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Abstract. In this paper, we define power sums, which are generalized par-
allel sums, on symmetric cones. It is shown that power sums correspond
naturally to the synthesized resistance of series parallel circuits. We also
discuss the relation of power sums with arithmetic, geometric, harmonic,
and α-power means, and compare their monotone functions on symmetric
cones, where α represents the dualistic structure on information geometry.
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1 Introduction

Operator means on positive operators have been studied widely. Moreover, arithmetic,
geometric, and harmonic means are well known means on positive operators [10, 3, 4].
α-power mean (or power mean) is a generalized geometric mean, and characterizes
the mean between the arithmetic and harmonic means[13, 6, 9, 8]. On symmetric
cones, the α-power mean is the midpoint on the α-geodesic connecting two points,
where α is the parameter of dualistic structure on information geometry [12, 1].

Parallel sum is half of the harmonic mean, and is investigated relative to operator
means on positive matrices [11, 2]. However, few literatures appear to have treated the
sum as being defined by the normalized geometric mean arising from the difficulty of
the preservation of convergence, and the sum being defined by the normalized α-power
mean because of the non-continuity of parameterized sums.

The paper is organized as follows. First, we recall the previous results on sym-
metric cones and define the operator monotone function that generates the α-power
sum. Next, we define the α-power sum that corresponds to the arithmetic and the
parallel sum for α = 1,−1, respectively, and compare its monotone function with the
other sums and means on symmetric cones.

Parallel sum for scalars represents the synthesized resistance of a parallel circuit.
This study demonstrates that the α-power sum corresponds naturally to an α-series
parallel circuit for −1 ≤ α ≤ 1. An α-series parallel circuit is a series and a parallel
circuit for α = 1,−1, respectively. Finally, we demonstrate that a series circuit
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continuously deforms into a parallel circuit, when the resistance elements have fixed
resistivity and cross-sectional areas.

Applications of α-power sum are not restricted to the field of electric circuits. Its
application to complex systems and nonextensive statistical mechanics also seem to
exist, similar to the applications of α-power mean via information geometry.

2 Symmetric cones and operator monotone func-
tions

First, we will recall a few results on Jordan algebras and symmetric cones [12, 5, 14].
A vector space V is called a Jordan algebra if the product ∗ defined on V satisfies

(2.1) x ∗ y = y ∗ x, x ∗ (x2 ∗ y) = x2 ∗ (x ∗ y)

for all x, y ∈ V by setting x2 = x ∗x. Let V be an n-dimensional Jordan algebra over
R with an identity element e, i.e., x ∗ e = e ∗ x = x. An element x ∈ V is said to be
invertible if there exists a y ∈ R[x] such that x ∗ y = e, where R[X] is a polynomial
of X over R. As R[x] is an associative algebra, y is unique, and is called the inverse
of x and denoted by x−1 = y.

For x in V , let L(x) and P (x) be endomorphisms of V defined by

(2.2) L(x)y = x ∗ y, y ∈ V

(2.3) P (x) = 2L(x)2 − L(x2).

The following results about P , the quadratic representation of V , are known.

Proposition 1 [5] (i) An element x is invertible if and only if P (x) is invertible, and

(2.4) P (x)x−1 = x, P (x)−1 = P (x−1).

(ii) If x and y are invertible, so is P (x)y and

(2.5) (P (x)y)−1 = P (x−1)y−1.

(iii) For all x and y,

(2.6) P (P (y)x) = P (y)P (x)P (y).

Let Ω be an open convex cone on a vector space V . We denote the identity
component of the linear automorphism group of Ω by G. Ω is said to be homogeneous
if G acts on it transitively. The dual cone of Ω is defined by

(2.7) Ω∗ = {y ∈ V | (x, y) > 0,∀x ∈ Ω̄\{0}},

where ( , ) is an inner product on V , and Ω̄ is the closure of Ω. If Ω = Ω∗, a cone Ω is
said to be self-dual, whereas it is called symmetric if it is homogeneous and self-dual.
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Next, we consider a symmetric cone Ω with a set of positive operators. A binary
operation σ : (a, b) ∈ Ω̄ × Ω̄ 7→ aσb ∈ Ω̄ is called an operator connection if the
following requirements are fulfilled.

(i) Monotonicity; a ≤ c and b ≤ d imply aσb ≤ cσd,
(ii) Transformer inequality; P (c)(aσb) ≤ (P (c)(a))σ(P (c)(b)),
(iii) Semi-continuity; an ↓ a and bn ↓ b imply (anσbn) ↓ aσb,

where a ≤ b (resp. a < b) is b− a ∈ Ω̄ (resp. in Ω) [10, 12].
with regard to Transformer inequality, it is accepted that P (c)(aσb) = (P (c)(a))σ(P (c)(b))

for Ω. If normalization eσe = e is satisfied, the operator connection σ is called an
operator mean (or a mean).

Let x =
∑r
i=1 λipi be a spectral decomposition of x ∈ V , where r and {p1, . . . , pr}

are the rank and a Jordan frame of V , respectively, and λ1, . . . , andλr are the eigen-
values of x [5]. For a function f(t) on an interval I ⊆ R, f(x) is defined by

(2.8) f(x) =

r∑
i=1

f(λi)pi,

if λ1, . . . , λr ∈ I. A function f(t) on an interval I ⊆ R satisfying the Inequation (2.9)
is called an operator monotone function on I.

(2.9) a ≤ b⇒ f(a) ≤ f(b),

where a and b ∈ Ω have eigenvalues on I, respectively.
It is known that α-power mean on Ω is generated by

(2.10) aσ(α)b = P (a
1
2 )f (α)(P (a−

1
2 )b), −1 ≤ α ≤ 1,

where f is an operator monotone function defined by

(2.11) f (α)(t) =

(
1 + tα

2

) 1
α

(α 6= 0), f (0)(t) =
√
t

[9, 12]. The arithmetic, geometric, and harmonic means are described by aσ(1)b,
aσ(0)b, and aσ(−1)b, respectively. Especially, for positive definite symmetric matrices
A and B, they are denoted as:

(i) Arithmetic mean; Aσ(1)B = (A+B)/2,

(ii) Geometric mean; Aσ(0)B = A#B = A
1
2 (A− 1

2BA− 1
2 )

1
2A

1
2 ,

(iii) Harmonic mean; Aσ(−1)B = ((A−1 +B−1)/2)−1,

(iv) α-power mean; Aσ(α)B = A
1
2 ((I + (A− 1

2BA− 1
2 )α)/2)

1
αA

1
2 ,

where I is the identity matrix. For scalar A and B, the geometric mean is A#B =√
AB, and the α-power mean is Aσ(α)B = ((Aα +Bα)/2)

1
α .

3 α-power sums

We propose to define the α-power sum via an operator monotone function, which
interpolates the generalized sum between the arithmetic and parallel sums.
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For −1 ≤ α ≤ 1, a function

(3.1) f (α)(t) =
(1 + t)1+α

1 + tα
, t > 0

is an operator monotone function with t ∈ {t|tα−αtα−1 +α+ 1 > 0}. It follows from
df (α)/dt > 0 that (3.1) is a monotone increasing and an operator monotone function
with t ∈ {t|tα − αtα−1 + α+ 1 > 0}.

For example, Function (3.1) is operator monotone with t > 0 as −1 ≤ α ≤ 0,
α = 1; therefore, t > 0.0398 when α = 0.1 and similarly, t > 0.0006 when α = 0.9,
respectively.

Hence, Function (3.1) is obviously monotone increasing and operator monotone
with α.

Definition 1 Let f (α)(t) be a function defined by Equation (3.1). For −1 ≤ α ≤ 1,
we define the α-power sum :(α) of a and b ∈ Ω by

(3.2) a :(α) b = P (a
1
2 )f (α)(P (a−

1
2 )b).

Theorem 1 The α-power sum :(α) of a and b ∈ Ω corresponds to the arithmetic sum
a + b for α = 1, and to the parallel sum a : b = (a−1 + b−1)−1 for α = −1. Then,
0-power sum a :(0) b is the arithmetic mean (a+ b)/2.

proof For α = 1, we have f (1)(t) = 1 + t. From Equations (2.2), (2.3), and (2.4),
we obtain

(3.3) a :(1) b = P (a
1
2 )(e+ P (a−

1
2 )b) = a+ b.

For α = −1, we have f (−1)(t) = t/(1 + t). From Equations (2.2), (2.3), (2.4), (2.5),
and (2.6), we obtain

(3.4) a :(−1) b = P (a
1
2 )P ((P (a−

1
2 )b)

1
2 )(e+ P (a−

1
2 )b)−1

= P (a
1
2 )(P ((P (a−

1
2 )b)−

1
2 )(e+ P (a−

1
2 )b))−1

= P (a
1
2 )((P (a−

1
2 )b)−1 + e)−1 = (P (a−

1
2 )(P (a

1
2 )b−1 + e))−1

= (a−1 + b−1)−1.

For α = 0, the operator monotone function is f (0)(t) = (1 + t)/2. Thus, 0-power sum
a :(0) b is arithmetic mean.

From Theorem 1 we have the following.

Corollary 1 For positive definite symmetric matrices A and B, α-power sums are

(i) Arithmetic sum; A :(1) B = A+B,

(ii) 0-power sum; A :(0) B = (A+B)/2 (arithmetic mean),

(iii) Parallel sum; A :(−1) B = (A−1 +B−1)−1 (half of the harmonic mean),
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(iv) α-power sum; A :(α) B =

A
1
2 (I + (A− 1

2BA− 1
2 )α)−

1
2 (I +A− 1

2BA− 1
2 )1+α(I + (A− 1

2BA− 1
2 )α)−

1
2A

1
2 .

For scalar A and B, the α-power sum is

(3.5) A :(α) B =
(A+B)1+α

Aα +Bα
.

The generalized sum diverges as α = 0 if it is defined by (Aα +Bα)1/α, which is the
α-power mean without normalization. The α-power sum obtained by using Equations
(3.1) and (3.2) possesses continuity at α = 0. It satisfies (i) Monotonicity for elements
with eigenvalues on the interval {t|tα − αtα−1 + α + 1 > 0}. It also satisfies (ii)
Transformer inequality and (iii) Semi-continuity on Ω̄ (resp. Ω).

4 Series parallel circuits realizing α-power sums

It is well known that the resistance of a series circuit realizes the arithmetic sum,
whereas that of a parallel circuit realizes the parallel sum. In this section, we describe
series parallel circuits that realize the α-power sums.

Let the symbol of a parallel sum A : B also be a circuit connecting two resistances
A and B in parallel.

Let R1, R2 > 0 be the resistances in an electric circuit. We assume that the
resistances R1, R2 consist of elements with fixed resistivity 1, with cross-sectional
areas of 1, and that their lengths are R1 and R2 > 0, respectively. For each j = 1, 2,
with common length Rj and cross-sectional areas R1/(R1+R2) and R2/(R1+R2), the
two resistances are (R1 +R2)R−1

1 Rj and (R1 +R2)R−1
2 Rj , respectively. We provide

a deformation of the resistances (R1 + R2)R−1
1 Rj and (R1 + R2)R−1

2 Rj for j = 1, 2
on which increasing rates of cross-sectional areas coincide with the decreasing rates
of lengths (See Corollary 4). Then, we obtain the next theorem.

Theorem 2 Let R1, R2 > 0 be constant real numbers, and for −1 ≤ α ≤ 1,

(4.1) Rij =

(
R1 +R2

Ri

)α
Rj , i, j = 1, 2

be the resistances in an electric circuit. Then, the synthetic resistance of the series
circuit connecting the parallel circuits, R11 : R21 and R12 : R22, which we call the
α-series parallel circuit, is the α-power sum of R1 and R2, i.e.,

(4.2) R1 :(α) R2 =
(R1 +R2)1+α

Rα1 +Rα2
.

Moreover, the α-series parallel circuit is the balanced Wheatstone bridge for each α.

The circuit shown in Figure 1 is the Wheatstone bridge, which is called balanced if an
electric current at point A is zero for a non-zero voltage input. R11/R12 = R21/R22

holds true if and only if the Wheatstone bridge is balanced [7].
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Figure 1: The Wheatstone bridge

Proof of Theorem 2 It follows from Equation (4.1) that the synthetic resistance
of the series circuit connecting R11 : R21 and R12 : R22 is

(4.3) R11 : R21 +R12 : R22 = (R−1
11 +R−1

21 )−1 + (R−1
12 +R−1

22 )−1

= ((R1 +R2)−αRα1R
−1
1 + (R1 +R2)−αRα2R

−1
1 )−1

+((R1 +R2)−αRα1R
−1
2 + (R1 +R2)−αRα2R

−1
2 )−1

= (R1 +R2)α(Rα1 +Rα2 )−1(R1 +R2) = (R1 +R2)1+α(Rα1 +Rα2 )−1.

The above corresponds to the right-hand side of Equation (4.2).
For any −1 ≤ α ≤ 1, we have,

(4.4)
R1

R2
=
R11

R12
=
R21

R22
.

Thus, the α-series parallel circuit in Theorem 2 is a balanced Wheatstone bridge.

Remark 1 For α = 1, we have,

(4.5) R1j : R2j = (R−1
1j +R−1

2j )−1 = (((R1+R2)R−1
1 Rj)

−1+((R1+R2)R−1
2 Rj)

−1)−1

= (R1 +R2)(R1 +R2)−1Rj = Rj , j = 1, 2

Then, the 1-series parallel circuit is equivalent to the series circuit connecting the
resistances R1 and R2.

Remark 2 For α = 0, we have,

(4.6) Rij = Rj , i, j = 1, 2.

Then, the 0-series parallel circuit is equivalent to the Wheatstone bridge that connects
two R1 and two R2 in parallel.

Remark 3 For α = −1, we have,

(4.7) Ri1 +Ri2 = (R1 +R2)−1RiR1 + (R1 +R2)−1RiR2 = Ri , i = 1, 2 .

Then, the (−1)-series parallel circuit is equivalent to a parallel circuit that connects
the resistances R1 and R2.
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Figure 2: The α-series parallel circuit

Figure 3: The series circuit (α = 1)

The α-series parallel circuit, the series circuit (i.e., 1-series parallel circuit), the 0-
series parallel circuit, and the parallel circuit (i.e., (−1)-series parallel circuit) are
shown in Figures 2, 3, 4, and 5, respectively.

The next corollary defines the continuous deformation of the circuit into a parallel
circuit, both connecting the resistances R1 and R2 with fixed resistivities and cross-
sectional areas.

Corollary 2 We suppose that resistances rij, i, j = 1, 2 comprise elements with fixed
resistivity 1 for all i, j and all −1 ≤ α ≤ 1, i.e., rij = Lij/Sij, where Lij and Sij are
the lengths and cross-sectional areas of rij, respectively. Let the lengths of rij be

(4.8) Lij =

(
Ri

R1 +R2

) 1−α
2

Rj , i, j = 1, 2,

and the cross-sectional areas of rij be

(4.9) Sij =

(
Ri

R1 +R2

)1− 1−α
2

=

(
Ri

R1 +R2

) 1+α
2

, i = 1, 2,

respectively. Then, the volumes of resistances rij, i, j = 1, 2 are constant values
RiRj/(R1 +R2) for all α, and rij = ((R1 +R2)/Ri)

αRj, i, j = 1, 2, respectively.
Proof of Corollary 2 The volumes of resistances rij are LijSij = RiRj/(R1 +R2),

i, j = 1, 2. The resistance values are rij = Lij/Sij = ((R1 +R2)/Ri)
αRj .

In Corollary 2 the sum of the volumes of r1j and r2j is Rj for j = 1, 2. The sum of the
volumes of ri1 and ri2 is Ri for i = 1, 2. The total volume of rij , i, j = 1, 2 is R1 +R2.
Thus, the deformation of the resistances due to the parameter α is realized as the
deformation of the α-series parallel circuits preserving the volume of the resistance
elements.
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Figure 4: The 0-series parallel circuit

Figure 5: The parallel circuit (α = −1)

5 Conclusions

In this paper, we defined α-power sum, which corresponds to the arithmetic and the
parallel sum for α = 1,−1, respectively, and compared its monotone function with
the other sums and means applicable on symmetric cones. We also demonstrated that
the α-power sum corresponds naturally to the α-series parallel circuit, which is the
series and the parallel circuit for α = 1,−1, respectively.

The α-power mean is mostly investigated with respect to the dualistic structure
on information geometry. For future work, the remaining topic of the information
geometrical characterization of α-power sum can be explored.
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