Strong insertion of a contra-Baire-1 (Baire-.5) function

M. Mirmiran and B. Naderi

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_{σ} -kernel of sets are F_{σ} -sets.

M.S.C. 2010: 26A15, 54C30.

Key words: Insertion; strong binary relation; Baire-.5 function; kernel of sets; lower cut set.

1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [18]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ -sets [18].

Recall that a real-valued function f defined on a topological space X is called A-continuous [25] if the preimage of every open subset of $\mathbb R$ belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [6] introduced a new class of mappings called contra-continuity. A considerable number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 4, 8, 9, 10, 12, 13, 23].

The results of Katětov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [3], are used in order to give a necessary and sufficient condition for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_{σ} -kernel of sets are F_{σ} -sets.

A real-valued function f defined on a topological space X is called *contra-Baire-1* (Baire-.5) if the preimage of every open subset of \mathbb{R} is a G_{δ} -set in X [26].

Applied Sciences, Vol. 22, 2020, pp. 146-156.

[©] Balkan Society of Geometers, Geometry Balkan Press 2020.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of the conditions considered in [16].

A property P defined relative to a real-valued function on a topological space is a B-.5-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire-.5 function also has property P. If P_1 and P_2 are B-.5-properties, the following terminology is used: (i) A space X has the weak B-.5-insertion property for (P_1,P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a Baire-.5 function f such that f if on f is any functions f and f on f is any functions f and f is any functions f in f in f is any functions f in f

In this paper, for a topological space that F_{σ} -kernel of sets are F_{σ} -sets, is given a sufficient condition for the weak B-.5-insertion property. Also, for a space with the weak B-.5-insertion property, we give necessary and sufficient conditions for the space to have the strong B-.5-insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the strong insertion of a contracontinuous function between two comparable real-valued functions has also recently considered by the authors in [21].

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-.5 function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} , as follows:

```
A^{\Lambda} = \cap \{O: O \supseteq A, O \in (X, \tau)\} and A^{V} = \cup \{F: F \subseteq A, F^{c} \in (X, \tau)\}. In [7, 19, 22], A^{\Lambda} is called the kernel of A.
```

We also define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$, as follows:

$$G_{\delta}(A) = \bigcup \{O : O \subseteq A, OisG_{\delta} - set\}$$
 and

$$F_{\sigma}(A) = \bigcap \{F : F \supseteq A, FisF_{\sigma} - set\}.$$

 $F_{\sigma}(A)$ is called the $F_{\sigma}-kernel$ of A.

The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho \nu$ implies $x \rho \nu$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

- 1) If $A_i
 ho B_j$ for any $i \in \{1, ..., m\}$ and for any $j \in \{1, ..., n\}$, then there exists a set C in P(X) such that $A_i
 ho C$ and $C
 ho B_j$ for any $i \in \{1, ..., m\}$ and any $j \in \{1, ..., n\}$.
 - 2) If $A \subseteq B$, then $A \bar{\rho} B$.
 - 3) If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [3] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f,\ell)$ is a lower indefinite cut set in the domain of f at the level ℓ .

We now give the following main results:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, that F_{σ} -kernel sets in X are F_{σ} -sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)$ ρ $A(g,t_2)$, then there exists a Baire-.5 function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis, there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define the functions F and G mapping the rational numbers $\mathbb Q$ into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [15], it follows that there exists a function H mapping $\mathbb Q$ into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \leq h \leq f$: If x is in H(t) then x is in G(t') for any t' > t; since x in G(t') = A(g,t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = G_{\delta}(H(t_2)) \setminus F_{\sigma}(H(t_1))$. Hence $h^{-1}(t_1, t_2)$ is a G_{δ} -set in X, i.e., h is a Baire-.5 function on X.

The above proof used the technique of Theorem 1 of [14].

If a space has the strong B – .5-insertion property for (P_1, P_2) , then it has the weak B – .5-insertion property for (P_1, P_2) . The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak B – .5-insertion property to satisfy the strong B – .5-insertion property.

Theorem 2.2. Let P_1 and P_2 be B-.5—property and X be a space that satisfies the weak B-.5—insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that $g \leq f, g$ has property P_1 and f has property P_2 . The space X has the strong B-.5—insertion property for (P_1, P_2) if and only if there exist lower cut

sets $A(f-g,2^{-n})$ and there exists a sequence $\{F_n\}$ of subsets of X such that (i) for each n, F_n and $A(f-g,2^{-n})$ are completely separated by Baire-.5 functions, and (ii) $\{x \in X : (f-g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$.

Proof. Suppose that there is a sequence $(A(f-g,2^{-n}))$ of lower cut sets for f-g and suppose that there is a sequence (F_n) of subsets of X such that

$${x \in X : (f - g)(x) > 0} = \bigcup_{n=1}^{\infty} F_n$$

and such that for each n, there exists a Baire-.5 function k_n on X into $[0, 2^{-n}]$ with $k_n = 2^{-n}$ on F_n and $k_n = 0$ on $A(f - g, 2^{-n})$. The function k from X into [0, 1/4] which is defined by

$$k(x) = 1/4 \sum_{n=1}^{\infty} k_n(x)$$

is a Baire-.5 function by the Cauchy condition and the properties of Baire-.5 functions, (1) $k^{-1}(0) = \{x \in X : (f-g)(x) = 0\}$ and (2) if (f-g)(x) > 0 then k(x) < (f-g)(x): In order to verify (1), observe that if (f-g)(x) = 0, then $x \in A(f-g, 2^{-n})$ for each n and hence $k_n(x) = 0$ for each n. Thus k(x) = 0. Conversely, if (f-g)(x) > 0, then there exists an n such that $x \in F_n$ and hence $k_n(x) = 2^{-n}$. Thus $k(x) \neq 0$ and this verifies (1). Next, in order to establish (2), note that

$${x \in X : (f-g)(x) = 0} = \bigcap_{n=1}^{\infty} A(f-g, 2^{-n})$$

and that $(A(f-g,2^{-n}))$ is a decreasing sequence. Thus if (f-g)(x)>0 then either $x\not\in A(f-g,1/2)$ or there exists a smallest n such that $x\not\in A(f-g,2^{-n})$ and $x\in A(f-g,2^{-j})$ for $j=1,\ldots,n-1$. In the former case,

$$k(x) = 1/4 \sum_{n=1}^{\infty} k_n(x) \le 1/4 \sum_{n=1}^{\infty} 2^{-n} < 1/2 \le (f - g)(x),$$

and in the latter,

$$k(x) = 1/4 \sum_{j=n}^{\infty} k_j(x) \le 1/4 \sum_{j=n}^{\infty} 2^{-j} < 2^{-n} \le (f-g)(x).$$

Thus $0 \le k \le f - g$ and if (f - g)(x) > 0 then (f - g)(x) > k(x) > 0. Let $g_1 = g + (1/4)k$ and $f_1 = f - (1/4)k$. Then $g \le g_1 \le f_1 \le f$ and if g(x) < f(x) then

$$g(x) < g_1(x) < f_1(x) < f(x)$$
.

Since P_1 and P_2 are B-.5—properties, then g_1 has property P_1 and f_1 has property P_2 . Since by hypothesis X has the weak B-.5—insertion property for (P_1, P_2) , then there exists a Baire-.5 function h such that $g_1 \leq h \leq f_1$. Thus $g \leq h \leq f$ and if g(x) < f(x) then g(x) < h(x) < f(x). Therefore X has the strong B-.5—insertion

property for (P_1, P_2) . (The technique of this proof is by Lane [16].)

Conversely, assume that X satisfies the strong B-.5-insertion for (P_1, P_2) . Let g and f be functions on X satisfying P_1 and P_2 respectively such that $g \leq f$. Thus there exists a Baire-.5 function h such that $g \leq h \leq f$ and such that if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). We follow an idea contained in Powderly [24]. Now consider the functions 0 and f-h.0 satisfies property P_1 and f-h satisfies property P_2 . Thus there exists a Baire-.5 function h_1 such that $0 \leq h_1 \leq f-h$ and if 0 < (f-h)(x) for any x in X, then $0 < h_1(x) < (f-h)(x)$. We next show that

$$\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}.$$

If x is such that (f-g)(x) > 0, then g(x) < f(x). Therefore g(x) < h(x) < f(x). Thus f(x) - h(x) > 0 or (f-h)(x) > 0. Hence $h_1(x) > 0$. On the other hand, if $h_1(x) > 0$, then since $(f-h) \ge h_1$ and $f-g \ge f-h$, therefore (f-g)(x) > 0. For each n, let

$$A(f-g,2^{-n}) = \{x \in X : (f-g)(x) \le 2^{-n}\}, \quad F_n = \{x \in X : h_1(x) \ge 2^{-n+1}\}$$
 and

$$k_n = \sup\{\inf\{h_1, 2^{-n+1}\}, 2^{-n}\} - 2^{-n}.$$

Since $\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}$, it follows that

$$\{x \in X : (f-g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n.$$

We next show that k_n is a Baire-.5 function which completely separates F_n and $A(f-g,2^{-n})$. From its definition and by the properties of Baire-.5 functions, it is clear that k_n is a Baire-.5 function. Let $x \in F_n$. Then, from the definition of $k_n, k_n(x) = 2^{-n}$. If $x \in A(f-g,2^{-n})$, then since $h_1 \leq f - h \leq f - g, h_1(x) \leq 2^{-n}$. Thus $k_n(x) = 0$, according to the definition of k_n . Hence k_n completely separates F_n and $A(f-g,2^{-n})$.

Theorem 2.3. Let P_1 and P_2 be B-.5—properties and assume that the space X satisfied the weak B-.5—insertion property for (P_1, P_2) . The space X satisfies the strong B-.5—insertion property for (P_1, P_2) if and only if X satisfies the strong B-.5—insertion property for $(P_1, B-.5)$ and for $(B-.5, P_2)$.

Proof. Assume that X satisfies the strong B-.5-insertion property for $(P_1, B-.5)$ and for $(B-.5, P_2)$. If g and f are functions on X such that $g \leq f, g$ satisfies property P_1 , and f satisfies property P_2 , then since X satisfies the weak B-.5-insertion property for (P_1, P_2) there is a Baire-.5 function k such that $g \leq k \leq f$. Also, by hypothesis there exist Baire-.5 functions h_1 and h_2 such that $g \leq h_1 \leq k$ and if g(x) < k(x) then $g(x) < h_1(x) < k(x)$ and such that $k \leq h_2 \leq f$ and if k(x) < f(x) then $k(x) < h_2(x) < f(x)$. If a function k is defined by $k(x) = (h_2(x) + h_1(x))/2$, then k is a Baire-.5 function, k if k if k if k if k if k is a Baire-.5 function k if k is a Baire-.5 function k if k if

3 Applications

Definition 3.1. A real-valued function f defined on a space X is called *contra-upper semi-Baire-.5* (resp. *contra-lower semi-Baire-.5*) if $f^{-1}(-\infty,t)$ (resp. $f^{-1}(t,+\infty)$) is a G_{δ} -set for any real number t.

The abbreviations $usc, lsc, cusB_.5$ and $clsB_.5$ are used for upper semicontinuous, lower semi-continuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1. [14, 15]. A space X has the weak c-insertion property for (usc, lsc) if and only if X is normal.

Before stating the consequences of theorem 2.1, 2.2 and 2.3 we suppose that X is a topological space that F_{σ} -kernel of sets are F_{σ} -sets.

Corollary 3.1. For each pair of disjoint F_{σ} -sets F_1, F_2 , there are two G_{δ} -sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ if and only if X has the weak B-.5-insertion property for (cus B-.5, cls B-.5).

Proof. Let g and f be real-valued functions defined on the X, such that f is lsB_1 , g is usB_1 , and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G_{\delta}(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a F_{σ} -set and since $\{x \in X : g(x) < t_2\}$ is a G_{δ} -set, it follows that $F_{\sigma}(A(f,t_1)) \subseteq G_{\delta}(A(g,t_2))$. Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2. 1.

On the other hand, let F_1 and F_2 are disjoint F_{σ} -sets. Set $f = \chi_{F_1^c}$ and $g = \chi_{F_2}$, then f is cls B - .5, g is cus B - .5, and $g \leq f$. Thus there exists Baire-.5 function h such that $g \leq h \leq f$. Set $G_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $G_2 = \{x \in X : h(x) > \frac{1}{2}\}$, then G_1 and G_2 are disjoint G_{δ} -sets such that $F_1 \subseteq G_1$ and $F_2 \subseteq G_2$.

Remark 2. [27]. A space X has the weak c-insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 3.2. For every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set if and only if X has the weak B-.5-insertion property for (cls B-.5, cus B-.5).

Before giving the proof of this corollary, the necessary lemma is stated.

Lemma 3.1. The following conditions on the space X are equivalent:

- (i) For every G of G_{δ} -set we have $F_{\sigma}(G)$ is a G_{δ} -set.
- (ii) For each pair of disjoint G_{δ} —sets as G_1 and G_2 we have $F_{\sigma}(G_1) \cap F_{\sigma}(G_2) = \emptyset$.

The proof of Lemma 3.1 is a direct consequence of the definition F_{σ} -kernel of

We now give the proof of Corollary 3.2.

Proof. Let g and f be real-valued functions defined on the X, such that f is clsB-.5, g is cusB-.5, and $f \leq g$. If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq$

 $G \subseteq F_{\sigma}(G) \subseteq G_{\delta}(B)$ for some G_{δ} -set g in X, then by hypothesis and Lemma 3.1 ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(g, t_1) = \{x \in X : g(x) < t_1\} \subseteq \{x \in X : f(x) \le t_2\};$$

= $A(f, t_2)$;

since $\{x \in X : g(x) < t_1\}$ is a G_{δ} -set and since $\{x \in X : f(x) \le t_2\}$ is a F_{σ} -set, by hypothesis it follows that $A(g, t_1) \rho A(f, t_2)$. The proof follows from Theorem 2.1.

On the other hand, Let G_1 and G_2 are disjoint G_{δ} -sets. Set $f = \chi_{G_2}$ and $g = \chi_{G_1^c}$, then f is cls B - .5, g is cus B - .5, and $f \leq g$.

Thus there exists Baire-.5 function h such that $f \leq h \leq g$. Set $F_1 = \{x \in X : h(x) \leq \frac{1}{3}\}$ and $F_2 = \{x \in X : h(x) \geq 2/3\}$ then F_1 and F_2 are disjoint F_{σ} -sets such that $G_1 \subseteq F_1$ and $G_2 \subseteq F_2$. Hence $F_{\sigma}(F_1) \cap F_{\sigma}(F_2) = \emptyset$.

Before stating the consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.2. The following conditions on the space X are equivalent:

- (i) Every two disjoint F_{σ} -sets of X can be separated by G_{δ} -sets of X.
- (ii) If F is a F_{σ} -set of X which is contained in a G_{δ} -set G, then there exists a G_{δ} -set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_{σ} -set and G_{δ} -set of X, respectively. Hence, G^c is a F_{σ} -set and $F \cap G^c = \emptyset$.

By (i) there exists two disjoint G_{δ} -sets G_1, G_2 such that $F \subseteq G_1$ and $G^c \subseteq G_2$. But

$$G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G$$
,

and

$$G_1 \cap G_2 = \emptyset \Rightarrow G_1 \subseteq G_2^c$$

hence

$$F \subseteq G_1 \subseteq G_2^c \subseteq G$$

and since G_2^c is a F_{σ} -set containing G_1 we conclude that $F_{\sigma}(G_1) \subseteq G_2^c$, i.e.,

$$F \subseteq G_1 \subseteq F_{\sigma}(G_1) \subseteq G$$
.

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that F_1, F_2 are two disjoint F_{σ} -sets of X.

This implies that $F_1 \subseteq F_2^c$ and F_2^c is a G_{δ} -set. Hence by (ii) there exists a G_{δ} -set H such that, $F_1 \subseteq H \subseteq F_{\sigma}(H) \subseteq F_2^c$. But

$$H \subseteq F_{\sigma}(H) \Rightarrow H \cap (F_{\sigma}(H))^c = \emptyset$$

and

$$F_{\sigma}(H) \subseteq F_2^c \Rightarrow F_2 \subseteq (F_{\sigma}(H))^c$$
.

Furthermore, $(F_{\sigma}(H))^c$ is a G_{δ} -set of X. Hence $F_1 \subseteq H, F_2 \subseteq (F_{\sigma}(H))^c$ and $H \cap (F_{\sigma}(H))^c = \emptyset$. This means that condition (i) holds.

Lemma 3.3. Suppose that X is the topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. If F_1 and F_2 are two disjoint F_{σ} -sets of X, then there exists a Baire-.5 function $h: X \to [0,1]$ such that $h(F_1) = \{0\}$ and $h(F_2) = \{1\}$.

Proof. Suppose F_1 and F_2 are two disjoint F_{σ} -sets of X. Since $F_1 \cap F_2 = \emptyset$, hence $F_1 \subseteq F_2^c$. In particular, since F_2^c is a G_{δ} -set of X containing F_1 , by Lemma 3.2, there exists a G_{δ} -set $H_{1/2}$ such that,

$$F_1 \subseteq H_{1/2} \subseteq F_{\sigma}(H_{1/2}) \subseteq F_2^c$$
.

Note that $H_{1/2}$ is a G_{δ} -set and contains F_1 , and F_2^c is a G_{δ} -set and contains $F_{\sigma}(H_{1/2})$. Hence, by Lemma 3.2, there exists G_{δ} -sets $H_{1/4}$ and $H_{3/4}$ such that,

$$F_1 \subseteq H_{1/4} \subseteq F_{\sigma}(H_{1/4}) \subseteq H_{1/2} \subseteq F_{\sigma}(H_{1/2}) \subseteq H_{3/4} \subseteq F_{\sigma}(H_{3/4}) \subseteq F_2^c$$
.

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain G_{δ} -sets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin F_2$ and h(x) = 1 for $x \in F_2$.

Note that for every $x \in X, 0 \le h(x) \le 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D, F_1 \subseteq H_t$; hence $h(F_1) = \{0\}$. Furthermore, by definition, $h(F_2) = \{1\}$. It remains only to prove that h is a Baire-.5 function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \le 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \bigcup \{H_t : t < \alpha\}$, hence, they are G_δ —sets of X. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \le \alpha$ then $\{x \in X : h(x) > \alpha\} = \bigcup \{(F_\sigma(H_t))^c : t > \alpha\}$ hence, every of them is a G_δ —set. Consequently h is a Baire-.5 function.

Lemma 3.4. Suppose that X is the topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. If F_1 and F_2 are two disjoint F_{σ} -sets of X and F_1 is a countable intersection of G_{δ} -sets, then there exists a Baire-.5 function h on X into [0,1] such that $h^{-1}(0) = F_1$ and $h(F_2) = \{1\}$.

Proof. Suppose that $F_1 = \bigcap_{n=1}^{\infty} G_n$, where G_n is a G_{δ} -set of X. We can suppose that $G_n \cap F_2 = \emptyset$, otherwise we can substitute G_n by $G_n \setminus F_2$. By Lemma 3.3, for every $n \in \mathbb{N}$, there exists a Baire-.5 function h_n on X into [0,1] such that $h_n(F_1) = \{0\}$ and $h_n(X \setminus G_n) = \{1\}$. We set $h(x) = \sum_{n=1}^{\infty} 2^{-n} h_n(x)$.

Since the above series is uniformly convergent, it follows that h is a Baire-.5 function from X to [0,1]. Since for every $n \in \mathbb{N}$, $F_2 \subseteq X \setminus G_n$, therefore $h_n(F_2) = \{1\}$ and consequently $h(F_2) = \{1\}$. Since $h_n(F_1) = \{0\}$, hence $h(F_1) = \{0\}$. It suffices to show that if $x \notin F_1$, then $h(x) \neq 0$.

Now if $x \notin F_1$, since $F_1 = \bigcap_{n=1}^{\infty} G_n$, therefore there exists $n_0 \in \mathbb{N}$ such that $x \notin G_{n_0}$, hence $h_{n_0}(x) = 1$, i.e., h(x) > 0. Therefore $h^{-1}(0) = F_1$.

Lemma 3.5. Suppose that X is the topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. The following conditions are equivalent:

(i) For every two disjoint F_{σ} -sets F_1 and F_2 , there exists a Baire-.5 function h on X into [0,1] such that $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$.

- (ii) Every F_{σ} -set is a countable intersection of G_{δ} -set.
- (iii) Every G_{δ} -set is a countable union of F_{σ} -set.
- *Proof.* (i) \Rightarrow (ii). Suppose that F is a F_{σ} -sets. Since \emptyset is a F_{σ} -set, by (i) there exists a Baire-.5 function h on X into [0,1] such that $h^{-1}(0) = F$. Set $G_n = \{x \in X : h(x) < \frac{1}{n}\}$. Then for every $n \in \mathbb{N}$, G_n is a G_{δ} -set and $\bigcap_{n=1}^{\infty} G_n = \{x \in X : h(x) = 0\} = F$.
- (ii) \Rightarrow (i). Suppose that F_1 and F_2 are two disjoint F_{σ} -sets. By Lemma 3.4, there exists a Baire-.5 function f on X into [0,1] such that $f^{-1}(0) = F_1$ and $f(F_2) = \{1\}$. Set $G = \{x \in X : f(x) < \frac{1}{2}\}$, $F = \{x \in X : f(x) = \frac{1}{2}\}$, and $H = \{x \in X : f(x) > \frac{1}{2}\}$. Then $G \cup F$ and $H \cup F$ are two F_{σ} -sets and $(G \cup F) \cap F_2 = \emptyset$. By Lemma 3.4, there exists a Baire-.5 function g on X into $[\frac{1}{2},1]$ such that $g^{-1}(1) = F_2$ and $g(G \cup F) = \{\frac{1}{2}\}$. Define h by h(x) = f(x) for $x \in G \cup F$, and h(x) = g(x) for $x \in H \cup F$. h is well-defined and a Baire-.5 function, since $(G \cup F) \cap (H \cup F) = F$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to [0,1]. Also, we have $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$.
- (ii) \Leftrightarrow (iii) By De Morgan law and noting that the complement of every F_{σ} -set is a G_{δ} -set and complement of every G_{δ} -set is a F_{σ} -set, the equivalence is hold. \square

Remark 3. [20] . A space X has the strong c-insertion property for (usc, lsc) if and only if X is perfectly normal.

Corollary 3.3. For every two disjoint F_{σ} -sets F_1 and F_2 , there exists a Baire-.5 function h on X into [0,1] such that $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$ if and only if X has the strong B-.5-insertion property for (cus B-.5, cls B-.5).

Proof. Since for every two disjoint F_{σ} -sets F_1 and F_2 , there exists a Baire-.5 function h on X into [0,1] such that $h^{-1}(0)=F_1$ and $h^{-1}(1)=F_2$, define $G_1=\{x\in X:h(x)<\frac{1}{2}\}$ and $G_2=\{x\in X:h(x)>\frac{1}{2}\}$. Then G_1 and G_2 are two disjoint G_{δ} -sets that contain F_1 and F_2 , respectively. This means that, we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. Hence by Corollary 3.1, X has the weak B-.5-insertion property for (cusB-.5,clsB-.5). Now, assume that g and f are functions on X such that $g\leq f,g$ is cusB-.5 and f is clsB-.5. Since f-g is clsB-.5, therefore the lower cut set $A(f-g,2^{-n})=\{x\in X:(f-g)(x)\leq 2^{-n}\}$ is a F_{σ} -set. By Lemma 3.5, we can choose a sequence $\{F_n\}$ of F_{σ} -sets such that $\{x\in X:(f-g)(x)>0\}=\bigcup_{n=1}^{\infty}F_n$ and for every $n\in \mathbb{N}$, F_n and $A(f-g,2^{-n})$ are disjoint. By Lemma 3.3, F_n and $A(f-g,2^{-n})$ can be completely separated by Baire-.5 functions. Hence by Theorem 2.2, X has the strong B-.5-insertion property for (cusB-.5,clsB-.5).

On the other hand, suppose that F_1 and F_2 are two disjoint F_{σ} -sets. Since $F_1 \cap F_2 = \emptyset$, hence $F_2 \subseteq F_1^c$. Set $g = \chi_{F_2}$ and $f = \chi_{F_1^c}$. Then f is cls B - .5 and g is cus B - .5 and furthermore $g \le f$. By hypothesis, there exists a Baire-.5 function h on X such that $g \le h \le f$ and whenever g(x) < f(x) we have g(x) < h(x) < f(x). By definitions of f and g, we have $h^{-1}(1) = F_2 \cap F_1^c = F_2$ and $h^{-1}(0) = F_1 \cap F_2^c = F_1$. \square

Remark 4. [2]. A space X has the strong c-insertion property for (lsc, usc) if and only if each open subset of X is closed.

Corollary 3.4. Every G_{δ} -set is a F_{σ} -set if and only if X has the strong B – .5-insertion property for (cls B - .5, cus B - .5).

Proof. By hypothesis, for every G of G_{δ} —set, we have $F_{\sigma}(G) = G$ is a G_{δ} —set. Hence by Corollary 3.2, X has the weak B — .5—insertion property for (clsB — .5, cusB — .5). Now, assume that g and f are functions on X such that $g \leq f, g$ is clsB — .5 and f is B — .5. Set $A(f-g,2^{-n}) = \{x \in X : (f-g)(x) < 2^{-n}\}$. Then, since f-g is cusB — .5, we can say that $A(f-g,2^{-n})$ is a G_{δ} —set. By hypothesis, $A(f-g,2^{-n})$ is a F_{σ} —set. Set $G_n = X \setminus A(f-g,2^{-n})$. Then G_n is a G_{δ} —set. This means that G_n and $A(f-g,2^{-n})$ are disjoint G_{δ} —sets and also are two disjoint F_{σ} —sets. Therefore G_n and $A(f-g,2^{-n})$ can be completely separated by Baire-.5 functions. Now, we have $\bigcup_{n=1}^{\infty} G_n = \{x \in X : (f-g)(x) > 0\}$. By Theorem 2.2, X has the strong B — .5—insertion property for (clsB — .5). Hence, by Theorem 2.3, X has the strong B — .5—insertion property for (clsB — .5, cusB — .5).

On the other hand, suppose that X has the strong B-.5-insertion property for (cls B-.5, cus B-.5). Also, suppose that G is a G_{δ} -set. Set f=1 and $g=\chi_G$. Then f is cus B-.5, g is cls B-.5 and $g\leq f$. By hypothesis, there exists a Baire-.5 function h on X such that $g\leq h\leq f$ and whenever g(x)< f(x), we have g(x)< h(x)< f(x). It is clear that $h(G)=\{1\}$ and for $x\in X\setminus G$ we have 0< h(x)<1. Since h is a Baire-.5 function, therefore $\{x\in X: h(x)\geq 1\}=G$ is a F_{σ} -set, i.e., G is a F_{σ} -set. \square

Acknowledgement. This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

- [1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
- [2] J. Blatter and G. L. Seever, *Interposition of semicontinuous functions by continuous functions*, Analyse Fonctionelle et Applications (Comptes Rendus du colloque d' Analyse, Rio de Janeiro 1972), Hermann, Paris, 1975, 27-51.
- [3] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
- [4] M. Caldas and S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
- [5] J. Dontchev, The characterization of some peculiar topological space via α and β -sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
- [6] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat.
 J. Math. Math. Sci., 19(2)(1996), 303-310.
- [7] J. Dontchev, and H. Maki, On sg-closed sets and semi $-\lambda$ -closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
- [8] E. Ekici, On contra-continuity, Annales Univ. Sci. Budapest, 47(2004), 127-137.
- [9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.

- [10] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
- [11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
- [12] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
- [13] S. Jafari and T. Noiri, *On contra-precontinuous functions*, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
- [14] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
- [15] M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
- [16] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
- [17] E. Lane, PM-normality and the insertion of a continuous function, Pacific J. of Math., 82(1979), 155-162.
- [18] H. Maki, Generalized Λ -sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada Ikeda's Retirement, (1986), 139-146.
- [19] S. N. Maheshwari and R. Prasad, On R_{Os} -spaces, Portugal. Math., 34(1975), 213-217.
- [20] E. Michael, Continuous selections I, Ann. of Math., 63(1956), 361-382.
- [21] M. Mirmiran, Strong insertion of a contra-continuous function between two comparable real-valued functions, Applied Sciences, 21(2019), 159-169.
- [22] M. Mrsevic, On pairwise R and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
- [23] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
- [24] M. Powderly, On insertion of a continuous function, Proceedings of the A.M.S., 81(1981), 119-120.
- [25] M. Przemski, A decomposition of continuity and α -continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.
- [26] H. Rosen, *Darboux Baire-.5 functions*, Proceedings Of The American Mathematical Society, 110(1)(1990), 285-286.
- [27] M.H. Stone, Boundedness properties in function-lattices, Canad. J. Math., 1(1949), 176-189.

Authors' addresses:

Majid Mirmiran

Department of Mathematics, University of Isfahan,

Isfahan 81746-73441, Iran.

E-mail: mirmir@sci.ui.ac.ir

Binesh Naderi

Department of General Courses,

School of Managment and Medical Information Sciences,

Isfahan University of Medical Sciences, Isfahan, Iran.

E-mail: naderi@mng.mui.ac.ir