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Abstract. By introducing the topological generalized closed sets into N -
topological space, this paper establishes that the union of τi-generalized
closed sets need not be Nτ -generalized closed set. Further, the collection
of Nτ -g̃ closed sets form a topology. Apart from this, Nτ -g̃ closed sets
are characterized by means of Nτ#gs-kernel.
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1 Introduction

The concept of semi-open sets and generalized closed sets were initiated by Norman
Levine [5,6] and also established their fundamental properties. O.Njastad [9] devel-
oped α-open sets and investigated its relationship with other open sets. Mashhour et
al. [7,8] characterized pre-open sets and α-open sets with their continuous functions.
Abd El-Monsef et al. [1] defined β-open sets with the properties of β-continuous
mappings. J.Dontchev [2] evolved the concept of generalized semi-pre closed sets and
derived their properties. P. Sundaram et al. [10] characterized the semi-generalized
closed sets and their mappings. Lellis Thivagar et al. [3] discovered a geometrical
structure of N -topological space with the N -topological open sets. Further Lellis
Thivagar and Arockia Dasan [4] established some weak forms of open sets in N -
topological space along with their mappings. In this paper, we discuss various kinds
of generalized closed sets in N -topological spaces and establish their relationship. We
also find that the Nτ -g̃ closed sets forms a topology which places between Nτ -closed
and Nτ -generalized closed sets.

2 Preliminaries

In this section we recall some known definitions and results of N -topological space
and weak open sets that will be used in the following sections. By the space (X,Nτ),
we mean, N -topological space with N -topology on X with no separation axioms are
assumed unless specifically stated.
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Definition 2.1 (3). Let X be a non empty set, τ1, τ2, ... , τN be N -arbitrary

topologies defined on X. Then the collection Nτ = {S ⊆ X : S = (
⋃N

i=1Ai) ∪
(
⋂N

i=1Bi), Ai, Bi ∈ τi}, is said to be N -topology if it satisfying the following axioms:

(i) X, f� ∈ Nτ .

(ii)
⋃∞

i=1 Si ∈ Nτ for all {Si}∞i=1 ∈ Nτ .

(iii)
⋂n

i=1 Si ∈ Nτ for all {Si}ni=1 ∈ Nτ .

Then the ordered pair (X,Nτ) is called an N -topological space on X and the
elements of the collection Nτ are known as Nτ -open sets on X. A subset A of X is
said to be Nτ -closed on X if the complement of A is Nτ -open on X. The set of all
Nτ -open sets on X and the set of all Nτ -closed sets on X are respectively denoted
by NτO(X) and NτC(X).

Definition 2.2 (3). Let (X,Nτ) be an N -topological space and S be a subset of X.
Then

(i) the Nτ -interior of S is defined as Nτ -int(S) = ∪{G : G ⊆ S and G is Nτ -open}.

(ii) the Nτ -closure of S is defined as Nτ -cl(S) = ∩{F : S ⊆ F and F is Nτ -closed}.

Definition 2.3 (4). A subset A of N -topological space (X,Nτ) is said to be

(i) Nτα-open if A ⊆ Nτ -int(Nτ -cl(Nτ -int(A))).

(ii) Nτ semi-open if A ⊆ Nτ -cl(Nτ -int(A)).

(iii) Nτ pre-open if A ⊆ Nτ -int(Nτ -cl(A)).

(iv) Nτβ-open if A ⊆ Nτ -cl(Nτ -int(Nτ -cl(A))).

The complement of above open sets are called respective closed sets. The family of
Nτ -α (resp. Nτ -semi, Nτ -pre and Nτ -β) open sets is denoted by NταO(X) (resp.
NτSO(X), NτPO(X) and NτβO(X)).

Theorem 2.1 (4). In an N -topological space (X,Nτ), the following are true:

(i) every Nτ -open set is Nτ -α open.

(ii) every Nτ -α open set is both Nτ -semi and Nτ -pre open, vice versa.

(iii) every Nτ -semi open set is Nτ -β open.

(iv) every Nτ -pre open set is Nτ -β open.

3 Generalized closed sets in N-topological spaces

This section introduce the classical generalized closed sets into N -topological space.
We also state that the union of τi-generalized closed sets need not be Nτ -generalized
closed set and establish their relationships.
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Definition 3.1. A subset A of N -topological space (X,Nτ) is said to be

(i) Nτ generalized-closed (briefly Nτg-closed) if Nτ -cl(A) ⊆ U whenever A ⊆
Uand U is Nτ -open in (X,Nτ).

(ii) Nτα generalized-closed (briefly Nταg-closed) if Nτ -αcl(A) ⊆ U whenever A ⊆
U and U is Nτ -open in (X,Nτ).

(iii) Nτ generalized α-closed (briefly Nτgα-closed) if Nτ -αcl(A) ⊆ U whenever
A ⊆ U and U is Nτα-open in (X,Nτ).

(iv) Nτ generalized semi-closed (briefly Nτgs-closed) if Nτ -scl(A) ⊆ U whenever
A ⊆ U and U is Nτ -open in (X,Nτ).

(v) Nτ semi generalized-closed (briefly Nτsg-closed) if Nτ -scl(A) ⊆ U whenever
A ⊆ U and U is Nτ semi-open in (X,Nτ).

(vi) Nτĝ-closed if Nτ -cl(A) ⊆ U whenever A ⊆ U and U is Nτ semi-open in
(X,Nτ).

(vii) Nτ∗g-closed if Nτ -cl(A) ⊆ U whenever A ⊆ U and U is Nτĝ-open in (X,Nτ).

(viii) Nτ#g-semi closed (briefly Nτ#gs-closed) if Nτ -scl(A) ⊆ U whenever A ⊆ U
and U is Nτ∗g-open in (X,Nτ).

(ix) Nτg̃-closed if Nτ -cl(A) ⊆ U whenever A ⊆ U and U is Nτ#gs-open in (X,Nτ).

The complement of above N -topological generalized closed set is called respective
generalized open sets. The set of all Nτg-closed (resp. Nταg-closed, Nτgα-closed,
Nτgs-closed, Nτsg-closed, Nτĝ-closed, Nτ∗g-closed, Nτ#gs-closed, Nτg̃-closed) sets
of (X,Nτ) is denoted by NτGC(X) (resp. NταGC(X), NτGαC(X), NτGSC(X),
NτSGC(X), NτĜC(X), Nτ∗GC(X), Nτ#GSC(X), NτG̃C(X)).

The following example illustrates the uniqueness of this paper namely the union
of generalized closed sets of topological spaces (X, τ1), (X, τ2), ..., (X, τN ) need not be
a generalized closed set of N -topological space.

Example 3.2. If N = 2, X = {a, b, c}, consider τ1 = { f� , X, {a}} and τ2 =

{ f� , X, {a, b}}, then 2τO(X) = { f� , X, {a}, {a, b}}, τ1GC(X) = τ1αGC(X) =

τ1GSC(X) = { f� , X, {b}, {c}, {a, b}, {a, c}, {b, c}}, τ2GC(X) = τ2αGC(X) =

τ2GSC(X) = { f� , X, {c}, {a, c}, {b, c}}, 2τGC(X) = { f� , X, {c}, {a, c}, {b, c}},
τ1
∗GC(X) = { f� , X, {b}, {c}, {a, b}, {a, c}, {b, c}}, τ2

∗GC(X) = { f� , X, {c},
{a, c}, {b, c}}, τ1G̃C(X) = τ1ĜC(X) = { f� , X, {b, c}}, τ2G̃C(X) = τ2ĜC(X) =

{ f� , X, {c}, {a, c}, {b, c}}, 2τGC(X) = { f� , X, {c}, {a, c}, {b, c}}, 2ταGC(X) =

2τGSC(X) = { f� , X, {b}, {c}, {a, c}, {b, c}}, 2τG̃C(X) = 2τĜC(X) = { f� , X, {c},
{b, c}} and 2τ∗GC(X) = { f� , X, {c}, {a, c}, {b, c}}. Hence we observe that τ1G̃C(X)∪
τ2G̃C(X) 6= 2τG̃C(X), τ1GC(X)∪τ2GC(X) 6= 2τGC(X), τ1αGC(X)∪τ2αGC(X) 6=
2ταGC(X) and τ1

∗GC(X) ∪ τ2∗GC(X) 6= 2τ∗GC(X).
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Example 3.3. If N = 2, X = {a, b, c}, consider τ1 = { f� , X, {a}, {a, b}} and

τ2 = { f� , X, {a, c}}, then 2τO(X) = { f� , X, {a}, {a, b}, {a, c}}, τ1#GSC(X) =

{ f� , X, {b}, {c}, {a, c}, {b, c}}, τ2
#GSC(X) = { f� , X, {b}, {a, b}, {b, c}},

2τ#GSC(X) = { f� , X, {b}, {c}, {b, c}}. Hence we find that τ1
#GSC(X) ∪

τ2
#GSC(X) 6= 2τ#GSC(X).

By the following lemma we over come the above hurdles under certain conditions.

Lemma 3.1. (i) If every Nτ -open set is τi-open, then every τi-g closed set is Nτ -g
closed for i = 1, 2, ..., N .

(ii) If every Nτ -open set is τi-open and Nτ -scl(A) ⊆ τi-scl(A), then every τi-gs
closed set is Nτ -gs closed for i = 1, 2, ..., N .

(iii) If τ1SO(X) = τ2SO(X) = ... = NτSO(X), then every τi-sg closed set is Nτ -sg
closed for i = 1, 2, ..., N .

(iv) If every Nτ -open set is τi-open and Nτ -αcl(A) ⊆ τi-αcl(A), then every τi-αg
closed set is Nτ -αg closed for i = 1, 2, ..., N .

(v) If τ1αO(X) = τ2αO(X) = ... = NταO(X), then every τi-gα closed set is Nτ -gα
closed for i = 1, 2, ..., N .

(vi) If every Nτ -ĝ open set is τi-ĝ open, then every τi-
∗g closed set is Nτ -∗g closed.

(vii) If every Nτ -∗g open set is τi-∗g open and Nτ -scl(A) ⊆ τi-scl(A), then every
τi-

#gs closed set is Nτ -#gs closed.

(viii) If every Nτ -#gs open set is τi-
#gs open, then every τi-g̃ closed set is Nτ -g̃.

Proof. Here we shall prove parts (i), (iii), (iv) and (viii). The remaining parts can
be proved similarly.

(i) Let A be a τi-g closed set and U be a Nτ -open set containing A, then by hy-
pothesis, τi-cl(A) ⊆ U implies Nτ -cl(A) ⊆ U . Therefore A is Nτ -g closed.

(iii) Let A be a τi-sg closed set and U be a Nτ -semi open set containing A, then
τi-scl(A) ⊆ U implies Nτ -scl(A) ⊆ U . Therefore A is Nτ -sg closed.

(iv) Let A be a τi-αg closed set and U be a Nτ -open set containing A, then τi-
αcl(A) ⊆ U implies Nτ -αcl(A) ⊆ U . Therefore A is Nτ -αg closed.

(viii) Let A be a τi-g̃ closed set and U be a Nτ -#gs-open set containing A, then
τi-cl(A) ⊆ U implies Nτ -cl(A) ⊆ U . Therefore A is Nτ -g̃ closed.

The following proposition is sibling of classical topological results.

Proposition 3.2. Let (X,Nτ) be an N -topological space, then every

(i) Nτ -closed set is Nτ -g closed.

(ii) Nτ -semi closed set is Nτ -#gs closed.

(iii) Nτ -α closed set is Nτ -#gs closed.
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(iv) Nτ -g closed set is Nτ -αg closed.

(v) Nτ -g closed set is Nτ -gs closed.

(vi) Nτ -sg closed set is Nτ -β closed.

(vii) Nτ -gα closed set is Nτ -pre closed.

The following examples illustrate that the converse of the above proposition need
not be true.

Example 3.4. If N = 6, X = {a, b, c, d}, consider τ1 = { f� , X, {a}}, τ2 = { f� , X,

{c, d}}, τ3 = { f� , X, {a, c, d}}, τ4 = { f� , X, {b, c, d}}, τ5 = { f� , X, {a}, {b, c, d}}
and τ6 = { f� , X, {a}, {c, d}, {a, c, d}}, then 6τO(X) = { f� , X, {a}, {c, d}, {a, c, d},
{b, c, d}}, 6τC(X) = { f� , X, {a}, {b}, {a, b}, {b, c, d}} and 6τG̃C(X) = { f� , X, {a},
{b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}}. Here the set {c} is 6τ -pre closed
and 6τ -β closed but not 6τ -sg closed and not 6τ -gα closed.

Example 3.5. If N = 2, X = {a, b, c}, consider τ1 = { f� , X, {a}} and τ2 =

{ f� , X, {a, b}}, then 2τO(X) = { f� , X, {a}, {a, b}}. Here the set {b} is 2τ -αg closed
and 2τ -gs closed but not 2τ -g closed. Also the set {a, c} is 2τ -g closed but not
2τ -closed.

Example 3.6. If N = 2, X = {a, b, c}, consider τ1 = { f� , X, {a}} and τ2 =

{ f� , X, {b, c}}, then 2τO(X) = { f� , X, {a}, {b, c}}. Here the set {b} is 2τ -#gs closed
but not 2τ -α closed and not 2τ -semi closed.

Proposition 3.3. Let (X,Nτ) be an N -topological space, then every

(i) Nτ -closed set is Nτ -g̃ closed.

(ii) Nτ -g̃ closed set is Nτ -ĝ closed.

(iii) Nτ -g̃ closed set is Nτ -g closed.

(iv) Nτ -g̃ closed set is Nτ -αg closed.

(v) Nτ -g̃ closed set is Nτ -sg closed.

(vi) Nτ -g̃ closed set is Nτ -β closed.

(vii) Nτ -g̃ closed set is Nτ -gα closed.

(viii) Nτ -g̃ closed set is Nτ -pre closed.

(ix) Nτ -g̃ closed set is Nτ -gs closed.

Proof. Here we shall prove part (i) and (iii) only. The proof of the remaining parts
are similar.

(i) If A is any Nτ -closed set in (X,Nτ) and U is any Nτ -#gs open set containing
A. Then Nτ -cl(A) = A ⊆ U implies A is a Nτ -g̃ closed.
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Figure 1: The relationship between N-topological generalized closed sets.

(iii) If A is any Nτ -g̃ closed set in (X,Nτ) and U is any Nτ -open set containing A.
Since every Nτ -closed set is Nτ -semi closed and every Nτ -semi closed set is
Nτ -#gs closed, then U is Nτ -#gs open set containing A and so Nτ -cl(A) ⊆ U .
Therefore A is a Nτ -g closed.

Example 3.7. The converse of the above proposition need not be true. For N = 1,
X = {a, b, c}, τ = τ1 = { f� , X, {a}}. Then the set {b} is gα-closed, pre closed and
gs-closed but not g̃-closed set. From example 3.4, the set {b, c} is 6τ -g̃ closed but not
6τ -closed. Also from example 3.5, the set {b} is 2τ -β closed and 2τ -sg closed but not
2τ -g̃ closed. By example 3.6 we know that the set {b} is 2τ -g closed, 2τ -αg closed
and 2τ -ĝ closed but not 2τ -g̃ closed.

Remark 3.8. From the proposition 3.3, we observe that the set of all Nτ -g̃ closed
sets placed between the set of all Nτ -closed and Nτ -g closed sets. It also placed
between the set of all Nτ -closed and Nτ -ĝ closed sets.

Remark 3.9. The following example states that the Nτ -g̃ closed set is independent
of Nτ -α closed as well as Nτ -semi closed set.

Example 3.10. If N = 2, X = {a, b, c}, consider τ1 = { f� , X, {a, b}} and τ2 =

{ f� , X}, then 2τO(X) = { f� , X, {a, b}}. Here the set {a, c} is 2τ -g̃ closed but not
2τ -α closed and not 2τ -semi closed. From example 3.7, the set {b} is α closed and
semi closed but not g̃-closed.

Remark 3.11. The concept of generalized closed sets in N -topological space can be
described in the diagram below where the reversible implication is not possible.
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4 Characterization of Nτ-g̃ closed sets

In this section, we introduce Nτ#gs-ker(A) and discuss the essential conditions for
Nτ -g̃ closed sets in terms of Nτ#gs-ker(A).

Definition 4.1. Let A be a subset of N -topological space (X,Nτ), then Nτ#gs-
ker(A) is defined as the intersection of all Nτ -#g semi open subsets of X containing
A.

Lemma 4.1. A subset A of an N -topological space (X,Nτ) is Nτ -g̃ closed if and
only if Nτ -cl(A) ⊆ Nτ#gs-ker(A).

Proof. Let A is Nτ -g̃ closed in (X,Nτ), then for every Nτ -#gs open set U containing
A, Nτ -cl(A) ⊆ U . Assume x ∈ Nτ -cl(A) and if x /∈ Nτ#gs-ker(A), then there exist
a Nτ -#gs open set U containing A such that x /∈ U implies x /∈ Nτ -cl(A). This is a
contradiction to our assumption. Conversely, if Nτ -cl(A) ⊆ Nτ#gs-ker(A) and U is
a Nτ -#gs open set containing A, then Nτ -cl(A) ⊆ Nτ#gs-ker(A) ⊆ U . Therefore A
is Nτ -g̃ closed. � The following remarks are similar to the topological results of
Dontchev [2].

Remark 4.2. Let x be a point of (X,Nτ). Then {x} is either Nτ -nowhere dense or
Nτ -pre open.

Remark 4.3. In remark 4.2, the decomposition of an N -topological space (X,Nτ),
X = X1∪X2, where X1 = {x ∈ X : {x} is Nτ -nowhere dense} and X2 = {x ∈ X : {x}
is Nτ -pre open}.

Theorem 4.2. For every subset A of an N -topological space (X,Nτ), X2 ∩ Nτ -
cl(A) ⊆ Nτ#gs-ker(A).

Proof. Let x ∈ X2∩Nτ -cl(A), if x /∈ Nτ#gs-ker(A), then there exist a Nτ -#gs open
set U containing A such that x /∈ U implies X \U is a Nτ -#gs closed set containing

x. Since x ∈ X2 ∩ Nτ -cl(A), Nτ -int(Nτ -cl({x})) ∩ A 6= f� . Thus there is a point
y ∈ Nτ -int(Nτ -cl({x})) ∩A ⊆ (X \ U) ∩A ⊆ (X \ U) ∩ U , which is a contradiction.

Theorem 4.3. A subset A of an N -topological space (X,Nτ) is Nτ -g̃ closed if and
only if X1 ∩Nτ -cl(A) ⊆ A.

Proof. Let A be a Nτ -g̃ closed set, if x ∈ X1∩Nτ -cl(A) implies x ∈ X1 and x ∈ Nτ -
cl(A). Since x ∈ X1, Nτ -int(Nτ -cl({x})) = f� , {x} is Nτ -semi closed. Since
every Nτ -semi closed set is Nτ -#gs closed, {x} is Nτ -#gs closed. If x /∈ A and
U = X \ {x}, U is a Nτ -#gs open set containing A and Nτ -cl(A) ⊆ U . This is a
contradiction. Conversely, assume X1∩Nτ -cl(A) ⊆ A and A ⊆ Nτ#gs-ker(A), then
X1∩Nτ -cl(A) ⊆ Nτ#gs-ker(A). Now Nτ -cl(A) = X ∩Nτ -cl(A) = (X1∪X2)∩Nτ -
cl(A) = (X1 ∩Nτ -cl(A)) ∪ (X2 ∩Nτ -cl(A)) ⊆ Nτ#gs-ker(A). Thus by lemma 4.1,
A is Nτ -g̃ closed.

The proof of the following theorems are obvious from the above theorems.

Theorem 4.4. The arbitrary intersection of Nτ -g̃ closed sets is Nτ -g̃ closed.
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Theorem 4.5. If A is Nτ -g̃ closed set and B is Nτ -closed set, then A ∩B is Nτ -g̃
closed.

Theorem 4.6. If A and B are two Nτ -g̃ closed sets, then A∪B is Nτ -g̃ closed set.

Theorem 4.7. If a set A is Nτ -g̃ closed, then Nτ -cl(A) \A contains no non empty
Nτ -closed set.

Proof. Suppose A is Nτ -g̃ closed in (X,Nτ) and F be a Nτ -closed subset of Nτ -
cl(A)\A, then F c is Nτ -#gs open and A ⊆ F c. From the definition of Nτ -g̃ closed set
it follows that Nτ -cl(A) ⊆ F c and F ⊆ (Nτ -cl(A))c. Therefore F ⊆ Nτ -cl(A)∩ (Nτ -

cl(A))c = f� and so F is an empty set. �

Remark 4.4. The converse of the above theorem need not be true. By example 3.7,
if A = {b}, then cl(A) \A = {c} does not contain non empty closed set also A is not
g̃-closed in (X, τ).

Theorem 4.8. A set A is Nτ -g̃ closed if and only if Nτ -cl(A) \ A contains no non
empty Nτ -#gs closed set.

Proof. Assume A is Nτ -g̃ closed in (X,Nτ) and F is a Nτ -#gs closed subset of
Nτ -cl(A) \ A, then F c is Nτ -#gs open containing A and Nτ -cl(A) ⊆ F c. That is,

F ⊆ (Nτ -cl(A))c. Therefore F ⊆ Nτ -cl(A) ∩ (Nτ -cl(A))c = f� and F is an empty
set. Conversely, let Nτ -cl(A) \A contains no non empty Nτ -#gs closed set and S be
Nτ -#gs open set containing A in (X,Nτ). Suppose Nτ -cl(A) is not a subset of S,
then Nτ -cl(A) ∩ Sc is a non empty Nτ -#gs closed subset of Nτ -cl(A) \ A, which is
a contradiction. Therefore A is Nτ -g̃ closed in (X,Nτ). �

Theorem 4.9. If A is a Nτ -g̃ closed set and A ⊆ B ⊆ Nτ -cl(A), then B is also
Nτ -g̃ closed.
Proof: Let A be a Nτ -g̃ closed set and U be any Nτ -#gs open set containing B, then
Nτ -cl(B) ⊆ Nτ -cl(A) ⊆ U . Therefore Nτ -cl(B) ⊆ U and hence B is Nτ -g̃ closed.

Theorem 4.10. If A is Nτ -#gs open and Nτ -g̃ closed, then A is Nτ -closed.

Proof. Since A is Nτ -#gs open, Nτ -cl(A) ⊆ A. Therefore Nτ -cl(A) = A and hence
A is Nτ -closed.

Theorem 4.11. For each x ∈ X, either {x} is Nτ -#gs closed, or {x}c is Nτ -g̃
closed.
Proof: If {x} is not Nτ -#gs closed in (X,Nτ), then {x}c is not Nτ -#gs open. The
only Nτ -#gs open set containing {x}c is the set X itself. Therefore Nτ -cl({x}c) ⊆ X
and so {x}c is Nτ -g̃ closed in (X,Nτ).

5 Conclusion and future work

A N -topological space is a new space containing N -topologies defined on a non-
empty set X. In this paper, we have attempted to define and establish N -topological
generalized closed sets in N -topological space. Moreover, we have proved that the
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collection of Nτ -g̃ closed sets form a topology on X. This can be extended to real-
life applications such as fuzzy topology, intuitionistic topology, nano topology, soft
topology, etc. It also can open up doors to research areas like supra topology, digital
topology, and so on.
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