Riemann-Lagrange geometry for starfish/coral dynamical system

Mircea Neagu

Abstract

In this paper we develop the Riemann-Lagrange geometry, in the sense of nonlinear connection, d-torsions, d-curvatures and Yang-Mills-like energy, associated with the dynamical system concerning social interaction in colonial organisms. Some possible trophodynamic interpretations are derived.

M.S.C. 2010: 53C43, 53C07, 83C50.

Key words: tangent spaces; least squares Lagrangian functions; Riemann-Lagrange geometry; starfish/coral dynamics.

1 Social interactions in colonial organisms

Let $m \geq 2$ be an integer. We introduce social interactions for starfish/coral dynamics as follows (see Antonelli et al. [1]):

$$
\left\{\begin{align*}
\frac{d N^{1}}{d t} & =\lambda_{1} N^{1}-\alpha_{1}\left(N^{1}\right)^{2}-\alpha_{2}\left(\frac{m}{m-1}\right) \cdot N^{1} N^{2}+ \tag{1.1}\\
& +\frac{\alpha_{1}}{m-1}\left(\frac{N^{2}}{N^{1}}\right)^{m-2} \cdot\left(N^{2}\right)^{2}-\delta_{1} F N^{1} \\
\frac{d N^{2}}{d t} & =\lambda_{2} N^{2}-\alpha_{2}\left(N^{2}\right)^{2}-\alpha_{1}\left(\frac{m}{m-1}\right) \cdot N^{1} N^{2}+ \\
& +\frac{\alpha_{2}}{m-1}\left(\frac{N^{1}}{N^{2}}\right)^{m-2} \cdot\left(N^{1}\right)^{2}-\delta_{2} F N^{2} \\
\frac{d F}{d t} & =\beta F\left(N^{1}+N^{2}\right)+\gamma F^{2}-\rho F
\end{align*}\right.
$$

where

- $\alpha_{1}, \alpha_{2}, \lambda_{1}, \lambda_{2}, \delta_{1}, \delta_{2}, \beta, \gamma, \rho$ are positive coefficients;
- N^{1}, N^{2} are coral densities;

[^0]- F is the starfish density;
- λ_{1} and λ_{2} are growth rates;
- λ_{1} / α_{1} and λ_{2} / α_{2} are single species carrying capacities;
- β, δ_{1} and δ_{2} are the interaction coefficients for starfish preying on corals;
- γ is the coefficient of starfish aggregation.

Note that m is the effect of increasing the social parameter. If we set $m=2$, we obtain the (2 corals/ 1 starfish)-model of Antonelli and Kazarinoff [2], in which every term of degree greater than one is quadratic. It is $m \geq 3$ which forces the social interaction terms to be nonquadratic.

By differentiation, the dynamical system (1.1) can be extended to a dynamical system of order two coming from a first order Lagrangian of least squares type. This extension is called in the literature in the field as geometric dynamical system (see Udrişte [7]).

2 The Riemann-Lagrange geometry

The system (1.1) can be regarded on the tangent space $T \mathbb{R}^{3}$, whose coordinates are

$$
\left(x^{1}=N^{1}, x^{2}=N^{2}, x^{3}=F, y^{1}=\frac{d N^{1}}{d t}, y^{2}=\frac{d N^{2}}{d t}, y^{3}=\frac{d F}{d t}\right)
$$

Remark 2.1. We recall that the transformations of coordinates on the tangent space $T \mathbb{R}^{3}$ are given by

$$
\begin{equation*}
\widetilde{x}^{i}=\widetilde{x}^{i}\left(x^{j}\right), \quad \widetilde{y}^{i}=\frac{\partial \widetilde{x}^{i}}{\partial x^{j}} y^{j} \tag{2.1}
\end{equation*}
$$

where $i, j=\overline{1,3}$.
In this context, the solutions of class C^{2} of the system (1.1) are the global minimum points of the least squares Lagrangian function (see [7], [6])

$$
\begin{gather*}
L=\left(y^{1}-X^{1}\left(N^{1}, N^{2}, F\right)\right)^{2}+\left(y^{2}-X^{2}\left(N^{1}, N^{2}, F\right)\right)^{2}+ \tag{2.2}\\
+\left(y^{3}-X^{3}\left(N^{1}, N^{2}, F\right)\right)^{2} \geq 0
\end{gather*}
$$

where

$$
\begin{aligned}
X^{1}\left(N^{1}, N^{2}, F\right) & =\lambda_{1} N^{1}-\alpha_{1}\left(N^{1}\right)^{2}-\alpha_{2}\left(\frac{m}{m-1}\right) \cdot N^{1} N^{2}+ \\
& +\frac{\alpha_{1}}{m-1}\left(\frac{N^{2}}{N^{1}}\right)^{m-2} \cdot\left(N^{2}\right)^{2}-\delta_{1} F N^{1}
\end{aligned}
$$

$$
\begin{aligned}
X^{2}\left(N^{1}, N^{2}, F\right) & =\lambda_{2} N^{2}-\alpha_{2}\left(N^{2}\right)^{2}-\alpha_{1}\left(\frac{m}{m-1}\right) \cdot N^{1} N^{2}+ \\
& +\frac{\alpha_{2}}{m-1}\left(\frac{N^{1}}{N^{2}}\right)^{m-2} \cdot\left(N^{1}\right)^{2}-\delta_{2} F N^{2}, \\
X^{3}\left(N^{1}, N^{2}, F\right) & =\beta F\left(N^{1}+N^{2}\right)+\gamma F^{2}-\rho F,
\end{aligned}
$$

Remark 2.2. The solutions of class C^{2} of the system (1.1) are solutions of the EulerLagrange equations attached to the least squares Lagrangian (2.2), namely (geometric dynamics, in Udrişte's terminology)

$$
\begin{gather*}
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial y_{1}^{i}}\right)=0, y^{i}=\frac{d x^{i}}{d t}, \quad \forall i=\overline{1,3}, \Leftrightarrow \tag{2.3}\\
\frac{d^{2} x^{i}}{d t^{2}}+2 G^{i}\left(x^{k}, y^{k}\right)=0 \Leftrightarrow \frac{d^{2} x^{i}}{d t^{2}}+\frac{1}{2}\left(\frac{\partial^{2} L}{\partial y^{i} \partial x^{k}} y^{k}-\frac{\partial L}{\partial x^{i}}\right)=0 \Leftrightarrow \\
\frac{d^{2} x^{i}}{d t^{2}}=\left(\frac{\partial X^{i}}{\partial x^{k}}-\frac{\partial X^{k}}{\partial x^{i}}\right) y^{k}+\frac{\partial X^{k}}{\partial x^{i}} X^{k},
\end{gather*}
$$

where

$$
\begin{align*}
& G^{i}\left(x^{k}, y^{k}\right)=\frac{1}{4}\left(\frac{\partial^{2} L}{\partial y^{i} \partial x^{k}} y^{k}-\frac{\partial L}{\partial x^{i}}\right)= \tag{2.4}\\
& =-\frac{1}{2}\left[\left(\frac{\partial X^{i}}{\partial x^{k}}-\frac{\partial X^{k}}{\partial x^{i}}\right) y^{k}+\frac{\partial X^{k}}{\partial x^{i}} X^{k}\right]
\end{align*}
$$

is endowed with the geometrical meaning of semispray of L (for more geometrical details, see Miron and Anastasiei book [5] and Udrişte's book [7]).

But, the least squares Lagrangian (2.2), together with its Euler-Lagrange equations (2.3), provide us with an entire Riemann-Lagrange geometry on the tangent space $T \mathbb{R}^{3}$, in the sense of nonlinear connection, d-torsions, d-curvatures and Yang-Mills-like energy. These geometrical objects are naturally associated with the trophodynamical system (1.1).

Let us recall the main geometrical ideas developed in the Miron and Anastasiei book [5]. The canonical nonlinear connection $N=\left(N_{j}^{i}\right)_{i, j=\overline{1,2}}$ produced by the semispray (2.4) is given by the components

$$
N_{j}^{i}=\frac{\partial G^{i}}{\partial y^{j}}=-\frac{1}{2}\left(\frac{\partial X^{i}}{\partial x^{j}}-\frac{\partial X^{j}}{\partial x^{i}}\right) .
$$

Remark 2.3. We recall that, under a transformation of coordinates (2.1), the local components of the nonlinear connection obey the rules [4], [5]

$$
\widetilde{N}_{l}^{k}=N_{i}^{j} \frac{\partial x^{i}}{\partial \widetilde{x}^{i}} \frac{\partial \widetilde{x}^{k}}{\partial x^{j}}-\frac{\partial x^{i}}{\partial \widetilde{x}^{l}} \frac{\partial \widetilde{y}^{k}}{\partial x^{i}} .
$$

From a geometrical point of view, we point out that the coefficients N_{j}^{i} of the above nonlinear connection have not a global character on $T \mathbb{R}^{3}$.

Remark 2.4. Using the well-known Cartan-Kosambi-Chern (KCC) theory, used also in the paper of Böhmer, Harko and Sabău [3], we can remark that the deviation curvature tensor associated with the dynamical system (1.1) is given by the formula

$$
P_{j}^{i}=-2 \frac{\partial G^{i}}{\partial x^{j}}-2 G^{l} \frac{\partial N_{j}^{i}}{\partial y^{l}}+\frac{\partial N_{j}^{i}}{\partial x^{l}} y^{l}+N_{l}^{i} N_{j}^{l}
$$

It is important to note that the solutions of the Euler-Lagrange equations (2.3) are Jacobi stable iff the real parts of the eigenvalues of the deviation tensor P_{j}^{i} are strictly negative everywhere, and Jacobi unstable, otherwise. For more details, see [3] and references therein.

The canonical nonlinear connection defines the adapted bases of vector fields and covector fields on the tangent space $T \mathbb{R}^{3}$, namely

$$
\begin{gathered}
\left\{\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{i}^{j} \frac{\partial}{\partial y^{j}}, \frac{\partial}{\partial y^{i}}\right\} \subset \mathcal{X}\left(T \mathbb{R}^{3}\right) \\
\left\{d x^{i}, \delta y^{i}=d y^{i}+N_{j}^{i} d x^{j}\right\} \subset \mathcal{X}^{*}\left(T \mathbb{R}^{3}\right)
\end{gathered}
$$

The adapted local components of the Cartan N-linear connection $C \Gamma(N)=\left(L_{j k}^{i}, C_{j k}^{i}\right)$ are given by the formulas

$$
L_{j k}^{i}=\frac{g^{i r}}{2}\left(\frac{\delta g_{r k}}{\delta x^{j}}+\frac{\delta g_{r j}}{\delta x^{k}}-\frac{\delta g_{j k}}{\delta x^{r}}\right), \quad C_{j k}^{i}=\frac{g^{i r}}{2}\left(\frac{\partial g_{r k}}{\partial y^{j}}+\frac{\partial g_{r j}}{\partial y^{k}}-\frac{\partial g_{j k}}{\partial y^{r}}\right)
$$

where

$$
g_{i j}=\frac{1}{2} \frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}=\delta_{i j} .
$$

The only non-vanishing d-torsion adapted component associated with the Cartan N-linear connection $C \Gamma(N)$ is given by the coefficient

$$
R_{i j}^{r}=\frac{\delta N_{i}^{r}}{\delta x^{j}}-\frac{\delta N_{j}^{r}}{\delta x^{i}}=\frac{\partial N_{i}^{r}}{\partial x^{j}}-\frac{\partial N_{j}^{r}}{\partial x^{i}}
$$

At the same time, all the adapted components of the curvature attached to the Cartan N-linear connection $C \Gamma(N)$ are zero (for all curvature formulas, see [5]).

The electromagnetic-like distinguished 2-form attached to the Lagrangian L, defined via its deflection d-tensors (for more details, see Miron and Anastasiei book [5]), is given by $\mathbb{F}=F_{i j} \delta y^{i} \wedge d x^{j}$, where

$$
F_{i j}=\frac{1}{2}\left(g_{i r} N_{j}^{r}-g_{j r} N_{i}^{r}\right)=\frac{1}{2}\left(N_{j}^{i}-N_{i}^{j}\right)=N_{j}^{i}
$$

In this context, let us use the notation

$$
J(X)=\left(\frac{\partial X^{i}}{\partial x^{j}}\right)_{i, j=\overline{1,3}}=\left(\begin{array}{ccc}
J_{11} & J_{12} & J_{13} \\
J_{21} & J_{22} & J_{23} \\
J_{31} & J_{32} & J_{33}
\end{array}\right)
$$

where

$$
\begin{aligned}
& J_{11}=\lambda_{1}-2 \alpha_{1} N^{1}-\alpha_{2}\left(\frac{m}{m-1}\right) \cdot N^{2}-\alpha_{1}\left(\frac{m-2}{m-1}\right) \frac{\left(N^{2}\right)^{m}}{\left(N^{1}\right)^{m-1}}-\delta_{1} F, \\
& J_{12}=-\alpha_{2}\left(\frac{m}{m-1}\right) \cdot N^{1}+\alpha_{1}\left(\frac{m}{m-1}\right) \frac{\left(N^{2}\right)^{m-1}}{\left(N^{1}\right)^{m-2}} \\
& J_{13}=-\delta_{1} N^{1}, \quad J_{21}=-\alpha_{1}\left(\frac{m}{m-1}\right) \cdot N^{2}+\alpha_{2}\left(\frac{m}{m-1}\right) \frac{\left(N^{1}\right)^{m-1}}{\left(N^{2}\right)^{m-2}} \\
& J_{22}=\lambda_{2}-2 \alpha_{2} N^{2}-\alpha_{1}\left(\frac{m}{m-1}\right) \cdot N^{1}-\alpha_{2}\left(\frac{m-2}{m-1}\right) \frac{\left(N^{1}\right)^{m}}{\left(N^{2}\right)^{m-1}}-\delta_{2} F \\
& J_{23}=-\delta_{2} N^{2}, \quad J_{31}=\beta F, \quad J_{32}=\beta F, \quad J_{33}=\beta\left(N^{1}+N^{2}\right)+2 \gamma F-\rho
\end{aligned}
$$

Following the above Miron and Anastasiei's geometrical ideas, we obtain the following geometrical results:

Theorem 2.1. (i) The canonical nonlinear connection on $T \mathbb{R}^{3}$, produced by the system (1.1), has the local components $N=\left(N_{j}^{i}\right)_{i, j=\overline{1,3}}$, where N_{j}^{i} are the entries of the skew-symmetric matrix

$$
N=-\frac{1}{2}\left[J(X)-{ }^{T} J(X)\right]=\left(\begin{array}{ccc}
N_{1}^{1} & N_{2}^{1} & N_{3}^{1} \\
N_{1}^{2} & N_{2}^{2} & N_{3}^{2} \\
N_{1}^{3} & N_{2}^{3} & N_{3}^{3}
\end{array}\right)
$$

where

$$
\begin{aligned}
N_{1}^{1}=N_{2}^{2}=N_{3}^{3} & =0, \\
N_{2}^{1}=-N_{1}^{2}=- & \frac{1}{2}\left\{\left(\frac{m}{m-1}\right)\left(\alpha_{1} N^{2}-\alpha_{2} N^{1}\right)+\right. \\
& \left.+\left(\frac{m}{m-1}\right)\left[\alpha_{2} \frac{\left(N^{1}\right)^{m-1}}{\left(N^{2}\right)^{m-2}}-\alpha_{1} \frac{\left(N^{2}\right)^{m-1}}{\left(N^{1}\right)^{m-2}}\right]\right\} \\
N_{3}^{1}=-N_{1}^{3}= & \frac{1}{2}\left(\beta F+\delta_{1} N^{1}\right), \quad N_{3}^{2}=-N_{2}^{3}=\frac{1}{2}\left(\beta F+\delta_{2} N^{2}\right) .
\end{aligned}
$$

(ii) All adapted components of the canonical Cartan connection $C \Gamma(N)$, produced by the system (1.1), are zero.
(iii) The effective adapted components $R_{j k}^{i}$ of the torsion d-tensor \mathbf{T} of the canonical Cartan connection $C \Gamma(N)$, produced by the system (1.1), are the entries of the following skew-symmetric matrices:

$$
R_{1}=\left(R_{j 1}^{i}\right)_{i, j=\overline{1,3}}=\frac{\partial N}{\partial N^{1}}=\left(\begin{array}{ccc}
0 & \frac{\partial N_{2}^{1}}{\partial N^{1}} & \frac{\delta_{1}}{2} \\
-\frac{\partial N_{2}^{1}}{\partial N^{1}} & 0 & 0 \\
-\frac{\delta_{1}}{2} & 0 & 0
\end{array}\right)
$$

where

$$
\begin{gathered}
\frac{\partial N_{2}^{1}}{\partial N^{1}}=\frac{1}{2}\left(\frac{m}{m-1}\right)\left[\alpha_{2}-\alpha_{2}(m-1)\left(\frac{N^{1}}{N^{2}}\right)^{m-2}-\alpha_{1}(m-2)\left(\frac{N^{2}}{N^{1}}\right)^{m-1}\right] \\
R_{2}=\left(R_{j 2}^{i}\right)_{i, j=\overline{1,3}}=\frac{\partial N}{\partial N^{2}}=\left(\begin{array}{ccc}
0 & \frac{\partial N_{2}^{1}}{\partial N^{2}} & 0 \\
-\frac{\partial N_{2}^{1}}{\partial N^{2}} & 0 & \frac{\delta_{2}}{2} \\
0 & -\frac{\delta_{2}}{2} & 0
\end{array}\right)
\end{gathered}
$$

where

$$
\begin{gathered}
\frac{\partial N_{2}^{1}}{\partial N^{2}}=\frac{1}{2}\left(\frac{m}{m-1}\right)\left[-\alpha_{1}+\alpha_{2}(m-2)\left(\frac{N^{1}}{N^{2}}\right)^{m-1}+\alpha_{1}(m-1)\left(\frac{N^{2}}{N^{1}}\right)^{m-2}\right] \\
R_{3}=\left(R_{j 3}^{i}\right)_{i, j=\overline{1,3}}=\frac{\partial N}{\partial F}=\left(\begin{array}{ccc}
0 & 0 & \frac{\beta}{2} \\
0 & 0 & \frac{\beta}{2} \\
-\frac{\beta}{2} & -\frac{\beta}{2} & 0
\end{array}\right)
\end{gathered}
$$

(iv) All adapted components of the curvature d-tensor \mathbf{R} of the canonical Cartan connection $C \Gamma(N)$, produced by the system (1.1), vanish.
(v) The geometric electromagnetic-like distinguished 2-form, produced by the system (1.1), is given by $\mathbb{F}=F_{i j} \delta y^{i} \wedge d x^{j}$, where the adapted components $F_{i j}$ are the entries of the skew-symmetric matrix $F=\left(F_{i j}\right)_{i, j=\overline{1,3}}=N$.
(vi) The geometric Yang-Mills-like energy, produced by the system (1.1), is given by the formula

$$
\begin{gathered}
\mathcal{E} \mathcal{Y} \mathcal{M}(t)=F_{12}^{2}+F_{13}^{2}+F_{23}^{2}= \\
=\frac{1}{4}\left(\frac{m}{m-1}\right)^{2}\left[\alpha_{1} N^{2}-\alpha_{2} N^{1}+\alpha_{2} \frac{\left(N^{1}\right)^{m-1}}{\left(N^{2}\right)^{m-2}}-\alpha_{1} \frac{\left(N^{2}\right)^{m-1}}{\left(N^{1}\right)^{m-2}}\right]^{2}+ \\
+\frac{1}{4}\left(\beta F+\delta_{1} N^{1}\right)^{2}+\frac{1}{4}\left(\beta F+\delta_{2} N^{2}\right)^{2}
\end{gathered}
$$

Remark 2.5. In the author's opinion, from a trophodynamic point of view the zero level of the jet geometric Yang-Mills energy produced by the system (1.1) is important. The jet geometric Yang-Mills trophodynamical energy produced by the system (1.1) is zero iff

$$
\begin{gathered}
\beta F+\delta_{1} N^{1}=0, \quad \beta F+\delta_{2} N^{2}=0 \\
\left(\alpha_{1} N^{2}-\alpha_{2} N^{1}\right)+\left[\alpha_{2} \frac{\left(N^{1}\right)^{m-1}}{\left(N^{2}\right)^{m-2}}-\alpha_{1} \frac{\left(N^{2}\right)^{m-1}}{\left(N^{1}\right)^{m-2}}\right]=0
\end{gathered}
$$

If $\delta_{1} \neq \delta_{2}$, these conditions imply the impossible fact that $F=N^{1}=N^{2}=0$, and if $\delta_{1}=\delta_{2}=\delta$, then we obtain $N^{1}=N^{2}=-\beta F / \delta$. In this last case, we find a Bernoulli differential equation as the last equation of the system (1.1), namely

$$
\frac{d F}{d t}=-\rho F+\left(\gamma-2 \frac{\beta^{2}}{\delta}\right) F^{2}
$$

This equation can be integrated by using the changing of variable $z=F^{-1}$. The solution of the above Bernoulli differential equation is

$$
F(t)=\frac{1}{a \exp (\rho t)+b}
$$

where $a \in \mathbb{R}$ is an arbitrary constant, and we have

$$
b=\frac{1}{\rho}\left(\gamma-2 \frac{\beta^{2}}{\delta}\right)
$$

At the same time, we consider that the constant level surfaces of the jet geometric Yang-Mills trophodynamical energy $\mathcal{E Y} \mathcal{M}(t)=C, C>0$, could contain important trophodynamic connotations. Consequently, the graphical representation of these surfaces in the system of axes $O F N^{1} N^{2}$ could be a fruitful and open problem in trophodynamics.

Remark 2.6. The deviation curvature tensor components P_{j}^{i} can be obtained by contracting with y^{k} the nonzero components of the torsion tensor $R_{j k}^{i}$, that is $P_{j}^{i}=$ $R_{j k}^{i} y^{k}=\left(\partial N_{j}^{i} / \partial x^{k}\right) y^{k}$. Consequently, the matrix of the deviation curvature tensor is given by

$$
\begin{aligned}
P=R_{k} y^{k}= & \left(\begin{array}{ccc}
0 & \frac{\partial N_{2}^{1}}{\partial N^{1}} & \frac{\delta_{1}}{2} \\
-\frac{\partial N_{2}^{1}}{\partial N^{1}} & 0 & 0 \\
-\frac{\delta_{1}}{2} & 0 & 0
\end{array}\right) y^{1}+\left(\begin{array}{ccc}
0 & \frac{\partial N_{2}^{1}}{\partial N^{2}} & 0 \\
-\frac{\partial N_{2}^{1}}{\partial N^{2}} & 0 & \frac{\delta_{2}}{2} \\
0 & -\frac{\delta_{2}}{2} & 0
\end{array}\right) y^{2}+ \\
& +\left(\begin{array}{ccc}
0 & 0 & \frac{\beta}{2} \\
0 & 0 & \frac{\beta}{2} \\
-\frac{\beta}{2} & -\frac{\beta}{2} & 0
\end{array}\right) y^{3}=\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)
\end{aligned}
$$

where

$$
a=\frac{\partial N_{2}^{1}}{\partial N^{1}} y^{1}+\frac{\partial N_{2}^{1}}{\partial N^{2}} y^{2}, \quad b=\frac{\delta_{1}}{2} y^{1}+\frac{\beta}{2} y^{3}, \quad c=\frac{\delta_{2}}{2} y^{2}+\frac{\beta}{2} y^{3} .
$$

The eigenvalues of the matrix P are the real values

$$
\lambda_{1}=0, \lambda_{2,3}= \pm \sqrt{a^{2}+b^{2}+c^{2}}
$$

In conclusion, the behavior of neighboring solutions of the Euler-Lagrange equations (2.3) is Jacobi unstable.

Open problem. The trophodynamic interpretations associated with the geometrical objects constructed in this paper still represent an open problem.
Acknowledgements. A version of this paper was presented at the XIII-th International Conference "Differential Geometry and Dynamical Systems" (DGDS-2019), 10-13 October 2019, Bucharest, Romania.

References

[1] P. Antonelli, P. Auger, R. Bradbury, Corals and starfish waves on the Great Barrier Reef: Analytical trophodynamics and 2-patch aggregation methods, Mathl. Comput. Modelling, 27, 4 (1998), 121-135.
[2] P. Antonelli, N. Kazarinoff, Starfish predation of a growing coral reef community, J. Theor. Biol. 107 (1984), 667-684.
[3] C. G. Böhmer, T. Harko, S. V. Sabău, Jacobi stability analysis of dynamical systems - applications in gravitation and cosmology, Adv. Theor. Math. Phys. 16 (2012), 1145-1196.
[4] I. Bucătaru, R. Miron, Finsler-Lagrange Geometry. Applications to Dynamical Systems, Romanian Academy Eds., Bucharest, 2007.
[5] R. Miron, M. Anastasiei, The Geometry of Lagrange spaces: Theory and Applications, Kluwer Academic Publishers, 1994.
[6] M. Neagu, C. Udrişte, From PDEs systems and metrics to multi-time field theories and geometric dynamics, Seminarul de Mecanică 79, Timişoara, Romania, 2001, 1-33.
[7] C. Udrişte, Geometric Dynamics, Kluwer Academic Publishers, 2000.
Author's address:
Mircea Neagu
Department of Mathematics and Informatics,
Transilvania University of Braşov,
Blvd. Iuliu Maniu, No. 50, Braşov 500091, Romania.
E-mail: mircea.neagu@unitbv.ro

[^0]: Applied Sciences, Vol. 22, 2020, pp. 181-188.
 © Balkan Society of Geometers, Geometry Balkan Press 2020.

