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Abstract. In this paper, we study a new concepts these are rough statisti-
cally summable triple difference sequences, rough statistically convergent
difference triple sequences and rough strongly summable triple difference
sequences. Also, we study the rate of the weighted–rough statistical con-
vergence of a triple sequence of positive linear operators. In addition, we
study Voronovskaya type theorem.
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1 Introduction

Let K be a subset of the set of positive integers N × N × N, and let us denote the
set {(m,n, k) ∈ K : m ≤ u, n ≤ v, k ≤ w} by Kuvw. Then the natural density of K

is given by δ (K) = limuvw→∞
|Kuvw|
uvw , if the limit exists where the vertical bars in-

dicate the number of elements in the closed set, where |Kuvw| denotes the number
of elements in Kuvw. Clearly, a finite subset has natural density zero, and we have
δ (Kc) = 1 − δ (K) where Kc = N\K is the complement of K. If K1 ⊆ K2, then
δ (K1) ≤ δ (K2) .

The triple sequence x = (xmnk) is said to be rough statistically convergent to l if
for every ϵ > 0, the set Kϵ = {(m,n, k) ∈ N : |xmnk − l| ≥ β + ϵ} has natural density
zero, for each ϵ > 0, limrst→∞

1
rst |{(m,n, k) ≤ (r, s, t) : |xmnk − l| ≥ β + ϵ}| = 0. In

this case, we write l = st − limx. Throughout the paper, R denotes the real of
three dimensional space with metric (X, d) . Consider a triple sequence x = (xmnk)
such that xmnk ∈ R,m, n, k ∈ N.

A triple sequence x = (xmnk) is said to be statistically convergent to 0 ∈ R,
written as st–lim x = 0, provided that the set{

(m,n, k) ∈ N3 : |xmnk| ≥ ϵ
}
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has natural density zero for any ϵ > 0. In this case, 0 is called the statistical limit of
the triple sequence x.

If a triple sequence is statistically convergent, then for every ϵ > 0, infinitely
many terms of the sequence may remain outside the ϵ− neighbourhood of the sta-
tistical limit, provided that the natural density of the set consisting of the indices
of these terms is zero. This is an important property that distinguishes statistical
convergence from ordinary convergence. Because the natural density of a finite set
is zero, we can say that every ordinary convergent sequence is statistically convergent.

If a triple sequence x = (xmnk) satisfies some property P for all m,n, k except
a set of natural density zero, then we say that the triple sequence x satisfies P for
almost all (m,n, k) and we abbreviate this by a.a. (m,n, k).

Let
(
xminjkℓ

)
be a subsequence of x = (xmnk). If the natural density of the set

K =
{
(mi, nj , kℓ) ∈ N3 : (i, j, ℓ) ∈ N3

}
is different from zero, then

(
xminjkℓ

)
is called

a non thin subsequence of a triple sequence x.
c ∈ R is called a statistical cluster point of a triple sequence x = (xmnk) provided
that the natural density of the set{

(m,n, k) ∈ N3 : |xmnk − c| < ϵ
}
,

is different from zero for every ϵ > 0. We denote the set of all statistical cluster points
of the sequence x by Γx.

A triple sequence x = (xmnk) is said to be statistically analytic if there exists a
positive number M such that

δ
({

(m,n, k) ∈ N3 : |xmnk|1/m+n+k ≥M
})

= 0.

The theory of statistical convergence has been discussed in trigonometric series,
summability theory, measure theory, turnpike theory, approximation theory, fuzzy set
theory and so on.

The idea of rough convergence was introduced by Phu [19], who also introduced
the concepts of rough limit points and roughness degree. The idea of rough conver-
gence occurs very naturally in numerical analysis and has interesting applications.
Aytar [2] extended the idea of rough convergence into rough statistical convergence
using the notion of natural density just as usual convergence was extended to sta-
tistical convergence. Pal et al. [18] extended the notion of rough convergence using
the concept of ideals which automatically extends the earlier notions of rough conver-
gence and rough statistical convergence and Bernstein and operational methods was
introduced by Dattoli et al. [3].

Let (X, ρ) be a metric space. For any non empty closed subsets A,Amnk ⊂
X (m,n, k ∈ N) , we say that the triple sequence (Amnk) is Wijsman statistical con-
vergent to A is the triple sequence (d (x,Amnk)) is statistically convergent to d (x,A) ,
i.e., for ϵ > 0 and for each x ∈ X

limrst
1

rst
|{m ≤ r, n ≤ s, k ≤ t : |d (x,Amnk)− d (x,A)| ≥ ϵ}| = 0.
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In this case, we write

st–limmnkAmnk = A or Amnk −→ A (WS) .

The triple sequence (Amnk) is bounded if supmnkd (x,Amnk) <∞ for each x ∈ X.
A triple sequence (real or complex) can be defined as a function x : N×N×N →

R (C) , where N,R and C denote the set of natural numbers, real numbers and complex
numbers respectively. The different types of notions of triple sequence was introduced
and investigated at the initial by Sahiner et al. [20, 21], Esi et al. [6]-[8], Dutta et al.
[5], Subramanian et al. [10, 11, 13],[23]-[30], Debnath et al. [4], Aiyub et al. [1] and
Zweier sequence was introduced and investigated at the initial by Fadile Karababa et
al. [12], Sharma et al. [22], Khan et al. [15] many others.

Throughout the paper let β be a nonnegative real number.

Definition 1.1. An Orlicz function (see [14]) is a function M : [0,∞) → [0,∞)
which is continuous, non-decreasing and convex with M (0) = 0, M (x) > 0, for
x > 0 and M (x) → ∞ as x → ∞. If convexity of Orlicz function M is replaced by
M (x+ y) ≤M (x) +M (y) , then this function is called modulus function.

Lindenstrauss and Tzafriri ([16]) used the idea of Orlicz function to construct
Orlicz sequence space.

A sequence g = (gmn) defined by

gmn (v) = sup {|v|u− (fmnk) (u) : u ≥ 0} ,m, n, k = 1, 2, . . .

is called the complementary function of a Musielak-Orlicz function f . For a given
Musielak-Orlicz function f, (see [17]) the Musielak-Orlicz sequence space tf is defined
as follows

tf =
{
x ∈ w3 : If (|xmnk|)1/m+n+k → 0asm, n, k → ∞

}
,

where If is a convex modular defined by

If (x) =

∞∑
m=1

∞∑
n=1

∞∑
k=1

fmnk (|xmnk|)1/m+n+k
, x = (xmnk) ∈ tf .

We consider tf equipped with the Luxemburg metric define as follows

d (x, y) =

∞∑
m=1

∞∑
n=1

∞∑
k=1

fmnk

(
|xmnk|1/m+n+k

mnk

)

on an extended real number.

Definition 1.2. A triple sequence x = (xmnk) of real numbers is said to be statisti-
cally convergent to l ∈ R3 if for any ϵ > 0 we have d (A (ϵ)) = 0, where

A (ϵ) =
{
(m,n, k) ∈ N3 : |xmnk − l| ≥ ϵ

}
.
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Definition 1.3. A triple sequence x = (xmnk) is said to be statistically convergent
to l ∈ R3, written as st–limx = l, provided that the set{

(m,n, k) ∈ N3 : |xmnk − l| ≥ ϵ
}
,

has natural density zero for every ϵ > 0. In this case, l is called the statistical limit
of the sequence x.

Definition 1.4. Let x = (xmnk)m,n,k∈N×N×N be a triple sequence in a metric space
(X, |., .|) and r be a non-negative real number. A triple sequence x = (xmnk) is
said to be r−convergent to l ∈ X, denoted by x →r l, if for any ϵ > 0 there exists
Nϵ ∈ N× N× N such that for all m,n, k ≥ Nϵ we have

|xmnk − l| < r + ϵ

In this case l is called an r–limit of x.

Remark 1.5. We consider the r–limit set x which is denoted by LIMr
x and is defined

by
LIMr

x = {l ∈ X : x→r l} .

Definition 1.6. A triple sequence x = (xmnk) is said to be r− convergent if LIMr
x ̸=

ϕ and r is called a rough convergence degree of x. If r = 0, then, it is ordinary
convergence of triple sequence.

Definition 1.7. Let x = (xmnk) be a triple sequence in a metric space (X, |., .|) and
r be a non-negative real number is said to be r– statistically convergent to l, denoted
by x→r−st3 l, if for any ϵ > 0 we have d (A (ϵ)) = 0, where

A (ϵ) = {(m,n, k) ∈ N× N× N : |xmnk − l| ≥ r + ϵ} .

In this case l is called r− statistical limit of x. If r = 0 then it is ordinary statistical
convergent of triple sequence.

The difference triple sequence space was introduced by Debnath et al. (see [4])
and is defined as

∆xmnk = xmnk − xm,n+1,k − xm,n,k+1 + xm,n+1,k+1 − xm+1,n,k + xm+1,n+1,k

+xm+1,n,k+1 − xm+1,n+1,k+1

and
∆0xmnk = ⟨xmnk⟩ .

Let Λ = {λmnk : m,n, k = 0, 1, 2, . . .} be a nondecreasing sequence of positive
numbers tending to ∞, as (m,n, k) → ∞ and ∆3λrst ≥ 0.

Let x = (xmnk) be a triple sequence of complex numbers, then, by Λ3
∆− will

denote the following

Λ3
∆ (x) =

1

λrst − λr−1s−1t−1

r∑
m=0

s∑
n=0

t∑
k=0

λmnkxmnk–λmn+1kxm,n+1,k–λmnk+1xm,n,k+1

+ λmn+1k+1xm,n+1,k+1–λm+1nkxm+1,n,k + λm+1n+1kxm+1,n+1,k

+ λm+1nk+1xm+1,n,k+1–λm+1n+1k+1xm+1,n+1,k+1.



Analytic weighted rough statistical convergence with rate of rough convergence 161

We say that the triple difference sequence (xrst) is Λ
3
∆− summable to l if limrstΛ

3
∆ = l,

and we say that the triple difference sequence (xrst) is rough statistically summable
to l by the weighted method determined by the triple difference sequence Λ3

∆– if
st–limrstΛ

3
∆ = l.We denote by Λ3

∆ (st) the set of all triple difference sequences which
are rough statistically summable Λ3

∆.

Definition 1.8. The triple difference sequence x = (xrst) is weighted Λ3
∆– rough

statistically convergent to L if for every β, ϵ > 0,

limrst→∞
∣∣{Λ3

∆ (x)− L
}
≥ β + ϵ

∣∣ = 0

In this case, we write L = stΛ3
∆
–limrstxrst.

Definition 1.9. The triple difference sequence x = (xrst) is said to be rough strongly
Λ3
∆r

– summable (0 < r <∞) to the limit L if

limrst→∞
∣∣Λ3

∆ (x)− L
∣∣r = 0.

and we write it as xmnk → Λ3
∆r
. In this case L is called rough strongly Λ3

∆r
– limit of

the sequence x = (xrst) .

2 Relation between the Λ3
∆ (x) – rough statistically

summable triple difference sequences, Λ3
∆ (x) – rough

statistically convergent difference triple sequences
and rough strongly Λ3

∆r
(x) – summable triple dif-

ference sequences

In this section we denoted rs for rough statistically

Theorem 2.1. Let
∣∣Λ3

∆ (x)− L
∣∣ ≤ M for all m,n, k ∈ N. If a triple difference se-

quence x = (∆xmnk) is Λ
3
∆ (x) – rough statistically convergent to L then it is Λ3

∆ (x) –
rough statistically summable to L, but not conversely.

Proof. Let x = (xmnk) is Λ
3
∆ (x) – rs–convergent to L, it means that

limrst

∣∣{{Λ3
∆ (x)− L

}
≥ β + ϵ

}∣∣ = 0.

Let us denote K =
{∣∣Λ3

∆ (x)− L
∣∣ ≥ β + ϵ

}
and Kc =

{∣∣Λ3
∆ (x)− L

∣∣ < β + ϵ
}
. Then,
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we have:

∣∣Λ3
∆ (x)− L

∣∣ = ∣∣∣∣∣
r∑

m=0

s∑
n=0

t∑
k=0

Λ3
∆ (x)− L

∣∣∣∣∣
≤

∣∣∣∣∣∣
r∑

m=0,m∈K

s∑
n=0,n∈K

t∑
k=0,k∈K

Λ3
∆ (x)− L

∣∣∣∣∣∣
+

∣∣∣∣∣∣
r∑

m=0,m∈Kc

s∑
n=0,n∈Kc

t∑
k=0,k∈Kc

Λ3
∆ (x)− L

∣∣∣∣∣∣
≤

r∑
m=0,m∈K

s∑
n=0,n∈K

t∑
k=0,k∈K

∣∣Λ3
∆ (x)− L

∣∣
+

r∑
m=0,m∈Kc

s∑
n=0,n∈Kc

t∑
k=0,k∈Kc

∣∣Λ3
∆ (x)− L

∣∣
≤M · |K|+

r∑
m=0,m∈Kc

s∑
n=0,n∈Kc

t∑
k=0,k∈Kc

(β + ϵ) → 0

+ (β + ϵ) · 1 = (β + ϵ) as (r, s, t) → ∞

Which implies that (xrst) is Λ
3
∆ (x) – r summable to L. That is, x = (xrst) is Λ

3
∆ (x) –

r summable to L. So x is Λ3
∆ (x) – rs summable to L. �

To prove that converse is not true, we discuss the following example:

Example 2.1. Let us consider that λrst = (r, s, t)
3
. We will define

xmnk =


1

(abc)4+α , for α > 0 and m, n, k = (abc)
3 − abc, . . . , (abc)

3 − 1

− 1
(abc)9

, for m,n, k = (abc)
3
, a, b, c = 3, 4, . . .

0, otherwise

we get limrstΛ
3
∆ (x)−0, and hence st−limrst→∞Λ3

∆ (x)−0, i.e., x = (xrst) is Λ
3
∆ (x) –

rs summable to 0. On the other hand, the triple sequence
(
(a, b, c)

3
: a, b, c = 3, 4, · · · ,

)
is rst–convergent to 0, it is clear that st−liminfrstxrst = 0 and st−limsuprstxrst = 1.
Thus x = (xrst) is not rs–convergent, nor Λ

3
∆ (x) – rs–convergent.

Proposition 2.2. Let us suppose that x = (xrst) is Λ3
∆r

(x) – summable to l if

(i) 0 < r < 1 and 0 ≤
∣∣Λ3

∆ (x)− L
∣∣ < 1,

(ii) 1 ≤ r <∞ and 1 ≤
∣∣Λ3

∆ (x)− L
∣∣ <∞, then, x is Λ3

∆ (x) – rs–convergent to l.

Proof. Let us suppose that x = (xrst) is Λ
3
∆r

(x)− summable to l, we get∣∣Λ3
∆ (x)− l

∣∣r ≥ ∣∣Λ3
∆ (x)− l

∣∣ ,
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|K| = 1

ϵ

r∑
m=1,m∈K

s∑
n=1,n∈K

t∑
k=1,k∈K

ϵ ≤ 1

ϵ

r∑
m=1,m∈K

s∑
n=1,n∈K

t∑
k=1,k∈K

∣∣Λ3
∆ (x)− l

∣∣
≤ 1

ϵ

r∑
m=1

s∑
n=1

t∑
k=1

∣∣Λ3
∆ (x)− l

∣∣ ≤ 1

ϵ

r∑
m=1

s∑
n=1

t∑
k=1

∣∣Λ3
∆ (x)− l

∣∣r
→ 0, as (r, s, t) → ∞.

Hence x = (xrst) is Λ
3
∆ (x) – rs–convergent to l. �

Proposition 2.3. Let us suppose that x = (xrst) is Λ3
∆ (x) – rs–convergent to l and∣∣Λ3

∆ (x)− l
∣∣ ≤M (m,n, k ∈ N) . If

(i) 0 < r < 1 and 1 ≤M <∞,

(ii) 1 ≤ r <∞ and 0 ≤M < 1, then x is Λ3
∆r

(x)− r summable to l.

Proposition 2.4. (i) If x = (xmnk) → l rs–convergent, it is Λ3
∆ (x) –rs–convergent

to l, but not conversely.

(ii) If
(
λrst−λr−1,s−1,t−1

rst

)
is a triple bounded sequence, then rs–convergent is equiva-

lent to Λ3
∆ (x) – rs–convergent.

3 Rate of rough convergence

In this section, we study the rate of the weighted–rough statistical convergence of a
triple sequence of positive linear operators Λ3

∆ (x) defined on C [a, b] .

Definition 3.1. Let (arst) be any positive, non increasing triple sequence of positive
numbers. We say that triple sequence x = (xrst) is Λ

3
∆ (x) – rs–convergent to number

l with rate of convergence C (arst) if for every β, ϵ > 0.

limrst→∞
1

arst

∣∣{∣∣Λ3
∆ (x)− l

∣∣ ≥ β + ϵ
}∣∣ = 0.

In this case, we write xmnk − l = rough stΛ3
∆(x) − o (arst) .

Proposition 3.1. Let (arst) and (brst) be two positive non increasing numeric se-
quences. Let x = (xrst) and y = (yrst) be two triple sequences such that xrst − l1 =
rough stΛ3

∆(x) − o (arst) and yrst − l2 = rough stΛ3
∆(x) − o (brst) . Then,

(i) (xrst − l1)± (yrst − l2) = rough stΛ3
∆(x) − o (crst) .

(ii) α (xrst − l) = rough stΛ3
∆(x) − o (arst) , for any scalar α,

(iii) (xrst − l1) (yrst − l2) = rough stΛ3
∆(x)−o (arst · brst) , where, crst = max {arst, brst} .

Proof. For β, ϵ > 0, let us denote by

A1 =
∣∣Λ3

∆ (x) + Λ3
∆ (x)− (l1 + l2)

∣∣ ≥ β + ϵ,

A2 =
∣∣Λ3

∆ (x)− l1
∣∣ ≥ β + ϵ

2
, A3 =

∣∣Λ3
∆ (x)− l2

∣∣ ≥ β + ϵ

2
.
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Then, observe that A1 ⊂ A2

⋃
A3. Since, crst = max {arst, brst} , we get

|A1|
(λrst − λr−1s−1t−1) · crst

≤ |A2|
(λrst − λr−1s−1t−1) · crst

+
|A3|

(λrst − λr−1s−1t−1) · crst

=⇒ limrst
|A1|

(λrst − λr−1s−1t−1) · crst
= 0.

�

Remark 3.2. The modulus of continuity for function f (x) ∈ C2π (R) is defined as
follows:

w (f, δ) = sup|h|<δ |f (x+ h)− f (x)| .

We will consider these two cases:

(i) If |x− y| < δ, then we have: |f (x)− f (y)| ≤ w (f, δ) and

(ii) If |x− y| > δ, then we have: |f (x)− f (y)| ≤ w (f, δ) · |x−y|
δ .

From the last two relations, for any value of the |x− y| , we get

|f (x)− f (y)| ≤ w (f, δ) ·
(
|x− y|

2
+ 1

)
.

Theorem 3.2. Let (Brst) be a triple sequence of positive linear operators from C [a, b]
into C [a, b] . Suppose that

(i) ∥Brst (1, x)− 1∥∞ = rough stΛ3
∆(x) − o (arst) ,

(ii) w (f, λrst) = rough stΛ3
∆(x) − o (brst) , where λrst =

√
Brst (ψ, x) and ψ ≡

ψ (t, x) = (e−t − e−x)
3
. Then for all f ∈ C [a, b] and x ∈ [a, b] , we have

∥Brst (f, x)− f (x)∥∞ = rough stΛ3
∆(x)−o (crst) , where crst = max {arst, brst} .

Proof. Let f ∈ C [a, b] and x ∈ [a, b] , we get

|Brst (f, x)− f (x)| ≤ |Brst (|f (y)− f (x)|) , x|+ |f (x)| · |Brst (1, x)− 1|

≤ Brst

(
|x− y|
δ

+ 1, x

)
w (f, δ) + |f (x)| · |Brst (1, x)− 1|

≤ Brst

(
1 +

M

δ

(
e−t − e−x

)3
, x

)
w (f, δ) + |f (x)| · |Brst (1, x)− 1|

≤
(
Brst (1, x) +

M

δ
Brst (ψ, x)

)
w (f, δ) + |f (x)| · |Brst (1, x)− 1|

Put δ =
λ3
rst

M = Brst(ψ,x)
M , we obtain:

∥Brst (f, x)− f (x)∥∞ ≤ ∥f∥∞ ∥Brst (1, x)− 1∥∞ + w (f, λrst) + w (f, λrst) ∥Brst (1, x)− 1∥∞
≤ C {∥Brst (f, x)− f (x)∥∞ + w (f, λrst) + w (f, λrst) ∥Brst (f, x)− f (x)∥∞} .
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Where, C = max {∥f∥∞ , 1} . Now replacing Bmnk (·, x) by

Λ3
∆ (x) =

1

λrst − λr−1s−1t−1

r∑
m=0

s∑
n=0

t∑
k=0

λmnkBmnk (·, x)− λmn+1kBmn+1k (·, x)

− λmnk+1Bm,n,k+1 (·, x) + λmn+1k+1Bm,n+1,k+1 (·, x)− λm+1nkBm+1,n,k (·, x)
+ λm+1n+1kBm+1,n+1,k (·, x) + λm+1nk+1Bm+1,n,k+1 (·, x)
− λm+1n+1k+1Bm+1,n+1,k+1 (·, x) ,

we get∥∥Λ3
∆ (f, x)− f (x)

∥∥
∞ ≤ C

{∥∥Λ3
∆ (1, x)− 1

∥∥
∞ + w (f, λrst) + w (f, λrst)

∥∥Λ3
∆ (1, x)− 1

∥∥
∞

}
.

The proof follows from the conditions (i),(ii) and Proposition (3.2.) �

4 Voronovskaya type theorem

Theorem 4.1. For every f ∈ C [0, 1] such that, f
′
, f” ∈ C [0, 1] , then,

(rst) (Lrst (f)− f) ≈ 1
2

(
x+ x2

)
f” (x)

(
Λ3
∆ ( rough st)

)
on [0, 1] .

Proof. Let us suppose that f
′
, f” ∈ C [0, 1] and x ∈ [0, 1] . Define

ψx (y) =

 f(y)−f(x)−(y−x)f
′
(x)− 1

2 (y−x)
2f”(x)

(y−x)2 , for x ̸= y

0, for x = y

Then, ψx (x) = 0 and ψx ∈ C [0, 1] . By Taylors formula, we get

(4.1) f (y) = f (x) + (y − x) f
′
(x) +

1

2
(y − x) f” (x) + (y − x)

2
ψx (y) .

Knowing that
Lrst (1, x) = (1 + xrst) ;Lrst ((y − x) , x) = 0

and

Lrst

(
(y − x)

2
, x
)
= (1 + xrst)

x (1 + x)

rst
,

Both sides of relation (4.1) by operator Lrst, we obtain:

Lrst (f) = f (x) + xrstf (x) +
f” (x)

2

x (1 + x)

n
(1 + xrst) + (1 + xrst)Vrst

(
ϕ3ψx, x

)
,

which yields∣∣∣∣rst [Lrst (f)− f (x)]− 1

2

(
x+ x2

)
f” (x)

∣∣∣∣ ≤ (rst)xrst |f (x)|+ xrst
∣∣f” (x)∣∣

+ rst (1 + xrst)
∣∣Vrst (ϕ3ψx, x)∣∣ ,

respectively

∣∣∣∣rst [Lrst (f)− f (x)]− 1

2

(
x+ x2

)
f” (x)

∣∣∣∣ ≤ (rst)xrstM + rst (1 + xrst)
∣∣Vrst (ϕ3ψx, x)∣∣ .

(4.2)
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Where ϕ (y) = y−x andM = ∥f∥ By Cauchy-Schwartz inequality in (4.2), we obtain:

(4.3) rst
∣∣Vrst (ϕ3ψx, x)∣∣ ≤ [(rst)2 Vrst (ϕ4, x)]1/2 [Vrst (ψx, x)]1/2 .

Putting ηx (y) = (ψx (y))
2
, we get that, ηx (x) = 0 and ηx (·) ∈ C [0, 1] . It follows

that

(4.4) Lrst (ηx) → 0
(
Λ3
∆ (roughst)

)
on [0, 1] .

Now, from relations (4.3) and (4.4), we have,

(4.5) Lrst
(
ϕ3ψx, x

)
→ 0 (roughst) on [0, 1] .

For a given β, ϵ > 0, we define the following sets:
Arst (x, β, ϵ) =

∣∣{∣∣(mnk) (Vmnk (f, x)− f (x))− 1
2

(
x+ x2

)
f” (x)

∣∣ ≥ β + ϵ
}∣∣.

A1,rst (x, β, ϵ) =
∣∣∣{|(mnk)xrst| ≥ β+ϵ

2M

}∣∣∣ , A2,rst (x, β, ϵ) =
∣∣∣{|(mnk)Vrst (ψx, x)| ≥ β+ϵ

2

}∣∣∣ .
From last relation we have Arst (x, β, ϵ) ≤ A1,rst (x, β, ϵ)+A2,rst (x, β, ϵ) , respectively.

(4.6) Λ3
∆ (Arst (·, β, ϵ)) ≤ Λ3

∆ (A1,rst (·, β, ϵ)) + Λ3
∆ (A2,rst (·, β, ϵ)) .

From definition of the triple sequence (xrst) , we get

(4.7) ((rst)xrst) → 0
(
Λ3
∆ ( rough st)

)
on [0, 1] .

Now from relations (4.5),(4.6) and (4.7) , the RHS of the relation (4.6) tends to zero
as (r, s, t) → ∞. Therefore we have

rough st− lim(rst)→∞Λ3
∆ (Arst (·, β, ϵ)) = 0,

which proves that

(rst) (Lrst (f)− f) ≈ 1

2

(
x+ x2

)
f” (x)

(
Λ3
∆ ( rough st)

)
on [0, 1] .

�
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