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Abstract. In this paper, we study a vector–host mathematical model
for the pine wilt disease, considering indirect and direct transmission of
the disease. An explicit formula for the basic reproduction number (R0) is
obtained. The global stability of the DFE is proved using a graph theoretic
approach and a matrix theoretic method. We show that when R0 is less
than one, the DFE always exists and it is globally asymptotically stable,
and the disease persists at an endemic level. Finally, local sensitivity ana-
lysis of parameters and numerical experiments are carried out to illustrate
the theoretical bases for the prevention and control of the disease.
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1 Introduction

Vector–borne diseases are illnesses that are transmitted by mammals, birds, arthro-
pods and insects. Pests that transmit diseases are called vectors. These vectors
receive the pathogenic organism from an infected, animal or human, and transmits
it either to an intermediate carrier or directly to a human carrier. The transfer o-
ccurs directly by bites, or tissue infection, or indirectly through disease transmission.
Although vector–borne diseases are more known in humans, numerous cases of them
are also frequent in plants. Among them, some important wilting diseases of trees,
such as the pine wilt disease (PWD) and the red ring disease of palms, are caused by
nematodes that have intriguing association with insect vectors [20, 11, 1].

In this work, we deal with dynamics of PWD. It is a severe illness that typically
kills affected trees within a few weeks. The causal pathogen is the pine wood nematode
(PWN), Bursaphelenchus xylophilus. This nematode is found in aboveground parts
of the tree. Nematodes kill the tree by feeding on the cells surrounding the resin
ducts. This causes resin to leak into the tracheids, resulting in tracheid cavitation
or air pockets in the water transport system, the tree cannot move water upward
and consequently wilts and dies. Bursaphelenchus xylophilus is transmitted by vector
pine sawyer beetles in the genus Monochamus. The dispersal stage of the nematode
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is carried in the respiratory system of the insect, and thus spread from tree to tree
as the beetles feed on the young shoots of pine trees [14, 24, 26, 38]. Three types
of transmission of PWD have been discovered: (a) first, when adult beetles, infected
with nematode, flies to healthy pine trees and begin maturation feeding and transmit
nematode into the tree, this is known as the primary transmission [23]. (b) Secondary
transmission occurs when mature females lay eggs on dead or dying, freshly cut pine
trees [36]. (c) Third is the horizontal transmission of the nematode. It happens
through the mating of male and female bark beetles [2].

After its appearance in Japan, Korea, China and Taiwan where it has killed
millions of plants [22], PWD is internationally considered the most harmful disease of
the pine trees worldwide. PWD causes significant damage to forestry, local economies,
and the ecologies of affected countries, degrading the quality and decreasing the quan-
tity of pine wood products. In Japan, for example, the annual loss of pine wood as a
result of PWD was more than 100 million m3 across 11 years between 1978 and 1988
and more than 50 million m3 between 1989 and 2014 [7]. From an ecological point of
view, the loss of pine trees also reduces ecosystem functions and services, decreasing
habitats for wild animals and affecting soil erosion [7] . Once introduced into a region,
PWN spreads rapidly to neighboring areas through vector beetles or accompanying
human activity [7]. Control is therefore labor–intensive and costly, highlighting the
importance of identifying vulnerable areas and prioritizing control measures.

In the study of causes, patterns and the effects of a disease, mathematical modeling
has become a powerful and quite important tool which enables one to understand the
mechanisms that mainly stimulate the prevailing of the disease, factors which have a
significant influence in the spread of disease and can propose the schemes to control
the disease. For PWD, we can find some works in the literature, but we highlight the
most recent. Some of these works have been focused on modeling the dynamics of
PWD sawyers as vector [37, 33, 30, 19, 3], other works focused on the control of the
disease [19, 27, 4, 9, 10] and some works focused on particular aspects of the disease
[31, 21, 18, 8, 34, 28].

In this work, a mathematical model for host–vector relationship between pine trees
and pine sawyer beetles using ordinary differential equations (ODEs) is formulated.
We assume that the exploitation rate of infected pine trees is greater than susceptible
or exposed pine trees. First, we formulated a mathematical model by considering indi-
rect and direct transmission of the disease. Then, R0 is determined and conditions for
the existence of equilibrium solutions are established. Although the compartmental
structure of mathematical models using ODEs for vector–borne diseases is standard,
the mathematical techniques for stability and optimal control analysis may change.
Thus, in this work, the global stability of the disease–free equilibrium (DFE) is proved
using Perron eigenvectors, Lyapunov theory and a graph theoretic approach. Addi-
tionally, sensitivity analysis of parameters is performed by analysis of the sensitivity
indices of the basic reproduction number as well as positive constant level of infected
compartments. Finally, numerical experiments and conclusions are carried out to
support the analytical results.
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2 Mathematical model formulation

In this section, we formulate a mathematical model which comprises of susceptible
host pine trees Sh(t), exposed pine trees Eh(t), infected host pine trees Ih(t), suscepti-
ble vector beetles Sv(t) and infected beetles Iv(t) at time t. The usual transmission of
nematodes into pine trees occurs during maturation feeding of infected vectors. The
nematodes are carried by the pine sawyers when they emerge from infected pines.
However, the beetles may also be directly infected during mating. The population of
a host pine trees at time t is denoted by Nh, and the total population of vector adult
beetles is denoted by Nv. Thus Nh = Sh + Eh + Ih and Nv = Sv + Iv.

Let Πh the input rate of pine trees and Πv the constant emergence rate of adult bee-
tles. We assume that δ1 represents the rate of transmission per contact in
maturation feeding. Some parameters involved in the model are described below:
β1 represents the average number of contacts per day with vector adult beetles at the
time of maturation feeding, δ2 represents the rate at which Iv transmit nematode via
oviposition, β2 denotes the average number of contacts per day of bark beetles du-
ring oviposition, β3 represents the rate of adult beetles carrying nematode when they
come out of dead pines, α represents the rate at which the exposed pines move to the
infectious class, β is transmission rate among beetles during mating, µh represents
the rate of natural death of susceptible pine trees, σ denotes the felling and isolation
rate of Ih, and µv represents the death rate of the vector population. The incidence
terms relative to the host population during maturation feeding and oviposition are
β1δ1ShIv and β2δ2ηShIv, respectively. For vector population β3IhSv and βSvIv are
the incidence terms. Other parameters involved in the model are specified in Table 1.

Table 1: Description, dimension and values of the parameters of the model (2.1).
Parameter Description Dimension Value Source

Πh Input rate of pine trees Trees×Day −1 0.009041 [17]

Πv Emergence rate of adult bark beetles B.beetles×Day −1 0.002691 [17]

µh Natural death rate of healthy pine trees Day −1 0.0000301 [25]

µv Mortality rate of bark beetles Day −1 0.011764 [34]

σ Exploitation rate of infected pine trees Day −1 0.004 [3]
β1 Rate of transmission per contact during

maturation feeding Day −1 0.00166 [15]
δ1 Average number of contacts of adult

beetles through maturation feeding Dimensionless 0.2 [12]
β2 The rate at which bark beetles transmit

nematode during oviposition Day −1 0.0004 [15]
δ2 Average number of contacts during the

oviposition period Dimensionless 0.41 [17]
η The probability that susceptible pine trees

is not infectious by nematode and
ceases oleoresin exudation naturally Dimensionless 0.0000301 [17]

α Transmission rate of exposed pine trees into
infectious pine trees Dimensionless 0.002 [13]

β3 Rate of adult beetles carrying nematode

when they emerge from dead pines Day −1 0.00305 [13]
β Transmission rate among beetles during

mating Day −1 0.00305 [3]

With the above assumptions, the vector–host mathematical model can be written
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by the following system of non–linear ODEs:

(2.1)



Ṡh = Πh − β1δ1ShIv − β2δ2ηShIv − µhSh,

Ėh = β1δ1ShIv − αEh − µhEh,

İh = β2δ2ηShIv + αEh − σIh,

Ṡv = Πv − β3SvIh − βSvIv − µvSv,

İv = β3SvIh + βSvIv − µvIv.

Let us denote as P = (Sh, Eh, Ih, Sv, IV ). The set

(2.2) ξ =

{
P ∈ R5

+ :
Πh

σ
≤ Sh + Eh + Ih ≤

Πh

µh
, 0 ≤ Sv + Iv ≤

Πv

µv

}
,

is a positively invariant set. Figure 1 shows the flow diagram associated to the mathe-
matical model (2.1).

µhSh

µhEh σIh

µvIhµvSv

Sh

Eh Ih

Sv Iv

β1δ1ShIv β2δ2ηShIv

αEh

β3SvIh

βSvIv

Πh

Πv

1

Figure 1: Flow diagram of the mathematical model (2.1).
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3 Basic reproduction number

Direct calculations show that the model (2.1) always has a DFE given by

E0 =

(
Πh

µh
, 0,

Πv

µv
, 0, 0

)
.

The dynamics of a disease is characterized by the basic reproduction number that is
defined to be the average number of secondary infections, which are produced by an
infected individual in a totally susceptible population. This enables us to find whether
an infectious disease will prevail through population or not. We used the next–
generation operator [6] to calculate it . R0 is obtained by choosing the dominant

eigenvalue (spectral radius) of F̂V̂−1, where F̂ =
[
∂(F̌i(E0))
∂(xj)

]
and V̂ =

[
∂(V̌i(E0))
∂(xj)

]
,

being Eh, Ih and Iv the infected compartments. Therefore,
F̌1

F̌2

F̌3

 =


β1δ1ShIv

β2δ2ηShIv

β3SvIh + βSvIv − µvIv

 , and


V̌1

V̌2

V̌3

 =


αEh + µhEh

−αEh + σIh

µvIv

 .
Thus

F̂ =

0 0 β1δ1
Πh

µh

0 0 β2δ2η
Πh

µh

0 β3Πv

µv

βΠv

µv

 and V̂ =

µh 0 0
0 σ 0
0 0 µv

,
which gives

F̂V̂−1 =


0 0 β1δ1

Πh

µhµv

0 0 β2δ2η
Πh

µhµv

0 β3Πv

µvσ
βΠv

µ2
v

 .

Since R0 is the spectral radius of the above matrix, we have that

R0 =
βΠV

2µ2
v

+

√(
βΠV

2µ2
v

)2

+
ΠV Πhηβ2β3δ2

σµhµ2
v

+
ΠhΠV αβ1β3δ1
σµhµ2

v (α+ µh)
.(3.1)

4 Existence and stability of the DFE

Now, we analyze the global behavior of the DFE for the system (2.1). For this end,
we construct a Lyapunov function using the techniques and the notation described in
[32]. We have the following results.

Theorem 4.1. If R0 ≤ 1, the DFE of the system (2.1) is globally asymptotically
stable (GAS) in ξ.
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Proof. Let x = (Eh, Ih, Iv)
T and the function

(4.1) Q(t) = wT V̂−1x,

where

wT =

[
0

β3

µ2
v
Πv
√
L

β
µ2
v
Πv +

√
L

2
√
L

]
,

is the left eigenvector of V̂−1F̂ and

L =

(
β

µ2
v

Πv

)2

+ 4

(
ηβ2

δ2
σµh

Πh +
1

(α+ µh)
αβ1

δ1
σµh

Πh

)
β3

µ2
v

Πv.

Substituting above values in (4.1) and after simplifications, we get

Q(t) =
β3Πv

µ2
vσ
√
L
Ih +

β3Πvη

µ2
v (α+ µh)σ

√
L
Eh +

βΠv + µ2
v

√
L

2µ3
v

√
L

Iv.

Taking the orbital derivative of Q(t) along of the trajectories of the system (2.1), we
obtain

Q̇(t) =
β3Πv

µ2vσ
√
L
İh +

β3Πvη

µ2v (α+ µh)σ
√
L
Ėh +

βΠv + µ2v
√
L

2µ3v
√
L

İV

=
β3Πv

µ2vσ
√
L

(β2δ2ηShIv + ηEh − σIh) +
β3Πvη

µ2v (α+ µh)σ
√
L

(β1δ1ShIv − (α+ µh)Eh)

+
βΠv + µ2v

√
L

2µ3v
√
L

(β3SvIh + βSvIv − µvIv)

=
β3Πv

µ2vσ
√
L
β2δ2ηShIv +

β3Πvη

µ2v (α+ µh)σ
√
L
β1δ1ShIv +

βΠv + µ2v
√
L

2µ3v
√
L

βSvIv

−
βΠv + µ2v

√
L

2µ2v
√
L

Iv +
k +
√
L

2µv
√
L
β3SvIh −

β3Πv

µ2v
√
L
Ih

≤
β3Πv

µ2vσ
√
L
β2δ2η

Πh

µh
Iv +

β3Πvη

µ2v (α+ µh)σ
√
L
β1δ1

Πh

µh
Iv +

βΠv + µ2v
√
L

2µ3v
√
L

β
Πv

µv
Iv

−
βΠv + µ2v

√
L

2µ2v
√
L

Iv +
k +
√
L

2µv
√
L
β3

Πv

µv
Ih −

β3Πv

µ2v
√
L
Ih

≤
1
√
L
R2

0Iv −
1
√
L
R0Iv +

1
√
L

(R0 − 1) Ih

≤
1
√
L
R2

0

(
1−

1

R0

)
Iv +

1
√
L

(R0 − 1) Ih.

Thus, Q̇(t) ≤ 0 if and only if R0 ≤ 1. Furthermore, Q̇(t) = 0 if and only if
Ih = Iv = 0. Hence, it is easy to check that the largest compact invariant set for the
system (2.1) is E0. Thus, by LaSalle’s Invariance Principle [16], the equilibrium E0

is GAS in ξ. �
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5 Endemic equilibrium and its stability

We determine the endemic equilibrium solutions of the system (2.1), which are ob-
tained by solving the following system of algebraic equations

Πh − β1δ1ShIv − β2δ2ηShIv − µhSh = 0,

β1δ1ShIv − αEh − µhEh = 0,

β2δ2ηShIv + αEh − σIh = 0,

Πv − β3SvIh − βSvIv − µvSv = 0,

β3SvIh + βSvIv − µvIv = 0.

After calculations, we get that the solutions of the above system are given by

S∗
h =

Πh

((β1δ1 + β2δ2η) I∗v + µh)
,

E∗
h =

β1δ1ΠhI
∗
v

((β1δ1 + β2δ2η) I∗v + µh) (α+ µh)
,

I∗h =
(β2δ2ηΠh (α+ µh) + αβ1δ1Πh) Iv

(σ (β1δ1 + β2δ2η) Iv + σµh) (α+ µh)
,

S∗
v =

Πvσ ((β1δ1 + β2δ2η) Iv + µh) (α+ µh)

Πhβ3Iv (β2δ2η (α+ µh) + αβ1δ1) + σ (α+ µh) (βIv + µv) ((β1δ1 + β2δ2η) Iv + µh)
,

and I∗v is uniquely determined from the following quadratic equation

aI∗2
v + bI∗v + c = 0,(5.1)

where

a = σβµv (β1δ1 + β2δ2η) ,

b = σβµhµv + σ (β1δ1 + β2δ2η)µ2
v −Πvβσ (β1δ1 + β2δ2η)

+
Πhβ3 (β2δ2η (α+ µh) + αβ1δ1)

(α+ µh)
µv,

c = σµ2
vµh

(
1− Πvβ

µ2
v

−
(

ΠvΠhβ3β2δ2η

σµ2
vµh

+
ΠvΠhβ3αβ1δ1
σµ2

vµh (α+ µh)

))
.

Note that a > 0 while the sign of c depends on R0. If R0 > 1 then c < 0. Thus, the
above quadratic equation has only one positive root for R0 > 1. Hence, the unique
endemic equilibrium exists whenever the reproduction number exceeds unity. Now,
we will prove the global stability of the endemic equilibrium E∗ = (S∗

h, E
∗
h, I

∗
h, S

∗
v , I

∗
v ),

by using a graph–theoretic approach [32]. To this end, we will consider matrix tree
theorem of Kirchoff [29] and the results which are given in [32]. We have the following
results.
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Theorem 5.1. The unique positive endemic equilibrium point of the system (2.1),
E∗ is GAS in ξ.

Proof. Let

D1 = (Sh − S∗
h − S

∗
h ln Sh

S∗
h

) +
(
Eh − E∗

h − E
∗
h ln Eh

E∗
h

)
D2 = (Eh − E∗

h − E
∗
h ln Eh

E∗
h

)

D3 =
(
Ih − I∗h − I

∗
h ln Ih

I∗
h

)
D4 =

(
Sv − S∗

v − S∗
v ln Sv

S∗
v

)
D5 =

(
Iv − I∗v − I∗v ln Iv

I∗v

)
.

Differentiating and using the inequality 1− x+ lnx ≤ 0 for x > 0, we have

Ḋ1 =

(
1−

S∗
h

Sh

)
Ṡh +

(
1−

E∗
h

Eh

)
ĖH

=

(
1−

S∗
h

Sh

)
((β1δ1 + β2δ2η)S∗

hI
∗
v − (β1δ1 + β2δ2η)ShIv)− µh

(
1−

S∗
h

Sh

)
(Sh − S∗

h)

+

(
1−

E∗
h

Eh

)(
β1δ1ShIv −

β1δ1S∗
hI

∗
v

E∗
h

Eh

)

= (β1δ1 + β2δ2η)S∗
hI

∗
v

(
1−

S∗
h

Sh

)(
1−

ShIv

S∗
hI

∗
v

)
− µh

(
Sh − S∗

h

Sh

)
(Sh − S∗

h)

+ β1δ1S
∗
hI

∗
v

(
1−

E∗
h

Eh

)(
ShIv

S∗
hI

∗
v

−
Eh

E∗
h

)

+ β1δ1S
∗
hI

∗
v

(
ShIv

S∗
hI

∗
v

−
Eh

E∗
h

−
E∗

h

Eh

ShIv

S∗
hI

∗
v

+ 1

)

≤ (β1δ1 + β2δ2η)S∗
hI

∗
v

(
ln
ShIv

S∗
hI

∗
v

−
ShIv

S∗
hI

∗
v

− ln
Iv

I∗v
+
Iv

I∗v

)
+

β1δ1S
∗
hI

∗
v

(
ShIv

S∗
hI

∗
v

−
Eh

E∗
h

+ ln
Eh

E∗
h

− ln
ShIv

S∗
hI

∗
v

)
:= b12G12 + b13G13,

and similarly

Ḋ2 ≤β1δ1S∗
hI

∗
v

(
ShIv

S∗
hI

∗
v

− ln
ShIv

S∗
hI

∗
v

−
E∗

h

Eh
+ ln

E∗
h

Eh

)
:= b25G25,

Ḋ3 ≤β2δ2ηS∗
hI

∗
v

(
ShIv

S∗
hI

∗
v

− ln
ShIv

S∗
hI

∗
v

−
I∗h
Ih

)
+ ln

I∗h
Ih

:= b31G31,

Ḋ4 ≤β3S∗
vI

∗
h

(
I∗h
Ih
− ln

I∗h
Ih
−
SvIh

S∗
vI

∗
h

+ ln
SvIh

S∗
vI

∗
h

)

+βS∗
vI

∗
v

(
Iv

I∗v
− ln

Iv

I∗v
−
SvIv

S∗
vI

∗
v

− ln
SvIv

S∗
vI

∗
v

)
:= b43G43 + b42G42,

Ḋ5 ≤β3S∗
vI

∗
h

(
SvIh

S∗
vI

∗
h

− ln
SvIh

S∗
vI

∗
h

−
I∗v
Iv

+ ln
I∗v
Iv

)

+βS∗
vI

∗
v

(
SvIv

S∗
vI

∗
v

+ ln
Iv

I∗v
−
Iv

I∗v
− ln

SvIv

S∗
vI

∗
v

)
:= b54G54 + b53G53.

We observe that there are four cycles and along each cycle G31 + G13 = 0, G42 +
G54 + G25 = 0, G31 + G43 + G54 + G25 + G12 = 0, G31 + G53 + G25 + G12 = 0.
Thus, there exists c1, c2, c3, c4, c5 such that D = c1D1 + c2D2 + c3D3 + c4D4 + c5D5.
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Besides
c3b31 = c1(b12 + b13) c2b25 = c1b12 + c4b42

c5a54 = c4(b42 + b43) c2b25 = c5(b53 + b54).

Thus,

D =
β2S2∗

v I2∗v + ββ3S2∗
v I∗v I

∗
h + β2

3S
2∗
v I2∗h

(β1δ1 + β2δ2η)(β3S∗
vI

∗
h + βS∗

vI
∗
h)

D1 +
βS∗

vI
∗
v + β3S∗

vI
∗
h

β1δ1S∗
hI

∗
h

D2

+
(β2S2∗

v I2∗v + ββ3S2∗
v I∗hI

∗
v + β2

3S
2∗
v I2∗h )(β1δ1 + β2δ2η + β1δ1S∗

hI
∗
v )

β1δ1S2∗
h I2∗v (β1δ1 + β2δ2η)(β3S∗

vI
∗
h + βS∗

vI
∗
h + βS∗

vI
∗
v )

D3

+
β3S∗

vI
∗
h

β3S∗
vI

∗
h + βS∗

vI
∗
v

D4 + D5,

is a Lyapunov function for the system (2.1). Using this Lyapunov function and
LaSalle’s invariance principle [16], it follows that E∗ is GAS in ξ. �

6 Local sensitivity analysis of parameters and
numerical experiments

To check which factors are responsible for the expanse and the existence of the disease,
we shall carry out a sensitivity analysis. Our main objective is to control the disease.
It is only possible if we reduce the basic reproduction number below unity. For this
purpose, we calculate the ratio of relative change in the parameter to relative change
in the reproduction number which is called sensitivity index. We identify the most
influential factors for the spread of infectious disease by observing the sensitivity
index. The normalized forward sensitivity of a variable to the parameter is defined as
the ratio of relative change in the variable to the relative change in the parameter [5].
When a variable is a differentiable function of the parameter, the sensitivity index
may be defined in terms of partial derivatives as

Γxp =
∂x

∂p
× p

x
.

We use the numerical values of the parameters given in Table 1, and we see that
the sensitivity index of R0 to the parameter σ is −150.818. It means that when we
increase the value of a by 10%, the value of R0 increases by almost 151%. Looking at
the sensitivity indices of R0 with respect to all the model parameters given in Table
2, we observe that the most sensitive parameter is µh (exploitation rate of susceptible
pine trees), which has the highest value −20339.471. Negative sign shows that R0

is a decreasing function of µh. This index is illogical because we cannot increase
the exploitation rate of healthy pine trees in order to decrease the value of the basic
reproduction number below unity. However, we should focus on the parameter β1

which is the second one sensitive parameter for R0.
Although we do not have an explicit expression for the endemic equilibrium, by

using the values of parameters given in Table 1, we can calculate the sensitivity indices
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Table 2: Values of sensitivity indices of R0, Ih
∗ and Iv

∗.
Parameters Sensitivity index of R0 Sensitivity index of Ih

∗ Sensitivity index of Iv∗

Πh 66.726 2.438 2.829
Πv 235.472 2.961 2.221
µh -20339.471 -1.865 -2.164
µv -107.727 -5.532 -4.150
σ -150.818 -2.438 -2.829
β1 363.412 1.829 2.122
δ1 3.016 1.829 2.122
β2 0.022 0.2×10−4 0.3×10−4

δ2 0.2×10−4 0.2×10−4 0.3×10−3

η 0.302 0.2×10−4 0.3×10−4

α 4.472 0.036 0.041
β3 197.794 2.438 1.829
β 9.961 0.132 0.099

of Ih
∗ and Iv

∗. The sensitivity indices of the endemic level of infectious bark beetles
Iv

∗, given in Table 2, show that the parameters µv, σ and Πh play a vital role in the
enhancement or reduction in the values of Iv

∗. Besides, Iv
∗ is a decreasing function

of µv andσ and a increasing function of Πh. An increment in µv of 10%, implies a
reduction in the value of Iv

∗ of 41%. Similarly, by increasing the value of σ in 10%,
implies a reduction of Iv

∗ of 28%. We should focus on the mortality rate of bark
beetles as well as the felling rate of infectious pines in order to achieve the decreased
endemic level of infectious pines.

The sensitivity indices for Ih
∗ given in Table 2, express that the most sensitive

parameter for the endemic level of infectious pines I∗h is µv. An increment of µv in
10%, implies that Ih

∗ would decrease almost 55%. The endemic level of infectious
hosts is also an increasing function of Πv. By decreasing the value of Πv by 10%, Ih

∗

would decrease almost 29%.
The above results are corroborated in Figures 2 and 3. Figure 2 shows the en-

demic level of infectious hosts for different values of the parameters. We can see that
parameters Πh, ΠV , β1, δ1, β2, δ2, η, β3 and β are directly related to Ih

∗ and inversely
related to µh, µv, σ and α. It can also be observed that a considerable change occurs
in the value of Ih

∗ by an increment or reduction of Πh, Πv, µv, β1, δ1 and α. On the
other hand, we can see from Figure 3 that the endemic level of infectious bark beetles
(vectors) is greatly influenced by the parameters Πv and µv.

7 Discussion

In this paper, we proposed and analyzed a PWD mathematical model, considering
both direct and indirect transmission of the disease. For the model, the basic repro-
duction number was calculated using the next generation operator, and we discussed
the asymptotic behavior of the equilibrium solutions using a graph theoretic approach.
More specifically, we constructed a suitable Lyapunov function and we proved that if
R0 < 1, then the DFE is GAS, and thus the disease always dies out, while if R0 > 1,
the unique endemic equilibrium E∗ exists and is GAS, so that the disease persists at
the endemic equilibrium.

For the reduction of the endemic level of infected classes, we applied a useful tech-
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Figure 2: Endemic level of infected hosts for different values of the parameters.
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Figure 3: Endemic level of infected vectors for different values of the parameters.
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nique of local sensitivity analysis of parameters. Firstly, we calculated the sensitivity
indices of the basic reproduction number and the endemic levels of infectious hosts and
vectors. We computed the ratio of relative change in the parameters to the relative
change in the variables. The parameter which gives the highest value of the variable
is the most sensitive parameter. We observed that the numerical value of exploita-
tion rate of susceptible pine trees is maximum but we could not exploit susceptible
pine trees for the complete eradication of the disease. However, we should focus on
the second sensitive parameter to reduce the reproduction number below unity. The
calculations tell us that β1 is the parameter which can help us to reduce the value
of reproduction number. Similarly by the analysis of sensitivity indices of I∗h and I∗v ,
we found that the mortality of bark beetles is essential to reduce the infection from
the community. Secondly, we observed how the endemic level of infectious hosts and
vectors is effected by changing the values of parameters. We performed a variation
in parameter values and observed the corresponding change in the endemic level of
infectious hosts and vectors.

Sensitivity analysis help us to design effective control strategies for the eradica-
tion of the disease or to reduce the endemic level of infected classes because it best
describes the crucial factors that play vital role in the transmission of disease. An
open problem in this work is to incorporate those parameters as functions of control,
and analyze the corresponding optimal control problem.

Acknowledgements. Jhoana Romero appreciates the support of Fundación
Ceiba (Colombia).
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