1, [τ1]) (σ2, [e]) (σ2, [τ1])
(e, [e]) (e, [e]) (e, [τ1]) (σ1, [e]) (σ1, [τ1]) (σ2, [e]) (σ2, [τ1])
(e, [τ1]) (e, [τ1]) (e, [e]) (σ2, [τ1]) (σ2, [e]) (σ1, [τ1]) (σ1, [e])
(σ1, [e]) (σ1, [e]) (σ1, [τ1]) (σ2, [e]) (σ2, [τ1]) (e, [e]) (e, [τ1])
(σ1, [τ1]) (σ1, [τ1]) (σ1, [e]) (e, [τ1]) (e, [e]) (σ2, [τ1]) (σ2, [e])
(σ2, [e]) (σ2, [e]) (σ2, [τ1]) (e, [e]) (e, [τ1]) (σ1, [e]) (σ1, [τ1])
(σ2, [τ1]) (σ2, [τ1]) (σ2, [e]) (σ1, [τ1]) (σ1, [e]) (e, [τ1]) (e, [e])

Finally (N ×G/N, ∗) and (S3, ◦) are isomorphic.

4 The wreath product of groups

In this section, we introduce the concept of wreath product of groups.

Theorem 4.1. Let G and H be two groups. Let HG be the set of all functions defined
on G with values in H.

1. The set HG forms a group such that for any φ,ψ ∈ HG, let φψ ∈ HG in HG

be defined for all x ∈ G by:

(φψ) (x) = φ(x)ψ(x).

2. The group G acts on HG as a group, in the following way:

if a ∈ G,φ ∈ HG, then (a · φ) (x) = φa(x) = φ
(
xa−1

)
for x ∈ G.

3. The set of all pairs (a, φ) with a ∈ G,φ ∈ HG, with the multiplication operation
given by:

(a, φ) (b, ψ) =
(
ab, φbψ

)
where a, b ∈ G and φ,ψ ∈ HG

provides as resulting groupW , called the wreath product of G and H, and denoted
by GWrH.
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Proof. (1) First we will prove that the set HG forms a group; for any φ,ψ ∈ HG, let
φψ ∈ HG in HG,
be defined for all x ∈ G by (φψ) (x) = φ(x)ψ(x).

(i) HG is non-empty and is closed with respect to multiplication. If φ,ψ ∈ HG,
then φ(x), ψ(x) ∈ H, for all x ∈ G. Hence φ(x)ψ(x) ∈ H. This implies that
(φψ) (x) ∈ H and so φψ ∈ HG.

(ii) Since multiplication in H is associative, so is the multiplication in HG, as well.
(iii) The identity element in HG is the map e : G −→ H given by

e(x) = 1H , for all x ∈ G, where 1H is the identity element of H.
(iv) For every element φ ∈ HG, is defined for all x ∈ G by

φ−1(x) = (φ(x))
−1

.
Thus HG is a group with respect to the multiplication defined above.
(2) We shall further prove that G acts on HG as group; assume that G acts

on HG as follows G × HG −→ HG; (a, φ) −→ φa, such that for x ∈ G we have
φa(x) = φ

(
xa−1

)
, a ∈ G,φ ∈ HG. Take φ,ψ ∈ HG and a, b ∈ G; then

(i) (φa)
b
(x) = φa

(
xb−1

)
= φ

((
xb−1

)
a−1

)
= φ

(
x (ab)

−1
)
= φab(x).

(ii) φ1G(x) = φ
(
x1−1

G

)
= φ(x).

(iii) (φψ)
a
(x) = φψ

(
xa−1

)
= φ

(
xa−1

)
ψ
(
xa−1

)
= φa(x)ψa(x).

(3) Now we can construct the wreath productW ofG andH, that is, the semidirect
product of G and HG; then we shall prove that G×HG is a group with multiplication
(a, φ) (b, ψ) =

(
ab, φbψ

)
. Then we have the following:

(i) The closure property follows from the definition of multiplication.
(ii) Take φ,ψ, η ∈ HG and a, b, c ∈ G; then

((a, φ) (b, ψ)) (d, η) =
(
ab, φbψ

)
(d, η) =

(
(ab) d,

(
φbψ

)d
η
)
.

Also we have (a, φ) ((b, ψ) (d, η)) = (a, φ)
(
bd, ψdη

)
=
(
a (bd) , φbdψdη

)
=
(
(ab) d, φbdψdη

)
.

Now if x ∈ G, then
(
φbψ

)d
η(x) =

(
φbψ

)d
(x)η(x) =

(
φb
)d

(x)ψd(x)η(x)

= φb
(
xd−1

)
ψ
(
xd−1

)
η(x) = φ

(
xd−1b−1

)
ψ
(
xd−1

)
η(x) = φ

(
x (bd)

−1
)
ψ
(
xd−1

)
η(x)

= φbd(x)ψd(x)η(x). As well, φbdψdη(x) = φbd(x)ψd(x)η(x). Thus we have estab-
lished the associativity of the multiplication on the set G×HG.

(iii) We know that for every φ ∈ HG, φ1G = φ, for every g ∈ G, the map φ −→ φg

is an automorphism of HG. Also, if e is the identity element in HG, then eg =
e. We have (a, φ) (1G, e) =

(
a1G, φ

1Ge
)
= (a, φe) = (a, φ). Also (1G, e) (a, φ) =

(1Ga, e
aφ) = (a, eφ) = (a, φ). Hence the identity element exists.

(iv) We have (a, φ)
(
a−1,

(
φ−1

)(a)−1)
=
(
a−1,

(
φ−1

)(a)−1)
(a, φ) = (1G, e). Thus

the inverse element of (a, φ) is
(
a−1,

(
φ−1

)(a)−1)
. Hence G × HG is a group with

respect to the multiplication defined above. �

In the following proposition, we show that the group HG is a normal subgroup of
W and G is a subgroup of W .

Proposition 4.2. 1. If G and HG are finite groups, then the wreath product W

is a finite group of order |W | = |G| . |H||G|
.

2. The group HG is a normal subgroup of W and G is a subgroup of W .
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3. G ∩HG = (1G, e).

4. GWrH
G = G×HG.

Proof. (1) It is clear.
(2) We have the injective maps Φ : HG −→ G×HG given by f 7−→ (1G, f), and

Ψ : G −→ G × HG given by a 7−→ (a, e). Both of them are homomorphisms, since

Φ (f1f2) = (1G, f1f2) =
(
1G1G, f

(1G)
1 f2

)
= (1G, f1)Wr (1G, f2) = Φ (f1)WrΦ(f2).

As well, Ψ (ab) = (ab, e) =
(
ab, ebe

)
= (a, e)Wr (b, e) = Ψ (a)WrΨ(b).

Then HG ∼= Im (Φ) ≤ G × HG, and G ∼= Im (Ψ) ≤ G × HG. These injective
homomorphisms let us think of HG and G as subgroups of G×HG. Finally, we must
show that HG is normal in G×HG; from the calculations, there follows:

(a, e) (1G, f) (a, e)
−1

= (a, e) (1G, f)
(
a−1,

(
e−1
)a−1)

= (a, e) (1G, f)
(
a−1, e

)
=
(
a1G, e

1Gf
) (
a−1, e

)
=
(
aa−1, f

)
= (1G, f).

(3) It is clear that G ∩HG = (1G, e).
(4) We have GWrH

G = G×HG since (a, e)Wr (1G, f) =
(
a1G, e

1Gf
)

= (a, f) for all (a, f) ∈ G×HG �

5 Wreath product of permutation groups

This section is essentially an upgrade of the results of Ibrahim and Audu (see [2]) on
the wreath product of permutation groups. We introduce the notion of group actions
on a set and its adjacent concepts, like the orbit and the stabilizer.

Theorem 5.1. Let S(Γ) and S(∆) be permutation groups on Γ and ∆ respectively.
Let S(Γ)∆ be the set of all maps of ∆ into the permutations group S(Γ). That is,
S(Γ)∆ = {f : ∆ −→ S(Γ)}. For any f1, f2 in S(Γ)∆, let f1f2 in S(Γ)∆ be defined for
all δ in ∆ by (f1f2) (δ) = f1(δ)f2(δ). With respect to this operation of multiplication,
S(Γ)∆ acquires the structure of a group.

Proof. (i) S(Γ)∆ is non-empty and is closed with respect to multiplication. If f1, f2 ∈
S(Γ)∆, then f1(δ), f2(δ) ∈ S(Γ). Hence f1(δ)f2(δ) ∈ S(Γ). This implies that
(f1f2) (δ) ∈ S(Γ) and so f1f2 ∈ S(Γ)∆.

(ii) Since multiplication is associative, so is the multiplication in S(Γ)∆.
(iii) The identity element in S(Γ)∆ is the map e : ∆ −→ S(Γ) given by e(δ) = idΓ

for all δ ∈ ∆ where idΓ is the identity element of S(Γ).
(iv) Every element f ∈ S(Γ)∆ is defined for all δ ∈ ∆ by

f−1(δ) = (f(δ))
−1

.
Thus S(Γ)∆ is a group with respect to the multiplication defined above. We denote

this group by P . �

Proposition 5.2. Assume that S(∆) acts on P as follows:
S(∆)× S(Γ)∆ −→ S(Γ)∆, (s, f) 7−→ s · f = fs, where fs(δ) =

(
f ◦ s−1

)
(δ)

=
(
fs−1

)
(δ) for all δ ∈ ∆. Then S(∆) acts on P as a group.

Proof. Take, f, f1, f2 ∈ S(Γ)∆ and s, s1, s2 ∈ S(∆), then
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(i) ((s1s2) · f) (δ) = f (s1s2)(δ) =
(
f (s1s2)

−1
)
(δ) =

(
f
(
s−1
2 s−1

1

))
(δ)

=
(
fs−1

2

) (
s−1
1 (δ)

)
= (s1 · (s2 · f)) (δ).

(ii) f id∆(δ) =
(
fid−1

∆

)
(δ) = (fid∆) (δ) = (f) (δ).

(iii) (f1f2)
s
(δ) =

(
f1f2 ◦ s−1

)
(δ) = f1f2

(
s−1(δ)

)
= f1

(
s−1(δ)

)
f2
(
s−1(δ)

)
= fs1 (δ)f

s
2 (δ). �

Proposition 5.3. The set of all ordered (f, s) with f ∈ S(Γ)∆ and s ∈ S(∆) acquires
the structure of a group, when we define for all f1, f2 ∈ S(Γ)∆ and s1, s2 ∈ S(∆).

(f1, s1) (f2, s2) =
(
f1f

s−1
1

2 , s1s2

)
.

Thus S(Γ)∆ × S(∆) is a group with respect to the multiplication defined above.
We denote this group by W . The resulting group W is called the wreath product of
S(Γ) by S(∆), and is denoted by W = S(Γ)WrS(∆).

Proof. (i) The closure property follows from the definition of multiplication.
(ii) Take f1, f2, f3 ∈ S(Γ)∆ and s1, s2, s3 ∈ S(∆). Then, [(f1, s1) (f2, s2)] (f3, s3)

=
(
f1f

s−1
1

2 , s1s2

)
(f3, s3) =

(
f1f

s−1
1

2 f
(s1s2)

−1

3 , s1s2s3

)
=
(
f1f

s−1
1

2 f
s−1
2 s−1

1
3 , s1s2s3

)
.

Also, we get in the same manner that, (f1, s1) [(f2, s2) (f3, s3)] = (f1, s1)
(
f2f

s−1
2

3 , s2s3

)
=

(
f1

(
f2f

s−1
2

3

)s−1
1

, s1s2s3

)
=
(
f1f

s−1
1

2 f
s−1
2 s−1

1
3 , s1s2s3

)
.

Hence, multiplication is associative.
(iii) We know that for every f ∈ S(Γ)∆, f id∆ = f . Now for every s ∈ S(∆), the

map f 7−→ fs is an automorphism of S(Γ)∆. Also, if e is the identity element in

S(Γ)∆, then es = e. Also,
(
f−1

)s
= (fs)

−1
. Now, (f, s) (e, id∆) =

(
fes

−1

, s ◦ id∆
)
=

(f, s).

Also, using the reverse order, we have that, (e, id∆) (f, s) =
(
ef (id∆)−1

, id∆ ◦ s
)

= (f, s). Thus the identity element exists.
(iv) (f, s)

((
f−1

)s
, s−1

)
=
((
f−1

)s
, s−1

)
(f, s) = (e, id∆). �

In the following proposition, we show that the group S(Γ)∆ is a normal subgroup
of W , and S(∆) is a subgroup of W .

Proposition 5.4. 1. If S(∆) and S(Γ) are finite groups, then the wreath product

W is a finite group of order |W | = |S(Γ)||∆|
. |S(∆)|.

2. The group S(Γ)∆ is a normal subgroup of W and S(∆) is a subgroup of W .

3. S(Γ)∆ ∩ S(∆) = (e, id∆).

4. S(Γ)∆WrS(∆) = S(Γ)∆ × S(∆).

5. The action of W on Γ × ∆ is given by: (f, s) (γ, δ) = (f(δ) (γ) , s(δ)) for all
(f, s) ∈ S(Γ)∆ × S(∆) and (γ, δ) ∈ Γ×∆.
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Proof. (1) Obvious.
(2) We have the injective maps Φ : S(Γ)∆ −→ S(Γ)∆ × S(∆) given by

f 7−→ (f, id∆), and Ψ : S(∆) −→ S(Γ)∆ × S(∆) given by s 7−→ (e, s). Both of them

are homomorphisms, since Φ (f1f2) = (f1f2, id∆) =
(
f1f

(id∆)−1

2 , id∆ ◦ id∆
)

= (f1, id∆)Wr (f2, id∆) = Φ (f1)WrΦ(f2).

As well, Ψ (s1 ◦ s2) = (e, s1 ◦ s2) =
(
ee(s1)

−1

, s1 ◦ s2
)

= (e, s1)Wr (e, s2) = Ψ (s1)WrΨ(s2).
Then S(Γ)∆ ∼= Im (Φ) ≤ S(Γ)∆ × S(∆). And S(∆) ∼= Im (Ψ) ≤ S(Γ)∆ × S(∆).

These injective homomorphisms let us think of S(Γ)∆ and S(∆) as subgroups of
S(Γ)∆ × S(∆). Finally, we must show that S(Γ)∆ is normal in S(Γ)∆ × S(∆); and
the calculation leads to

(e, s) (f, id∆) (e, s)
−1

= (e, s) (f, id∆)
((
e−1
)s
, s−1

)
= (e, s) (f, id∆)

(
e, s−1

)
=
(
ef (s)

−1

, s ◦ id∆
) (
e, s−1

)
=
(
f (s)

−1

, id∆

)
.

(3) It is clear that S(Γ)∆ ∩ S(∆) = (e, id∆).
(4) We have S(Γ)∆WrS(∆) = S(Γ)∆ × S(∆) since (f, id∆)Wr (e, s)

=
(
fe(id∆)−1

, id∆ ◦ s
)
= (f, s) for all (f, s) ∈ S(Γ)∆ × S(∆)

(5) Take, (f1, s1) , (f2, s2) ∈ S(Γ)∆ × S(∆) and (γ, δ) ∈ Γ×∆, then
(i) (e, id∆) (γ, δ) = (e(δ) (γ) , id∆(δ)) = (idΓ (γ) , δ) = (γ, δ).

(ii) [(f1, s1) (f2, s2)] (γ, δ) =
(
f1f

s−1
1

2 , s1s2

)
(γ, δ) =

(
f1f

s−1
1

2 (δ) (γ) , s1s2(δ)
)

=
((
f1(δ)f

s−1
1

2 (δ)
)
(γ) , s1s2(δ)

)
= ((f1(δ) (f2 ◦ s1) (δ)) (γ) , s1s2(δ)).

Also, we have in the same manner that,
(f1, s1) [(f2, s2) (γ, δ)] = (f1, s1) (f2(δ) (γ) , s2(δ)) = (f1 (s2(δ)) (f2(δ) (γ)) , s1s2(δ)).

�

Proposition 5.5. Under the action of W on Γ×∆, the stabilizer of any point (γ, δ)
in Γ×∆ denoted by W(γ,δ) is given by:W(γ,δ) = S(Γ)∆(δ)γ×S(∆)δ. Where S(Γ)∆(δ)γ
is the set of all f(δ) that stabilize γ, and S(∆)δ is the stabilizer of δ under the action
of S(∆) on ∆.

Proof. We have W(γ,δ) =
{
(f, s) ∈ S(Γ)∆ × S(∆)/ (f, s) (γ, δ) = (γ, δ)

}
=
{
(f, s) ∈ S(Γ)∆ × S(∆)/ (f(δ)γ, s(δ)) = (γ, δ)

}
=
{
(f, s) ∈ S(Γ)∆ × S(∆)/f(δ)γ = γ, s(δ) = δ

}
= S(Γ)∆(δ)γ × S(∆)δ. �

Example 5.1. Consider the permutation groups S(Γ) = {(1), (12)} and S(∆) =
{(1), (12), (13), (23), (123), (132)} on the sets Γ = {1, 2} and
∆ = {1, 2, 3} respectively. Let S(Γ)∆ = {f : ∆ −→ S(Γ)}, then
|S(Γ)||∆|

= 23 = 8. The mappings are follows:

f1 : 1 7−→ (1), 2 7−→ (1), 3 7−→ (1)
f2 : 1 7−→ (1), 2 7−→ (1), 3 7−→ (12)
f3 : 1 7−→ (1), 2 7−→ (12), 3 7−→ (1)
f4 : 1 7−→ (1), 2 7−→ (12), 3 7−→ (12)
f5 : 1 7−→ (12), 2 7−→ (1), 3 7−→ (1)
f6 : 1 7−→ (12), 2 7−→ (1), 3 7−→ (12)
f7 : 1 7−→ (12), 2 7−→ (12), 3 7−→ (1)
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f8 : 1 7−→ (12), 2 7−→ (12), 3 7−→ (12)
We can easily verify that S(Γ)∆ is a group with respect to the operation

(φψ) (δ) = (φ) (δ)(ψ)(δ) where δ ∈ ∆.
We have

S(Γ)∆ × S(∆) =
{
(f, s) /f ∈ S(Γ)∆, s ∈ S(∆)

}
= {(fi, (1)) , (fi, (12)) , (fi, (12)) , (fi, (23)) , (fi, (123)) , (fi, (132)) , 1 ≤ i ≤ 8}.

And
∣∣S(Γ)∆ × S(∆)

∣∣ = ∣∣S(Γ)∆∣∣ . |S(∆)| = 8.6 = 48.

S(Γ)∆×S(∆) is a group with respect to the operation (φ, s1) (ψ, s2) =
(
φψ(s1)

−1

, s1s2

)
.

We have Γ×∆ = {(1, 1), (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3)}.
The stabilizer of (1, 1) denoted by

W(1,1) = S(Γ)∆(1)1 × S(∆)1 = {f1, f2, f3, f4} × {(1), (23)}
= {(f1, (1)) , (f2, (1)) , (f3, (1)) , (f4, (1)) , (f1, (23)) , (f2, (23)) , (f3, (23)) , (f4, (23))}.

Then W(1,1) is a subgroup of S(Γ)∆ × S(∆) of order 8.
Also, we can infer in the same manner that,
W(1,2) = S(Γ)∆ (2)1 × S(∆)2 = {f1, f2, f5, f6} × {(1), (13)}

= {(f1, (1)) , (f2, (1)) , (f5, (1)) , (f6, (1)) , (f1, (13)) , (f2, (13)) , (f5, (13)) , (f6, (13))}.
Then W(1,2) is a subgroup of S(Γ)∆ × S(∆) of order 8.
W(1,3) = S(Γ)∆ (3)1 × S(∆)3 = {f1, f3, f5, f7} × {(1), (12)}

= {(f1, (1)) , (f3, (1)) , (f5, (1)) , (f7, (1)) , (f1, (12)) , (f3, (12)) , (f5, (12)) , (f7, (12))}.
Then W(1,3) is a subgroup of S(Γ)∆ × S(∆) of order 8.
W(2,1) = S(Γ)∆(1)2 × S(∆)1 = {f1, f2, f3, f4} × {(1), (23)}

= {(f1, (1)) , (f2, (1)) , (f3, (1)) , (f4, (1)) , (f1, (23)) , (f2, (23)) , (f3, (23)) , (f4, (23))}.
Then W(1,3) is a subgroup of S(Γ)∆ × S(∆) of order 8.
W(2,2) = S(Γ)∆ (2)2 × S(∆)2 = {f1, f2, f5, f6} × {(1), (13)}

= {(f1, (1)) , (f2, (1)) , (f5, (1)) , (f6, (1)) , (f1, (13)) , (f2, (13)) , (f5, (13)) , (f6, (13))}.
Then W(2,2) is a subgroup of S(Γ)∆ × S(∆) of order 8.
W(2,3) = S(Γ)∆ (3)2 × S(∆)3 = {f1, f3, f5, f7} × {(1), (12)}

= {(f1, (1)) , (f3, (1)) , (f5, (1)) , (f7, (1)) , (f1, (12)) , (f3, (12)) , (f5, (12)) , (f7, (12))}.
Then W(2,3) is a subgroup of S(Γ)∆ × S(∆) of order 8.
Finally, we have W(1,1) =W(2,1),W(1,2) =W(2,2),W(1,3) =W(2,3).

For (γ, δ) ∈ Γ×∆, we have
∣∣W(γ,δ)

∣∣ . |W (γ, δ)| = |W |, then
|W (γ, δ)| = |W |

|W(γ,δ)| =
48
8 = 6.

In this example, we have
(f1, (1)) (1, 1) = (f2, (1)) (1, 1) = (f3, (1)) (1, 1) = (f4, (1)) (1, 1) = (1, 1)
(f1, (12)) (1, 1) = (f2, (12)) (1, 1) = (f3, (12)) (1, 1)

= (f4, (12)) (1, 1) = (1, 2)
(f1, (13)) (1, 1) = (f2, (13)) (1, 1) = (f3, (13)) (1, 1)

= (f4, (13)) (1, 1) = (1, 1)
(f1, (23)) (1, 1) = (f2, (23)) (1, 1) = (f3, (23)) (1, 1)

= (f4, (23)) (1, 1) = (1, 1)
(f1, (123)) (1, 1) = (f2, (123)) (1, 1) = (f3, (123)) (1, 1)

= (f4, (123)) (1, 1) = (1, 2)
(f1, (132)) (1, 1) = (f2, (132)) (1, 1) = (f3, (132)) (1, 1)

= (f4, (132)) (1, 1) = (1, 3)
(f5, (1)) (1, 1) = (f6, (1)) (1, 1) = (f7, (1)) (1, 1)

= (f8, (1)) (1, 1) = (2, 1)
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(f5, (12)) (1, 1) = (f6, (12)) (1, 1) = (f7, (12)) (1, 1)
= (f8, (12)) (1, 1) = (2, 2)

(f5, (13)) (1, 1) = (f6, (13)) (1, 1) = (f7, (13)) (1, 1)
= (f8, (13)) (1, 1) = (2, 3)

(f5, (23)) (1, 1) = (f6, (23)) (1, 1) = (f7, (23)) (1, 1)
= (f8, (23)) (1, 1) = (2, 1)

(f5, (123)) (1, 1) = (f6, (123)) (1, 1) = (f7, (123)) (1, 1)
= (f8, (123)) (1, 1) = (2, 2)

(f5, (132)) (1, 1) = (f6, (132)) (1, 1) = (f7, (132)) (1, 1)
= (f8, (132)) (1, 1) = (2, 3)

Then the orbit of (1, 1) is
{(1, 1), (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3)} = Γ×∆.

6 Conclusions

In this paper, study the decomposition of groups, derive results on wreath product of
groups, and provide several illustrative examples.
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