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Abstract

Some recent progress in the integration of Poisson systems via the mid–point
rule and Runge–Kutta algorithm are discussed and some of their properties are
pointed out.
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1 Introduction

In the last time many dynamical systems have been found to be Hamilton–Poisson
systems. These include the Euler equations for the free rigid body, the Maxwell–Vlasov
equations from plasma physics, the Maxwell–Bloch equations from laser–matter dy-
namics and others, see for details [4] and [6]. It is an interesting and very tempting
problem to try to numerically integrate these Hamilton–Poisson systems such that the
corresponding algorithms to preserve as much as possible from their Poisson pictures.

The goal of our paper is to present some recent progress in the integration of
Poisson systems via the mid–point rule and Runge–Kutta algorithm and to point out
some of their properties.

2 Hamilton–Poisson systems

Let P be a smooth n–dimensional manifold and C∞(P,R) the space of smooth (=
C∞) real valued functions defined on P . Consider a given bracket operation denoted

{·, ·}: C∞(P,R)× C∞(P,R) → C∞(P,R).

Definition 2.1. The pair (P, {·, ·}) is called a Poisson manifold if {·, ·} satisfies:
(PB1) bilinearity, i.e. {·, ·} is R–bilinear.
(PB2) anticommutativity, i.e. {f, g} = −{g, f} for every f, g ∈ C∞(P,R).
(PB3) Jacobi’s identity, i.e. {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0 for every

f, g, h ∈ C∞(P,R).
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(PB4) Leibniz’ rule, i.e. {fg, h} = f{g, h}+ g{f, h} for every f, g, h ∈ C∞(P,R).
Conditions (PB1)–(PB3) make (C∞(P,R), {·, ·}) into a Lie algebra and moreover it
is not hard to see that every Poisson manifold is essentially a union of symplectic
manifolds which fit together in a smooth way.

If (P, {·, ·}) is a Poisson manifold, then because of (PB1) and (PB4), there is a
tensor field B on P , assigning to each x ∈ P a linear map

B(x): T ∗x P → TxP

such that
{f, g}(x) = 〈B(x) · df(x), dg(x)〉.

Here 〈·, ·〉 denotes the natural pairing between vectors and covectors. Because of
(PB2), B(x) is antisymmetric. Letting xi, i = 1, 2, . . . , n, denote local coordinates
on P we have:

{f, g} = Bij ∂f

∂xi

∂g

∂xj
.

Definition 2.2. Let (P1, {·, ·}1) and (P2, {·, ·}2) be Poisson manifolds. A mapping
φ:P1 → P2 is called Poisson if for all f, g ∈ C∞(P,R) we have

{f, g}2 ◦ φ = {f ◦ φ, g ◦ φ}1,

or equivalently
JB1J

T = B2,

where J is the Jacobian matrix associated to φ. Locally the above relation can be
written in the following form:

Bij
1 (x)

∂yk

∂xi
· ∂yl

∂xj
= Bkl

2 (x).

Definition 2.3. An Hamilton–Poisson system is a triple (P, {·, ·},H), where (P, {·, ·})
is a Poisson manifold and H is a smooth real valued function defined on P called the
Hamiltonian or the energy. Its dynamics is described by the integral curves of the
Hamiltonian vector field XH defined by

XH(f) = {H, f},

or locally
ẋi = {xi,H}, i = 1, 2, . . . , n.

Moreover a Casimir of our configuration is a smooth function C ∈ C∞(P,R) such
that

{C, f} = 0

for each f ∈ C∞(P,R).
Example 2.1. (the free rigid body) The Euler angular momentum equations of the
free rigid body are written in the following form

(2.1)





ṁ1 = a1m2m3

ṁ2 = a2m1m3

ṁ3 = a3m1m2,
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where
a1 =

1
I3
− 1

I2
, a2 =

1
I1
− 1

I3
, a3 =

1
I2
− 1

I1
,

I1, I2, I3 being the components of the inertia tensor and we suppose as usually that
I1 > I2 > I3.

The free rigid body is a Hamilton–Poisson system with the phase space P = R3,
the Poisson bracket given by

(2.2) {f, g}RB(m) = −m · (∇f ×∇g)

and the Hamiltonian H defined by

(2.3) H(m1,m2,m3) =
1
2

(
m2

1

I1
+

m2
2

I2
+

m2
3

I3

)
.

Moreover, a Casimir of our configuration (R3, {·, ·}RB) is given by the function

(2.4) C(m1,m2,m3) =
1
2
(m2

1 + m2
2 + m2

3).

It follows that the trajectories of motion are intersections of the ellipsoids

H = constant

with the spheres
C = constant.

There is also a very nice interpretation of the rigid body bracket (2.2) namely, the rigid
body bracket (2.2) is the minus–Lie–Poisson structure on so(3)∗. Indeed, let SO(3)
be the Lie group of all linear orientation preserving orthogonal transformations of R3

to itself. Its Lie algebra so(3) is the set of all 3× 3 skew–symmetric matrices. It can
be canonically identified with R3 via the map.

∧: v =




p
q
r


 ∈ R3 7→ v̂ =




0 −r q
r 0 −p
−q p 0


 ∈ so(3).

Then the Lie bracket on so(3) corresponds to the cross product on R3 in the sense
that

[v̂, ŵ] = ̂v × w.

The dual of so(3), i.e., so(3)∗ can be also identified with R3 and then the minus–Lie–
Poisson structure on so(3)∗ is given by the matrix

ΠRB =




0 −m3 m2

m3 0 −m1

−m2 m1 0


 ,

which is nothing else than the Rigid–Body bracket (2.2) as easily can be verified.
Example 2.2. (the Maxwell–Bloch equations). The 3–dimensional real valued Maxwell–
Bloch equations from laser matter dynamics are usually written as
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(2.5)





ẋ1 = x2

ẋ2 = x1x3

ẋ3 = −x1x2.

They have a Hamilton–Poisson realization with the phase space P = (R3
[·,·])

∗, where
R3

[·,·] is the Lie algebra R3 with the bracket operation given by

[e1, e2] = e3, [e1, e3] = e2, [e2, e3] = 0,

{e1, e2, e3} being the canonical basis of R3, the minus Lie–Poisson structure given by
the matrix

(2.6) ΠMB =




0 −x3 x2

x3 0 0
−x2 0 0




and the Hamiltonian H defined by:

(2.7) H(x1, x2, x3) =
1
2
x2

1 + x3.

Moreover, a Casimir of our configuration is given by

(2.8) C(x1, x2, x3) =
1
2
(x2

2 + x2
3)

Theorem 2.1. ([4], [6]). Let (P, {·, ·},H) be a Hamilton–Poisson system and φt the
flow for XH . Then we have:

(i) Each φt is a Poisson map.
(ii) φt preserves H for each t ∈ R .
(iii) Each φt preserves the symplectic leaves of the Poisson manifold (P, {·, ·}) .

3 Mid–point rule

Let us start with a Hamilton–Poisson system with the phase space P = Rn, the
Poisson structure given by the matrix Π and the Hamiltonian H. Its dynamics can
be written in the following form

(3.1) ẋ = Π(x) · ∇H(x).

We are interested in the numerical integration of this system via the mid–point rule.
It is an implicit recurrence given in our case by

(3.2)
xk+1 − xk

h
= Π

(
xk + xk+1

2

)
· ∇H

(
xk + xk+1

2

)
,

where h is the size step (or time step). If h is small enough, then (3.2) defines a
diffeomorphism φh

H via

(3.3) xk+1 = φh
H(xk).
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We compute the Fréchet derivative Dφh
H(x) as follows. By definition, y = φh

H(x) is
the unique solution of the implicit equation

(3.4) F (x, y) def= y − x− hΠ
(

x + y

2

)
· ∇H

(
x + y

2

)
= 0.

Differentiating F (x, φh
H(x)) = 0 gives:

(3.5) D1F + D2F ◦Dφh
H = 0,

where DiF , i = 1, 2, denote the partial Fréchet derivatives. For h small enough, D2F
has an inverse, and (3.5) may be written as

(3.6) Dφh
H = −(D2F )−1 ◦ (D1F ).

For the particular case Π(x) = Π = constant it is easy to see that

D1F = −In − h

2
ΠHxx

(
x + φh

H(x)
2

)

and

D2F = In − h

2
ΠHxx

(
x + φh

H(x)
2

)
.

Letting

Q(x) def= Hxx

(
x + φh

H(x)
2

)

denote the symmetric Hessian matrix, we obtain

(3.7) Dφh
H(x) =

[
In − h

2
ΠQ(x)

]−1 [
In +

h

2
ΠQ(x)

]
.

Now, following Austin, Krishnaprasad and Wang [1], we can prove:
Theorem 3.1. (Wang [11]). If Π(x) = Π = constant, then the mid–point integrator
(3.1) is a Poisson one.
Proof. We need to show that

Dφh
H(x)Π[Dφh

H(x)]T = Π.

Based on the above calculations, this reduces to showing that

[(In − h

2
ΠQ(x))−1(In +

h

2
ΠQ(x))]Π[(In − h

2
ΠQ(x))−1(In +

h

2
ΠQ(x))]T = Π

or equivalently

[In +
h

2
ΠQ(x)]Π[In +

h

2
ΠQ(x)]T = [In − h

2
ΠQ(x)]Π[In − h

2
ΠQ(x)]T .

This follows from the fact that ΠT = −Π and Q(x)T = Q(x). Indeed,

[In +
h

2
ΠQ(x)]Π[In +

h

2
ΠQ(x)]T = [In +

h

2
ΠQ(x)][In − h

2
ΠQ(x)] = Π− h

2
ΠQ(x)Π+
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+
h

2
ΠQ(x)Π− h2

4
ΠQ(x)ΠQ(x)Π = Π− h2

4
ΠQ(x)ΠQ(x)ΠQ(x)Π,

and similarly

[In − h

2
ΠQ(x)]Π[In − h

2
ΠQ(x)]T = [In − h

2
ΠQ(x)][Π +

h

2
ΠQ(x)Π] =

= Π +
h

2
ΠQ(x)Π− h

2
ΠQ(x)Π− h2

4
ΠQ(x)ΠQ(x)Π = Π− h2

4
ΠQ(x)ΠQ(x)Π,

as required.
In the particular case when

Π =
[

0n In

−In 0n

]

we again come upon Feng’s theorem, namely
Theorem 3.2. (Feng [2]). The mid–point integrator is a symplectic one. When Π(x)
is not a constant the mid-point rule is not in general a Poisson integrator.
Example 3.1. (Puta and Birtea [8]). Let us take the case of symmetric rigid body,
i.e. I2 = I3. Its dynamics is described by the equations:

(3.8)





ṁ1 = 0
ṁ2 = a2m1m3

ṁ3 = −a2m1m2.

Then the mid–point rule takes the following form

(3.9)





mk+1
1 = mk

1

mk+1
2 =

4mk
2 + 4ha2m

k
1mk

3 − h2a2
2(m

k
1)2mk

2

4 + h2a2
2(m

k
1)2

mk+1
3 =

4mk
3 − 4ha2m

k
1mk

2 − h2a2
2(m

k
1)2mk

3

4 + h2a2
2(m

k
1)2

.

A straightforward computation shows us that the algorithm (3.9) is not of Poisson
type. More precisely, it is of Poisson type if and only if h = 0.

Let F be a first integral of (3.1), i.e.

Ḟ = 0,

or equivalently

(3.10) (∇F )T Π∇H = 0.

Assuming F is also three times differentiable, then by Taylor’s formula we can expand
F around xk as:

F (xk+1) = F (xk) + (∇F (xk))T (xk+1 − xk) +
1
2
D2F (xk)(xk+1 − xk)(xk+1 − xk)
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(3.11) +
1
6
D3F (xk)(xk+1 − xk)(xk+1 − xk)(xk+1 − xk) + O(‖xk+1 − xk‖4).

It can be checked that when the mid–point rule (3.2) is plugged into (3.11) we get

(3.12) F (xk+1 − F (xk) =
1
24

D3F (xk)u · u · u + O(h4),

where

u = Π
(

xk+1 + xk

2

)
∇H

(
xk+1 + xk

2

)
.

Equation (3.12) is an error formula dues to Austin, Krishnaprasad and Wang [1]
for conserved quantities of (3.2), which contains only third or higher order terms. It
follows that the mid–point rule (3.2) preserves exactly and conserved quantity having
only linear and quadratic terms, including Casimir functions and the Hamiltonian of
(3.1). So we have proved:
Theorem 3.3. (Austin, Krishnaprasad and Wang [1]). The mid–point integrator (3.2)
conserves all Casimir functions and the Hamiltonian H of (3.1) if they contain only
linear and quadratic terms.
Example 3.2. In the case of the free rigid body (see Example 2.1), the mid–point
rule can be written in the following form

(3.13)





mk+1
1 −mk

1

h
= a1 · mk+1

2 + mk
2

2
· mk+1

3 + mk
3

2

mk+1
2 −mk

2

h
= a2 · mk+1

1 + mk
1

2
· mk+1

3 + mk
3

2

mk+1
3 −mk

3

h
= a3 · mk+1

1 + mk
1

2
· mk+1

2 + mk
2

2
.

Given mk
1 ,mk

2 ,mk
3 , equations (3.13) are solved for mk+1

1 ,mk+1
2 ,mk+1

3 . It follows via
the above theorem that this integrator preserves both H and C given respectively by
(2.3) and (2.4), but doesn’t preserve the Poisson structure (2.2).
Example 3.3. In the case of 3–dimensional real valued Maxwell–Bloch equations (see
Example 2.2), the mid–point rule can be written in the following form

(3.14)





xk+1
1 − xk

1

h
=

xk+1
2 + xk

2

2

xk+1
2 − xk

2

h
=

xk+1
1 + xk

1

2
· xk+1

3 + xk
3

2

xk+1
3 − xk

3

h
= −xk+1

1 + xk
1

2
· xk+1

2 + xk
2

2
.

Given xk
1 , xk

2 , xk
3 , equations (3.14) are solved for xk+1

1 , xk+1
2 , xk+1

3 . It follows via Theo-
rem 3.3 that this integrator preserves both H and C, given respectively by (2.7) and
(2.8).
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4 Runge–Kutta algorithm

Let us start with the system of differential equations

(4.1) ẋ = f(x), x ∈ Rn.

Then the s–stage Runge–Kutta algorithm can be written in the following form

(4.2)





xk+1 = xk + h ·
s∑

i=1

bif(yi)

yi = xk + h ·
s∑

j=1

aijf(yj),

where 1 ≤ i ≤ s.
If our system (4.1) is Hamiltonian, i.e., it can be put in the equivalent form

(4.3)

{
q̇i = ∂H

∂pi

ṗi = −∂H
∂qi

, i = 1, 2, . . . , n,

then we have the following result proved independently by Lasagni [3], Sanz–Serna
[9] and Suris [10].
Theorem 4.1. (Lasagni, Sanz–Serna and Suris) Assume that the coefficients of the
s–stage Runge–Kutta algorithm satisfy the relations

biaij + bjaji − bibj = 0, 1 ≤ i, j ≤ s.

Then the integrator (4.1) is a symplectic (so a Poisson) one.
Proof. We shall sketch the proof following Sanz–Serna [9]. For beginning let us write
the relations (4.2) for our particular system (4.3). We get

(4.4)





pk+1 = pk + h ·
s∑

i=1

bif(Pi, Qi),

qk+1 = qk + h ·
s∑

i=1

big(Pi, Qi),

(4.5)





Pi = pk + h ·
s∑

j=1

aijf(Pj , Qj),

Qi = qk + h ·
s∑

j=1

aijg(Pj , Qj),

where f and g respectively denote the vectors with components−∂H/∂qi and ∂H/∂pi.
We employ also the notation

ri = f(Pi, Qi) and li = g(Pi, Qi)

for the slope of the stages. Differentiate (4.4) and form the exterior product to arrive
at

dpk+1∧dqk+1 = dpk ∧dqk +h

s∑

i=1

bidri∧dqk +h

s∑

j=1

bjdpk ∧dlj +h2
s∑

i,j=1

bibjdri∧dlj .
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Our next step is to eliminate dri ∧ dqk and dpk ∧ dlj from this expression. This is
easily achieved by differentiating (4.5) and taking the exterior product of the result
with dri, dlj . The outcome of the elimination is

dpk+1 ∧ dqk+1 − dpk ∧ dqk = h

s∑

i=1

bi[dri ∧ dQi + dPi ∧ dli]−

−h2
s∑

i,j=1

(biaij + bjaji − bibj)dri ∧ dlj .

The second term in the right hand side vanishes by hypothesis. To finish the proof is
then sufficient to show that, for each i,

dri ∧ dQi + dPi ∧ dli = 0.

In fact, dropping the subscript i that numbers the stages, we can write

dr ∧ dQ + dP ∧ dl =
n∑

µ=1

(drµ ∧ dQµ + dPµ ∧ dlµ) =

=
n∑

µ,ν=1

(
∂fµ

∂pν
dPν ∧ dQν +

∂fµ

∂qν
dQν ∧ dQµ +

∂gµ

∂pν
dPµ ∧ dPν +

∂gµ

∂qν
dPµ ∧ dQν

)
.

To see that this expression vanishes, express fµ and gν as derivatives of H and recall
the skew–symmetry of the exterior product.

q.e.d.

If the system (4.1) is of Poisson type, i.e. it is equivalent to

ẋ = Π · ∇H,

then we have:
Theorem 4.2. (McLachlan [5]) If Π is constant, then the s–stage Runge–Kutta in-
tegrator is of Poisson type.
Proof. It is known that s–stage Runge–Kutta algorithm is invariant under linear
maps, that is, changing variables in the map or in the vector field results in the
same Runge–Kutta map. s–stage Runge–Kutta for the Poisson system is, therefore,
equivalent to s–stage Runge–Kutta for the system in canonical form with Poisson
tensor given by the matrix: 


0 In 0
−In 0 0
0 0 0n


 .

For this system, s–stage Runge–Kutta algorithm leaves the last n variables fixed,
so it is equivalent to s–stage Runge–Kutta for a Hamiltonian system in the first
m variables, for which it is a symplectic map and so a Poisson map. Thus, s–stage
Runge–Kutta for the original system preserves the symplectic leaves and is symplectic
on them as required.
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q.e.d.

If the matrix Π is not constant, then s–stage Runge–Kutta algorithm is not in
general a Poisson one.
Example 4.1. (Puta [7]) Let us consider the Hamilton–Poisson system

(
R2, Π =

[
0 x2

−x2 0

]
,H(x1, x2) = Ax1 + Bx2 + C, A 6= 0

)
.

Then the 1–stage Runge–Kutta algorithm is not of Poisson type. Indeed, the dynamics
of our system is given by {

ẋ1 = Bx2

ẋ2 = −Ax2.

Then the 1–stage Runge–Kutta algorithm with size step h is given by

(4.6)





xk+1
1 = xk

1 +
hbB

1 + haA
xk

2

xk+1
2 =

(
1− hbA

1 + haA

)
.

Now, an easy computation shows us that it doesn’t preserve the Poisson tensor Π.
Let us mention also that the algorithm (4.6) is also not energy preserving. Moreover
the following assertions are equivalent:

(i) (4.6) is a Poisson integrator;
(ii) (4.6) is an energy integrator;
(iii) A = 0.
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