Strong insertion of a contra-Baire-1 (Baire-.5) function

M. Mirmiran and B. Naderi

Abstract

Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a Baire-. 5 function between two comparable real-valued functions on the topological spaces that F_{σ}-kernel of sets are F_{σ}-sets.

M.S.C. 2010: 26A15, 54C30.

Key words: Insertion; strong binary relation; Baire-. 5 function; kernel of sets; lower cut set.

1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [18]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [18].

Recall that a real-valued function f defined on a topological space X is called A-continuous [25] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to $[5,11]$. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.
J. Dontchev in [6] introduced a new class of mappings called contra-continuity. A considerable number of researchers have also initiated different types of contracontinuous like mappings in the papers $[1,4,8,9,10,12,13,23]$.

The results of Katětov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [3], are used in order to give a necessary and sufficient condition for the insertion of a Baire-. 5 function between two comparable real-valued functions on the topological spaces that F_{σ}-kernel of sets are F_{σ}-sets.

A real-valued function f defined on a topological space X is called contra-Baire-1 (Baire-.5) if the preimage of every open subset of \mathbb{R} is a $G_{\delta}-$ set in X [26].

[^0]If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of the conditions considered in [16].
A property P defined relative to a real-valued function on a topological space is a $B-.5$-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire-. 5 function also has property P. If P_{1} and P_{2} are $B-.5$-properties, the following terminology is used: (i) A space X has the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g \leq h \leq f$. (ii) A space X has the strong $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g \leq h \leq f$ and such that if $g(x)<f(x)$ for any x in X , then $g(x)<h(x)<f(x)$.

In this paper, for a topological space that F_{σ} - kernel of sets are F_{σ}-sets, is given a sufficient condition for the weak $B-.5$-insertion property. Also, for a space with the weak $B-.5$-insertion property, we give necessary and sufficient conditions for the space to have the strong $B-.5$-insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the strong insertion of a contracontinuous function between two comparable real-valued functions has also recently considered by the authors in [21].

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-. 5 function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{V}, as follows:
$A^{\Lambda}=\cap\{O: O \supseteq A, O \in(X, \tau)\}$ and $A^{V}=\cup\left\{F: F \subseteq A, F^{c} \in(X, \tau)\right\}$.
In $[7,19,22], A^{\Lambda}$ is called the kernel of A.
We also define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$, as follows:
$G_{\delta}(A)=\cup\left\{O: O \subseteq A, O i s G_{\delta}-s e t\right\}$ and
$F_{\sigma}(A)=\cap\left\{F: F \supseteq A, F i s F_{\sigma}-s e t\right\}$.
$F_{\sigma}(A)$ is called the $F_{\sigma}-$ kernel of A.
The following first two definitions are modifications of conditions considered in $[14,15]$.

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho \nu$ implies $x \rho \nu$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1) If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
2) If $A \subseteq B$, then $A \bar{\rho} B$.
3) If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [3] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X$: $f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leq \ell\}$ for a real number ℓ, then $A(f, \ell)$ is a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main results:
Theorem 2.1. Let g and f be real-valued functions on the topological space X, that F_{σ}-kernel sets in X are F_{σ}-sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a Baire-. 5 function h defined on X such that $g \leq h \leq f$.
Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis, there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$.

Define the functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \bar{\rho} F\left(t_{2}\right), G\left(t_{1}\right) \bar{\rho} G\left(t_{2}\right)$, and $F\left(t_{1}\right) \rho G\left(t_{2}\right)$. By Lemmas 1 and 2 of [15], it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_{1} and t_{2} are any rational numbers with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho H\left(t_{2}\right), H\left(t_{1}\right) \rho H\left(t_{2}\right)$ and $H\left(t_{1}\right) \rho G\left(t_{2}\right)$.

For any x in X, let $h(x)=\inf \{t \in \mathbb{Q}: x \in H(t)\}$.
We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x) \leq t^{\prime}$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_{1} and t_{2} with $t_{1}<t_{2}$, we have $h^{-1}\left(t_{1}, t_{2}\right)=$ $G_{\delta}\left(H\left(t_{2}\right)\right) \backslash F_{\sigma}\left(H\left(t_{1}\right)\right)$. Hence $h^{-1}\left(t_{1}, t_{2}\right)$ is a $G_{\delta}-$ set in X, i.e., h is a Baire-. 5 function on X.
The above proof used the technique of Theorem 1 of [14].
If a space has the strong $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$, then it has the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$.The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak $B-.5$-insertion property to satisfy the strong $B-.5$-insertion property.

Theorem 2.2. Let P_{1} and P_{2} be $B-.5-$ property and X be a space that satisfies the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$. Also assume that g and f are functions on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}. The space X has the strong $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if there exist lower cut
sets $A\left(f-g, 2^{-n}\right)$ and there exists a sequence $\left\{F_{n}\right\}$ of subsets of X such that (i) for each n, F_{n} and $A\left(f-g, 2^{-n}\right)$ are completely separated by Baire-. 5 functions, and (ii) $\{x \in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty} F_{n}$.

Proof. Suppose that there is a sequence $\left(A\left(f-g, 2^{-n}\right)\right)$ of lower cut sets for $f-g$ and suppose that there is a sequence $\left(F_{n}\right)$ of subsets of X such that

$$
\{x \in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty} F_{n}
$$

and such that for each n, there exists a Baire-. 5 function k_{n} on X into $\left[0,2^{-n}\right]$ with $k_{n}=2^{-n}$ on F_{n} and $k_{n}=0$ on $A\left(f-g, 2^{-n}\right)$. The function k from X into $[0,1 / 4]$ which is defined by

$$
k(x)=1 / 4 \sum_{n=1}^{\infty} k_{n}(x)
$$

is a Baire- .5 function by the Cauchy condition and the properties of Baire-. 5 functions, (1) $k^{-1}(0)=\{x \in X:(f-g)(x)=0\}$ and (2) if $(f-g)(x)>0$ then $k(x)<(f-g)(x)$: In order to verify (1), observe that if $(f-g)(x)=0$, then $x \in A\left(f-g, 2^{-n}\right)$ for each n and hence $k_{n}(x)=0$ for each n. Thus $k(x)=0$. Conversely, if $(f-g)(x)>0$, then there exists an n such that $x \in F_{n}$ and hence $k_{n}(x)=2^{-n}$. Thus $k(x) \neq 0$ and this verifies (1). Next, in order to establish (2), note that

$$
\{x \in X:(f-g)(x)=0\}=\bigcap_{n=1}^{\infty} A\left(f-g, 2^{-n}\right)
$$

and that $\left(A\left(f-g, 2^{-n}\right)\right)$ is a decreasing sequence. Thus if $(f-g)(x)>0$ then either $x \notin A(f-g, 1 / 2)$ or there exists a smallest n such that $x \notin A\left(f-g, 2^{-n}\right)$ and $x \in A\left(f-g, 2^{-j}\right)$ for $j=1, \ldots, n-1$.
In the former case,

$$
k(x)=1 / 4 \sum_{n=1}^{\infty} k_{n}(x) \leq 1 / 4 \sum_{n=1}^{\infty} 2^{-n}<1 / 2 \leq(f-g)(x)
$$

and in the latter,

$$
k(x)=1 / 4 \sum_{j=n}^{\infty} k_{j}(x) \leq 1 / 4 \sum_{j=n}^{\infty} 2^{-j}<2^{-n} \leq(f-g)(x)
$$

Thus $0 \leq k \leq f-g$ and if $(f-g)(x)>0$ then $(f-g)(x)>k(x)>0$. Let $g_{1}=g+(1 / 4) k$ and $f_{1}=f-(1 / 4) k$. Then $g \leq g_{1} \leq f_{1} \leq f$ and if $g(x)<f(x)$ then

$$
g(x)<g_{1}(x)<f_{1}(x)<f(x)
$$

Since P_{1} and P_{2} are $B-.5$-properties, then g_{1} has property P_{1} and f_{1} has property P_{2}. Since by hypothesis X has the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a Baire-. 5 function h such that $g_{1} \leq h \leq f_{1}$. Thus $g \leq h \leq f$ and if $g(x)<f(x)$ then $g(x)<h(x)<f(x)$. Therefore X has the strong $B-.5$-insertion
property for $\left(P_{1}, P_{2}\right)$. (The technique of this proof is by Lane [16].)
Conversely, assume that X satisfies the strong $B-.5$-insertion for $\left(P_{1}, P_{2}\right)$. Let g and f be functions on X satisfying P_{1} and P_{2} respectively such that $g \leq f$. Thus there exists a Baire-. 5 function h such that $g \leq h \leq f$ and such that if $g(x)<f(x)$ for any x in X, then $g(x)<h(x)<f(x)$. We follow an idea contained in Powderly [24]. Now consider the functions 0 and $f-h .0$ satisfies property P_{1} and $f-h$ satisfies property P_{2}. Thus there exists a Baire-. 5 function h_{1} such that $0 \leq h_{1} \leq f-h$ and if $0<(f-h)(x)$ for any x in X, then $0<h_{1}(x)<(f-h)(x)$. We next show that

$$
\{x \in X:(f-g)(x)>0\}=\left\{x \in X: h_{1}(x)>0\right\}
$$

If x is such that $(f-g)(x)>0$, then $g(x)<f(x)$. Therefore $g(x)<h(x)<f(x)$. Thus $f(x)-h(x)>0$ or $(f-h)(x)>0$. Hence $h_{1}(x)>0$. On the other hand, if $h_{1}(x)>0$, then since $(f-h) \geq h_{1}$ and $f-g \geq f-h$, therefore $(f-g)(x)>0$. For each n, let

$$
A\left(f-g, 2^{-n}\right)=\left\{x \in X:(f-g)(x) \leq 2^{-n}\right\}, \quad F_{n}=\left\{x \in X: h_{1}(x) \geq 2^{-n+1}\right\}
$$

and

$$
k_{n}=\sup \left\{\inf \left\{h_{1}, 2^{-n+1}\right\}, 2^{-n}\right\}-2^{-n}
$$

Since $\{x \in X:(f-g)(x)>0\}=\left\{x \in X: h_{1}(x)>0\right\}$, it follows that

$$
\{x \in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty} F_{n}
$$

We next show that k_{n} is a Baire-. 5 function which completely separates F_{n} and $A\left(f-g, 2^{-n}\right)$. From its definition and by the properties of Baire-. 5 functions, it is clear that k_{n} is a Baire- .5 function. Let $x \in F_{n}$. Then, from the definition of $k_{n}, k_{n}(x)=2^{-n}$. If $x \in A\left(f-g, 2^{-n}\right)$, then since $h_{1} \leq f-h \leq f-g, h_{1}(x) \leq 2^{-n}$. Thus $k_{n}(x)=0$, according to the definition of k_{n}. Hence k_{n} completely separates F_{n} and $A\left(f-g, 2^{-n}\right)$.

Theorem 2.3. Let P_{1} and P_{2} be $B-.5$-properties and assume that the space X satisfied the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$. The space X satisfies the strong $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if X satisfies the strong $B-.5$-insertion property for $\left(P_{1}, B-.5\right)$ and for $\left(B-.5, P_{2}\right)$.
Proof. Assume that X satisfies the strong $B-.5$-insertion property for $\left(P_{1}, B-.5\right)$ and for $\left(B-.5, P_{2}\right)$. If g and f are functions on X such that $g \leq f, g$ satisfies property P_{1}, and f satisfies property P_{2}, then since X satisfies the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ there is a Baire-. 5 function k such that $g \leq k \leq f$. Also, by hypothesis there exist Baire-. 5 functions h_{1} and h_{2} such that $g \leq h_{1} \leq k$ and if $g(x)<k(x)$ then $g(x)<h_{1}(x)<k(x)$ and such that $k \leq h_{2} \leq f$ and if $k(x)<f(x)$ then $k(x)<h_{2}(x)<f(x)$. If a function h is defined by $h(x)=\left(h_{2}(x)+h_{1}(x)\right) / 2$, then h is a Baire- 5 function, $g \leq h \leq f$, and if $g(x)<f(x)$ then $g(x)<h(x)<f(x)$. Hence X satisfies the strong $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$. The converse is obvious since any Baire-. 5 function must satisfy both properties P_{1} and P_{2}. (The technique of this proof is by Lane [17].)

3 Applications

Definition 3.1. A real-valued function f defined on a space X is called contra-upper semi-Baire-. 5 (resp. contra-lower semi-Baire-.5) if $f^{-1}(-\infty, t)\left(\right.$ resp. $\left.f^{-1}(t,+\infty)\right)$ is a $G_{\delta}-$ set for any real number t.

The abbreviations $u s c, l s c, c u s B .5$ and $c l s B .5$ are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1. [14, 15]. A space X has the weak c-insertion property for (usc,lsc) if and only if X is normal.

Before stating the consequences of theorem 2.1, 2.2 and 2.3 we suppose that X is a topological space that F_{σ}-kernel of sets are F_{σ}-sets.

Corollary 3.1. For each pair of disjoint F_{σ}-sets F_{1}, F_{2}, there are two $G_{\delta}-$ sets G_{1} and G_{2} such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=\varnothing$ if and only if X has the weak $B-.5$-insertion property for (cusB-.5, clsB-.5).
Proof. Let g and f be real-valued functions defined on the X, such that f is $l s B_{1}, g$ is $u s B_{1}$, and $g \leq f$.If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G_{\delta}(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right)
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is a F_{σ}-set and since $\left\{x \in X: g(x)<t_{2}\right\}$ is a $G_{\delta}-$ set, it follows that $F_{\sigma}\left(A\left(f, t_{1}\right)\right) \subseteq G_{\delta}\left(A\left(g, t_{2}\right)\right)$. Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2. 1.

On the other hand, let F_{1} and F_{2} are disjoint $F_{\sigma}-$ sets. Set $f=\chi_{F_{1}^{c}}$ and $g=\chi_{F_{2}}$, then f is clsB-.5,g is cusB-.5, and $g \leq f$. Thus there exists Baire-. 5 function h such that $g \leq h \leq f$. Set $G_{1}=\left\{x \in X: h(x)<\frac{1}{2}\right\}$ and $G_{2}=\left\{x \in X: h(x)>\frac{1}{2}\right\}$, then G_{1} and G_{2} are disjoint G_{δ}-sets such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$.
Remark 2. [27]. A space X has the weak c-insertion property for (lsc,usc) if and only if X is extremally disconnected.

Corollary 3.2. For every G of $G_{\delta}-$ set, $F_{\sigma}(G)$ is a $G_{\delta}-$ set if and only if X has the weak $B-.5$-insertion property for (clsB-.5, cusB-.5).

Before giving the proof of this corollary, the necessary lemma is stated.
Lemma 3.1. The following conditions on the space X are equivalent:
(i) For every G of G_{δ}-set we have $F_{\sigma}(G)$ is a G_{δ}-set.
(ii) For each pair of disjoint G_{δ}-sets as G_{1} and G_{2} we have $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=\varnothing$.

The proof of Lemma 3.1 is a direct consequence of the definition F_{σ}-kernel of sets.
We now give the proof of Corollary 3.2.
Proof. Let g and f be real-valued functions defined on the X, such that f is $c l s B-.5, g$ is cus $B-.5$, and $f \leq g$.If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq$
$G \subseteq F_{\sigma}(G) \subseteq G_{\delta}(B)$ for some G_{δ}-set g in X, then by hypothesis and Lemma 3.1ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
\begin{gathered}
A\left(g, t_{1}\right)=\left\{x \in X: g(x)<t_{1}\right\} \subseteq\left\{x \in X: f(x) \leq t_{2}\right\} \\
=A\left(f, t_{2}\right)
\end{gathered}
$$

since $\left\{x \in X: g(x)<t_{1}\right\}$ is a $G_{\delta}-$ set and since $\left\{x \in X: f(x) \leq t_{2}\right\}$ is a F_{σ}-set, by hypothesis it follows that $A\left(g, t_{1}\right) \rho A\left(f, t_{2}\right)$. The proof follows from Theorem 2.1.

On the other hand, Let G_{1} and G_{2} are disjoint $G_{\delta}-$ sets. Set $f=\chi_{G_{2}}$ and $g=\chi_{G_{1}^{c}}$, then f is cls $B-.5, g$ is cus $B-.5$, and $f \leq g$.

Thus there exists Baire-. 5 function h such that $f \leq h \leq g$. Set $F_{1}=\{x \in X$: $\left.h(x) \leq \frac{1}{3}\right\}$ and $F_{2}=\{x \in X: h(x) \geq 2 / 3\}$ then F_{1} and F_{2} are disjoint F_{σ}-sets such that $G_{1} \subseteq F_{1}$ and $G_{2} \subseteq F_{2}$. Hence $F_{\sigma}\left(F_{1}\right) \cap F_{\sigma}\left(F_{2}\right)=\varnothing$.

Before stating the consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.2. The following conditions on the space X are equivalent:
(i) Every two disjoint F_{σ}-sets of X can be separated by G_{δ}-sets of X.
(ii) If F is a F_{σ}-set of X which is contained in a G_{δ}-set G, then there exists a G_{δ}-set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.
Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_{σ}-set and G_{δ}-set of X, respectively. Hence, G^{c} is a F_{σ}-set and $F \cap G^{c}=\varnothing$.

By (i) there exists two disjoint G_{δ}-sets G_{1}, G_{2} such that $F \subseteq G_{1}$ and $G^{c} \subseteq G_{2}$. But

$$
G^{c} \subseteq G_{2} \Rightarrow G_{2}^{c} \subseteq G
$$

and

$$
G_{1} \cap G_{2}=\varnothing \Rightarrow G_{1} \subseteq G_{2}^{c}
$$

hence

$$
F \subseteq G_{1} \subseteq G_{2}^{c} \subseteq G
$$

and since G_{2}^{c} is a F_{σ}-set containing G_{1} we conclude that $F_{\sigma}\left(G_{1}\right) \subseteq G_{2}^{c}$, i.e.,

$$
F \subseteq G_{1} \subseteq F_{\sigma}\left(G_{1}\right) \subseteq G
$$

By setting $H=G_{1}$, condition (ii) holds.
(ii) \Rightarrow (i) Suppose that F_{1}, F_{2} are two disjoint F_{σ}-sets of X.

This implies that $F_{1} \subseteq F_{2}^{c}$ and F_{2}^{c} is a G_{δ}-set. Hence by (ii) there exists a G_{δ}-set H such that, $F_{1} \subseteq H \subseteq F_{\sigma}(H) \subseteq F_{2}^{c}$.
But

$$
H \subseteq F_{\sigma}(H) \Rightarrow H \cap\left(F_{\sigma}(H)\right)^{c}=\varnothing
$$

and

$$
F_{\sigma}(H) \subseteq F_{2}^{c} \Rightarrow F_{2} \subseteq\left(F_{\sigma}(H)\right)^{c}
$$

Furthermore, $\left(F_{\sigma}(H)\right)^{c}$ is a $G_{\delta}-$ set of X. Hence $F_{1} \subseteq H, F_{2} \subseteq\left(F_{\sigma}(H)\right)^{c}$ and $H \cap\left(F_{\sigma}(H)\right)^{c}=\varnothing$. This means that condition (i) holds.

Lemma 3.3. Suppose that X is the topological space such that we can separate every two disjoint F_{σ}-sets by G_{δ}-sets. If F_{1} and F_{2} are two disjoint F_{σ}-sets of X, then there exists a Baire-. 5 function $h: X \rightarrow[0,1]$ such that $h\left(F_{1}\right)=\{0\}$ and $h\left(F_{2}\right)=\{1\}$.
Proof. Suppose F_{1} and F_{2} are two disjoint $F_{\sigma}-$ sets of X. Since $F_{1} \cap F_{2}=\varnothing$, hence $F_{1} \subseteq F_{2}^{c}$. In particular, since F_{2}^{c} is a $G_{\delta}-$ set of X containing F_{1}, by Lemma 3.2, there exists a $G_{\delta}-$ set $H_{1 / 2}$ such that,

$$
F_{1} \subseteq H_{1 / 2} \subseteq F_{\sigma}\left(H_{1 / 2}\right) \subseteq F_{2}^{c}
$$

Note that $H_{1 / 2}$ is a G_{δ}-set and contains F_{1}, and F_{2}^{c} is a G_{δ}-set and contains $F_{\sigma}\left(H_{1 / 2}\right)$. Hence, by Lemma 3.2, there exists G_{δ}-sets $H_{1 / 4}$ and $H_{3 / 4}$ such that,

$$
F_{1} \subseteq H_{1 / 4} \subseteq F_{\sigma}\left(H_{1 / 4}\right) \subseteq H_{1 / 2} \subseteq F_{\sigma}\left(H_{1 / 2}\right) \subseteq H_{3 / 4} \subseteq F_{\sigma}\left(H_{3 / 4}\right) \subseteq F_{2}^{c}
$$

By continuing this method for every $t \in D$, where $D \subseteq[0,1]$ is the set of rational numbers that their denominators are exponents of 2 , we obtain $G_{\delta}-$ sets H_{t} with the property that if $t_{1}, t_{2} \in D$ and $t_{1}<t_{2}$, then $H_{t_{1}} \subseteq H_{t_{2}}$. We define the function h on X by $h(x)=\inf \left\{t: x \in H_{t}\right\}$ for $x \notin F_{2}$ and $h(x)=1$ for $x \in F_{2}$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D, F_{1} \subseteq H_{t}$; hence $h\left(F_{1}\right)=\{0\}$. Furthermore, by definition, $h\left(F_{2}\right)=\{1\}$. It remains only to prove that h is a Baire-. 5 function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X: h(x)<\alpha\}=\varnothing$ and if $0<\alpha$ then $\{x \in X: h(x)<\alpha\}=\cup\left\{H_{t}: t<\alpha\right\}$, hence, they are G_{δ}-sets of X. Similarly, if $\alpha<0$ then $\{x \in X: h(x)>\alpha\}=X$ and if $0 \leq \alpha$ then $\{x \in X: h(x)>\alpha\}=\cup\left\{\left(F_{\sigma}\left(H_{t}\right)\right)^{c}: t>\alpha\right\}$ hence, every of them is a $G_{\delta}-$ set. Consequently h is a Baire- .5 function.

Lemma 3.4. Suppose that X is the topological space such that we can separate every two disjoint F_{σ}-sets by $G_{\delta}-$ sets. If F_{1} and F_{2} are two disjoint F_{σ}-sets of X and F_{1} is a countable intersection of G_{δ}-sets, then there exists a Baire-. 5 function h on X into $[0,1]$ such that $h^{-1}(0)=F_{1}$ and $h\left(F_{2}\right)=\{1\}$.
Proof. Suppose that $F_{1}=\bigcap_{n=1}^{\infty} G_{n}$, where G_{n} is a $G_{\delta}-$ set of X. We can suppose that $G_{n} \cap F_{2}=\varnothing$, otherwise we can substitute G_{n} by $G_{n} \backslash F_{2}$. By Lemma 3.3, for every $n \in \mathbb{N}$, there exists a Baire-. 5 function h_{n} on X into $[0,1]$ such that $h_{n}\left(F_{1}\right)=\{0\}$ and $h_{n}\left(X \backslash G_{n}\right)=\{1\}$. We set $h(x)=\sum_{n=1}^{\infty} 2^{-n} h_{n}(x)$.

Since the above series is uniformly convergent, it follows that h is a Baire-. 5 function from X to $[0,1]$. Since for every $n \in \mathbb{N}, F_{2} \subseteq X \backslash G_{n}$, therefore $h_{n}\left(F_{2}\right)=\{1\}$ and consequently $h\left(F_{2}\right)=\{1\}$. Since $h_{n}\left(F_{1}\right)=\{0\}$, hence $h\left(F_{1}\right)=\{0\}$. It suffices to show that if $x \notin F_{1}$, then $h(x) \neq 0$.

Now if $x \notin F_{1}$, since $F_{1}=\bigcap_{n=1}^{\infty} G_{n}$, therefore there exists $n_{0} \in \mathbb{N}$ such that $x \notin G_{n_{0}}$, hence $h_{n_{0}}(x)=1$, i.e., $h(x)>0$. Therefore $h^{-1}(0)=F_{1}$.

Lemma 3.5. Suppose that X is the topological space such that we can separate every two disjoint F_{σ}-sets by $G_{\delta}-$ sets. The following conditions are equivalent:
(i) For every two disjoint F_{σ}-sets F_{1} and F_{2}, there exists a Baire-. 5 function h on X into $[0,1]$ such that $h^{-1}(0)=F_{1}$ and $h^{-1}(1)=F_{2}$.
(ii) Every F_{σ}-set is a countable intersection of G_{δ}-set.
(iii) Every G_{δ}-set is a countable union of F_{σ}-set.

Proof. (i) \Rightarrow (ii). Suppose that F is a F_{σ}-sets. Since \varnothing is a F_{σ}-set, by (i) there exists a Baire-. 5 function h on X into $[0,1]$ such that $h^{-1}(0)=F$. Set $G_{n}=\{x \in X$: $\left.h(x)<\frac{1}{n}\right\}$. Then for every $n \in \mathbb{N}, G_{n}$ is a $G_{\delta}-$ set and $\bigcap_{n=1}^{\infty} G_{n}=\{x \in X: h(x)=$ $0\}=F$.
(ii) \Rightarrow (i). Suppose that F_{1} and F_{2} are two disjoint F_{σ}-sets. By Lemma 3.4, there exists a Baire-. 5 function f on X into $[0,1]$ such that $f^{-1}(0)=F_{1}$ and $f\left(F_{2}\right)=\{1\}$. Set $G=\left\{x \in X: f(x)<\frac{1}{2}\right\}, F=\left\{x \in X: f(x)=\frac{1}{2}\right\}$, and $H=\left\{x \in X: f(x)>\frac{1}{2}\right\}$. Then $G \cup F$ and $H \cup F$ are two F_{σ}-sets and $(G \cup F) \cap F_{2}=\varnothing$. By Lemma 3.4, there exists a Baire-. 5 function g on X into $\left[\frac{1}{2}, 1\right]$ such that $g^{-1}(1)=F_{2}$ and $g(G \cup F)=\left\{\frac{1}{2}\right\}$. Define h by $h(x)=f(x)$ for $x \in G \cup F$, and $h(x)=g(x)$ for $x \in H \cup F$. h is well-defined and a Baire- .5 function, since $(G \cup F) \cap(H \cup F)=F$ and for every $x \in F$ we have $f(x)=g(x)=\frac{1}{2}$. Furthermore, $(G \cup F) \cup(H \cup F)=X$, hence h defined on X and maps to $[0,1]$. Also, we have $h^{-1}(0)=F_{1}$ and $h^{-1}(1)=F_{2}$.
(ii) \Leftrightarrow (iii) By De Morgan law and noting that the complement of every F_{σ}-set is a $G_{\delta}-$ set and complement of every $G_{\delta}-$ set is a F_{σ}-set, the equivalence is hold.

Remark 3. [20] . A space X has the strong c-insertion property for $(u s c, l s c)$ if and only if X is perfectly normal.

Corollary 3.3. For every two disjoint F_{σ}-sets F_{1} and F_{2}, there exists a Baire-. 5 function h on X into $[0,1]$ such that $h^{-1}(0)=F_{1}$ and $h^{-1}(1)=F_{2}$ if and only if X has the strong $B-.5$-insertion property for (cusB $-.5, c l s B-.5$).

Proof. Since for every two disjoint $F_{\sigma}-$ sets F_{1} and F_{2}, there exists a Baire-. 5 function h on X into $[0,1]$ such that $h^{-1}(0)=F_{1}$ and $h^{-1}(1)=F_{2}$, define $G_{1}=\{x \in X$: $\left.h(x)<\frac{1}{2}\right\}$ and $G_{2}=\left\{x \in X: h(x)>\frac{1}{2}\right\}$. Then G_{1} and G_{2} are two disjoint G_{δ}-sets that contain F_{1} and F_{2}, respectively. This means that, we can separate every two disjoint F_{σ}-sets by G_{δ}-sets. Hence by Corollary $3.1, X$ has the weak $B-.5$-insertion property for (cus $B-.5, \operatorname{cls} B-.5$). Now, assume that g and f are functions on X such that $g \leq f, g$ is cus $B-.5$ and f is cls $B-.5$. Since $f-g$ is $c l s B-.5$, therefore the lower cut set $A\left(f-g, 2^{-n}\right)=\left\{x \in X:(f-g)(x) \leq 2^{-n}\right\}$ is a F_{σ}-set. By Lemma 3.5, we can choose a sequence $\left\{F_{n}\right\}$ of F_{σ}-sets such that $\{x \in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty} F_{n}$ and for every $n \in \mathbb{N}, F_{n}$ and $A\left(f-g, 2^{-n}\right)$ are disjoint. By Lemma 3.3, F_{n} and $A\left(f-g, 2^{-n}\right)$ can be completely separated by Baire.5 functions. Hence by Theorem 2.2, X has the strong $B-.5$-insertion property for (cusB-.5, clsB-.5).

On the other hand, suppose that F_{1} and F_{2} are two disjoint F_{σ}-sets. Since $F_{1} \cap F_{2}=\varnothing$, hence $F_{2} \subseteq F_{1}^{c}$. Set $g=\chi_{F_{2}}$ and $f=\chi_{F_{1}^{c}}$. Then f is $c l s B-.5$ and g is cusB-.5 and furthermore $g \leq f$. By hypothesis, there exists a Baire-. 5 function h on X such that $g \leq h \leq f$ and whenever $g(x)<f(x)$ we have $g(x)<h(x)<f(x)$. By definitions of f and g, we have $h^{-1}(1)=F_{2} \cap F_{1}^{c}=F_{2}$ and $h^{-1}(0)=F_{1} \cap F_{2}^{c}=F_{1}$.

Remark 4. [2]. A space X has the strong c-insertion property for (lsc,usc) if and only if each open subset of X is closed.

Corollary 3.4. Every $G_{\delta}-$ set is a F_{σ}-set if and only if X has the strong $B-$.5 -insertion property for ($c l s B-.5, c u s B-.5$).
Proof. By hypothesis, for every G of G_{δ}-set, we have $F_{\sigma}(G)=G$ is a G_{δ}-set. Hence by Corollary $3.2, X$ has the weak $B-.5$-insertion property for $(c l s B-.5$, cus $B-.5)$. Now, assume that g and f are functions on X such that $g \leq f, g$ is clsB-.5 and f is $B-.5$. Set $A\left(f-g, 2^{-n}\right)=\left\{x \in X:(f-g)(x)<2^{-n}\right\}$. Then, since $f-g$ is cus $B-.5$, we can say that $A\left(f-g, 2^{-n}\right)$ is a $G_{\delta}-$ set. By hypothesis, $A\left(f-g, 2^{-n}\right)$ is a F_{σ}-set. Set $G_{n}=X \backslash A\left(f-g, 2^{-n}\right)$. Then G_{n} is a G_{δ}-set. This means that G_{n} and $A\left(f-g, 2^{-n}\right)$ are disjoint G_{δ}-sets and also are two disjoint F_{σ}-sets. Therefore G_{n} and $A\left(f-g, 2^{-n}\right)$ can be completely separated by Baire-. 5 functions. Now, we have $\bigcup_{n=1}^{\infty} G_{n}=\{x \in X:(f-g)(x)>0\}$. By Theorem 2.2, X has the strong $B-.5$-insertion property for ($c l s B-.5, B-.5$). By an analogous argument, we can prove that X has the strong $B-.5$-insertion property for ($B-.5$, cus $B-.5$). Hence, by Theorem $2.3, X$ has the strong $B-.5$-insertion property for $(c l s B-.5$, cus $B-.5)$.

On the other hand, suppose that X has the strong $B-.5$-insertion property for $(\operatorname{cls} B-.5, \operatorname{cus} B-.5)$. Also, suppose that G is a $G_{\delta}-$ set. Set $f=1$ and $g=\chi_{G}$. Then f is cus $B-.5, g$ is $c l s B-.5$ and $g \leq f$. By hypothesis, there exists a Baire-. 5 function h on X such that $g \leq h \leq f$ and whenever $g(x)<f(x)$, we have $g(x)<h(x)<f(x)$. It is clear that $h(G)=\{1\}$ and for $x \in X \backslash G$ we have $0<h(x)<1$. Since h is a Baire-. 5 function, therefore $\{x \in X: h(x) \geq 1\}=G$ is a F_{σ}-set, i.e., G is a F_{σ}-set.

Acknowledgement. This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

[1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
[2] J. Blatter and G. L. Seever, Interposition of semicontinuous functions by continuous functions, Analyse Fonctionelle et Applications (Comptes Rendus du colloque d' Analyse, Rio de Janeiro 1972), Hermann, Paris, 1975, 27-51.
[3] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
[4] M. Caldas and S. Jafari, Some properties of contra- β-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
[5] J. Dontchev, The characterization of some peculiar topological space via α - and β-sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
[6] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
[7] J. Dontchev, and H. Maki, On sg-closed sets and semi- λ-closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
[8] E. Ekici, On contra-continuity, Annales Univ. Sci. Budapest, 47(2004), 127-137.
[9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 3745.
[10] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
[11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
[12] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
[13] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
[14] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
[15] M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
[16] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
[17] E. Lane, PM-normality and the insertion of a continuous function, Pacific J. of Math., 82(1979), 155-162.
[18] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada Ikeda's Retirement, (1986), 139-146.
[19] S. N. Maheshwari and R. Prasad, On $R_{O s}-$ spaces, Portugal. Math., 34(1975), 213-217.
[20] E. Michael, Continuous selections I, Ann. of Math., 63(1956), 361-382.
[21] M. Mirmiran, Strong insertion of a contra-continuous function between two comparable real-valued functions, Applied Sciences, 21(2019), 159-169.
[22] M. Mrsevic, On pairwise R and pairwise R_{1} bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
[23] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
[24] M. Powderly, On insertion of a continuous function, Proceedings of the A.M.S., 81(1981), 119-120.
[25] M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.
[26] H. Rosen, Darboux Baire-. 5 functions, Proceedings Of The American Mathematical Society, 110(1)(1990), 285-286.
[27] M.H. Stone, Boundedness properties in function-lattices, Canad. J. Math., 1(1949), 176-189.

Authors' addresses:
Majid Mirmiran
Department of Mathematics, University of Isfahan,
Isfahan 81746-73441, Iran.
E-mail: mirmir@sci.ui.ac.ir

Binesh Naderi
Department of General Courses,
School of Managment and Medical Information Sciences,
Isfahan University of Medical Sciences, Isfahan, Iran.
E-mail: naderi@mng.mui.ac.ir

[^0]: Applied Sciences, Vol. 22, 2020, pp. 146-156.
 © Balkan Society of Geometers, Geometry Balkan Press 2020.

