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Abstract

This paper present the analogous of the Helmholtz conditions for
first and second order difference equations systems. We obtain variational
implicit algoritms used in numerical analysis and numerical integration
schemes for Hamilton systems. We give some representative examples.
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1 Introduction

The inverse problem of the calculus of variations is a subject which has been
studied over several decades and an important research field. For first and second
order ordinary differential equations there are numerous contributions and we
can mention the following papers [3], [4], [8].

The purpose of the present paper is to extend this analysis and to derive the
Helmholtz conditions for difference equations systems too. We derive the first and
second order variational relations for Lagrangians that depend on a set of points
(qk)k∈Z on a differentiable submanifold Γ ⊂ Q×B. In these conditions we formu-
late the d’Alembert–Lagrange principle which leads us for L(k) = tr(qkJqT

k+1),
with qk ∈ O(n), to the discrete Euler equations for the rigid body [9].

For a function system {Fi(k)}i=1,n with Fi(k) = Fi(qk−1, qk, qk+1) we deduce
the discrete Helmholtz conditions.

These conditions are satisfied for {ei(k)}i=1,n where ei(k) come from the
variational principle for L(k). We are now able to write the discrete Hamilton
equations used in numerical algorithms for Hamiltonian systems.

In the final section we give the Helmholtz conditions for some examples of
difference equations systems.
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2 The first and second variation formulae

Let Q be a n-dimensional differentiable manifold and B a m -dimensional dif-
ferentiable manifold.

Let (qk)k∈Z be a set of points from Q and S : Q × Q → B a differentiable
function denote S(k) = S(qk, qk+1).

We consider L : Q×B → R where

L(k) = L(qk, S(k))

The functional
A(q) =

∑

k∈Z

L(k)(1)

is called the action of L.
For qk ∈ Q let λ : Q× I → Q where I = (−a, a) ∈ R, denote with λ(qk, ε) =

qk(ε) and let be

ηk(ε) =
∂λ(qk, ε)

∂ε
ξk(ε) =

∂2λ(qk, ε)
∂ε2

ηk = ηk(ε)|ε=0 ξk = ξk(ε)|ε=0

Proposition 1. The first variation of the functional A(q) with respect to λ is

δA(q, η) =
∑

k∈Z

ei(k)ηi
k(2)

The second variation of A(q) with respect to λ is

δ2A(q, η, ξ) =
∑

k∈Z

ei(k)ξi
k +

∑

k∈Z

[
Hess(1)L(k)(ηk, ηk) +(3)

+ 2Hess(2)L(k)(ηk, ηk+1)
]

where

ei(k) =
∂L(k)
∂qi

k

+
∂L(k)
∂Sα(k)

∂Sα(k)
∂qi

k

+
∂L(k − 1)
∂Sα(k − 1)

∂Sα(k − 1)
∂qi

k

(4)

Hess(1)L(k)(ηk, ηk) =
∂ei(k)
∂qj

k

ηi
kηj

k(5)

Hess(2)L(k)(ηk, ηk+1) =
∂

∂qi
k

(
∂L(k)
∂Sα(k)

∂Sα(k)
∂qj

k+1

)
ηi

kηj
k+1(6)

We can prove this proposition if we compute the first and second derivative
with respect to ε for

A(q(ε)) =
∑

k∈Z

L(qk(ε), S(qk(ε), qk+1(ε)))
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For L(k) = L(qk, qk+1) we obtain

ei(k) =
∂L(k)
∂qi

k

+
∂L(k − 1)

∂qi
k

(7)

Hess(1)L(k)(ηk, ηk) =

(
∂2L(k)
∂qi

k∂qj
k

+
∂2L(k − 1)

∂qi
k∂qj

k

)
ηi

kηj
k(8)

Hess(2)L(k)(ηk, ηk+1) =
∂2L(k)

∂qi
k∂qj

k+1

ηi
kηj

k+1(9)

For L : Q×Rn → R with S(qk, qk+1) = q1
k = qi

k+1− qi
k results [1], [2], [5], [7]

ei(k) =
∂L(k)
∂qi

k

− ∂L(k)
∂q1i

k

+
∂L(k − 1)

∂q1i
k−1

(10)

Hess(1)L(k)(ηk, ηk) =

(
∂2L(k)
∂qi

k∂qj
k

+
∂2L(k − 1)
∂q1i

k−1∂q1j
k−1

)
ηi

kηj
k(11)

Hess(2)L(k)(ηk, η1
k) =

(
∂2L(k)
∂qi

k∂q1j
k

− ∂2L(k)
∂q1i

k−1∂q1j
k

)
ηi

kη1j
k(12)

We define the one-forms β associated to L(k)

β(k) =
∂L(k − 1)
∂Sα(k − 1)

∂Sα(k − 1)
∂qi

k

dqi
k

and the submanifold Γ ⊂ Q×B

Γ =
{
(qk, S(qk, qk+1)), ei(k) = 0 i = 1, n

}

Proposition 2. The submanifold Γ is an isotopic submanifold with respect to
the two–form

Ω(k, k + 1) = dβ(k + 1)− dβ(k)

From this proposition follows that the Lagrangian L is a generating function
of Γ in the domain where Hess(2)L(k)(ηk, ηk+1) is nondegenerate.

3 The Lagrange–d’Alembert principle

We consider a set of functions fa : Q × B → R, a = 1, p, where fa(k) =
fa(qk, S(qk, qk+1)) with

rang

∣∣∣∣
∣∣∣∣
∂fa(k)
∂Sα(k)

∣∣∣∣
∣∣∣∣ = p < m

and the restrictions R ⊂ Q×B given by

R =
{
(qk, S(qk, qk+1)) , fa(k) = 0 , a = 1, p

}
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We define the virtual variation for R, λ(qk, ε) = qk(ε) that satisfy

∂fa(k)
∂Sα(k)

∂Sα(k)
∂qi

k

ηi
k = 0 a = 1, p(13)

The Lagrange–d’Alembert principle for the system (Q,L,R) system is:
The elements qk ∈ Q represents the motion of the (Q,L,R) system if

ei(k)ηi
k = 0(14)

for all virtual variations ηk for R.
From §3. (1) and (2) we deduce that the equations of the system described

above (Q, L,R) satisfies

ei(k) = µa ∂fa(k)
∂Sα(k)

∂Sα(k)
∂qi

k

i = 1, n(15)

fa(k) = 0

Using the Lagrange–d’Alembert principle for L : O(n)×O(n) → R with

L(k) = tr(qkJqT
k+1)(16)

where J is a symmetric positive matrix, we obtain Arnold equations [9]

Mk+1 = ωkMkω−1
k(17)

Mk = ωT
k J − Jωk

where ωk = qT
k qk−1 [5].

If qk = q(tk) with tk = t0 + kε, §3. (5) leads to the Euler equations of the
rigid body

4 The Helmholtz conditions for discrete second
order equations

The equations system that describe the motion ei(k) = 0 is caracterized by the
functions Fi(k) = Fi(qk−1, qk, qk+1), i = 1, n.

The inverse problem consist of finding a set of conditions for {Fi(k)}i=1,n in
order to get Fi(k) = ei(k) where ei(k) is the first variation of the Lagrangian
L(k). These conditions constitute the discrete variant of the Helmholtz condi-
tions for differential equations (that means the continuous case).

For λ : Q × I → Q with λ(qk, ε) = qk(ε), ε ∈ (−a, a) = I we define the
Fréchet derivative of Fi(k)

DFi(k)(η(k)) =
d

dε
Fi(qk−1(ε), qk(ε), qk+1(ε))

∣∣∣∣
ε=0

(18)

where η(k) = (ηk−1, ηk, ηk+1). From §3 (1) we obtain
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DFi(k)(η(k)) =
∂Fi(k)
∂qj

k−1

ηj
k−1 +

∂Fi(k)
∂qj

k

ηj
k +

∂Fi(k)
∂qj

k+1

ηj
k+1 i = 1, n(19)

The adjoint function of DFi(k)η(k) is:

D∗Fi(k)(η(k)) =
∂Fj(k − 1)

∂qi
k

ηj
k−1 +

∂Fj(k)
∂qi

k

ηj
k +

∂Fi(k + 1)
∂qi

k

ηj
k+1(20)

From §4. (2) and (3) we have

η̃i
kDFi(k)(η(k))− ηi

kD∗Fi(k)(η̃(k)) = ∆(η(k + 1), η̃(k + 1))−∆(η(k), η̃(k))

where

∆(η(k), η̃(k)) =
∂Fi(k − 1)

∂qj
k

ηi
k−1η̃

j
k −

∂Fi(k)
∂qj

k−1

ηi
kη̃j

k−1

The system is called selfadjoint if DFi(k) = D∗Fi(k), i = 1, n.
Proposition 3. The functions {Fi(k)}i=1,n are selfadjoint iff a)

∂Fi(k)
∂qj

k

=
∂Fj(k)

∂qi
k

;(21)

b)
∂Fi(k)
∂qj

k+1

=
∂Fj(k + 1)

∂qi
k

These conditions are the Helmholtz conditions for discrete systems.
Proposition 4. The functions ei(k), i = 1, n, given by §2. (4) satisfied §4. (4).
Proposition 5. A solution of the system §4. (4) is

Fi(k) =
∂ϕ(k)
∂qi(k)

+
∂ϕ(k − 1)

∂qi(k)
(22)

with ϕ(k) = ϕ(qk−1, qk).
Assuming a functions set {Fi(k)}i=1,n and F̃i(k) = cj

i (k)Fj(k) with det(cj
i (k)) 6=

0, ∀k ∈ Z.
Proposition 6. The function system

{
F̃i(k)

}
i=1,n

satisfies the selfadjoint con-

ditions iff
(

∂ch
i (k)

∂qj
k

− ∂ch
j (k)

∂qi
k

)
Fh(k) +

(
ch
i (k)δl

j − ch
j (k)δl

i

) ∂Fh(k)
∂ql

k

= 0(23)

(
∂ch

i (k)
∂qj

k+1

− ∂ch
j (k + 1)
∂qi

k

)
Fh(k + 1) + ch

i (k)
∂Fh(k)
∂qj

k+1

− ch
j (k + 1)

∂Fh(k + 1)
∂qi

k

= 0

The matrix (ci
j(k)) is called an integrant factor. In order to determine this

integrant factor it must be consider the special cases with functions of the fol-
lowing type ci

j(k, qk, qk+1).
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5 Hamilton equations

Let S : Q × Q → Rn, L : Q × Rn → R and L(k) = L(qk, S(qk, qk+1)). We
introduce

pα(k) =
∂L(k)
∂Sα(k)

α = 1,m(24)

L(k) is regular with respect to S(k) if

det

(
∂2L(k)

∂Sα(k)∂Sβ(k)

)
6= 0 ∀k ∈ Z(25)

Under that assumptions we can see that

Sα(k) = lα(qk, p(k))

If
H(k) = H(p(k), q(k)) = pα(k)lα(qk, p(k))− L(qk, l(qk, p(k)))(26)

we construct his action

H(k) =
∑

k∈Z

[pα(k)lα(qk, p(k))− L(qk, l(qk, p(k)))](27)

Proposition 7. The first variation of H(k) is

δH(k)(ξ, η) =
∑

k∈Z

[
hi(k)ηi

k + mα(k)ξα(k)
]

(28)

where

mα(k) = lα(k)− pβ(k)
∂eβ(k)
∂pα(k)

(29)

hi(k) = pα(k − 1)
∂eα(k)

∂qi
k

− pα(k)
∂eα(k + 1)

∂qi
k

Let Γ∗ ⊂ Q×Rm ×Rm∗ given by

Γ∗ = {(qk, S(k), p(k)), hi(k) = 0,mα(k) = 0}(30)

Using §5. (3) and (6) we see that Γ∗ is characterized by a set of discrete
equations – the discrete Hamilton equations

∂H(k)
∂qi

k

= pα(k)
∂Sα(k)

∂qi
k

+ pα(k − 1)
∂Sα(k − 1)

∂qi
k

(31)

∂H(k)
∂pα(k)

= Sα(k)

If S(k) = q1
k ∈ Rn, §5. (8) can be written in the following form [5]

pi(k − 1)− pi(k) =
∂H(k)
∂qi

k

(32)

qi
k+1 − qi

k =
∂H(k)
∂pi(k)

Such equations are used in numerical algorithms for solving first order dif-
ferential equations systems.
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6 The Helmholtz conditions for first order dif-
ference equations

The equations §5. (9) are in this case

F (k) = F i(k)ξi(k) G(k) = Gi(k)ηi
k(33)

where
F i(k) = F i(qk, pk, qk+1) Gi(k) = Gi(pk−1, qk, pk)(34)

We define the action of the pair (F (k), G(k))

A(F, G)(η, ξ) =
∑

k∈Z

[
F i(k)ξi(k) + Gi(k)ηi

k

]
(35)

The first variation for §6. (3) is

δA(F, G)(η, ξ, η̄, ξ̄) =
∑

k∈bfZ

[
DF i(k)ξi(k) + DGi(k)ηi

k + F i(k)ξ̄i(k) + Gi(k)ηi
k

]

(36)
where

DF i(k) =

(
∂F i(k)

∂qj
k

+
∂F i(k − 1)

∂qj
k

)
ηj

k +
∂F i(k)
∂pj(k)

ξj(k)

DGi(k) =
∂Gi(k)

∂qj
k

ηj
k +

(
∂Gi(k)
∂pj(k)

+
∂Gi(k + 1)

∂pj(k)

)
ξj(k)(37)

ξ̄i(k) =
∂2θi(pk, ε)

∂ε∂ε

∣∣∣∣
ε=0

η̄i
k =

∂2λi(qk, ε)
∂ε∂ε

∣∣∣∣
ε=0

with θ(p(k), 0) = p(k), λ(qk, 0) = qk.
We call the adjoint pair of (F (k), G(k)) the functions pair (F ∗(k), G∗(k))

given by
F ∗(k) = F j(k)ξj(k)− (Gj(k) + Gj(k + 1))ηj

k(38)

G∗(k) = −(F j(k) + F j(k − 1))ξj(k) + Gj(k)ηj
k

The first variation for F ∗(k) with respect to p(k) and for G∗(k) with respect
to qk are

δAp(F ∗)(ξ, ξ̄, η̄) =
∑

k∈Z

[
D∗F i(k)ξi(k) + F ∗(k)(ξ̄, η̄)

]
(39)

δAq(G∗)(η, ξ̄, η̄) =
∑

k∈Z

[
D∗Gi(k)ηi

k + G∗(k)(ξ̄, η̄)
]

where

D∗F i(k) =
∂F j(k)
∂pi(k)

ξj(k) +
(

∂Gj(k)
∂pi(k)

+
∂Gj(k + 1)

∂pi(k)

)
ηj

k(40)

D∗Gi(k) = −
(

∂F j(k)
∂qi

k

+
∂F j(k − 1)

∂qi
k

)
ξj(k) +

∂Gj(k)
∂qi

k

ηj
k
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The pair (F (k), G(k)) is selfadjoint if

D∗F i(k) = DF i(k) D∗Gi(k) = DGi(k) i = 1, n, k ∈ Z(41)

The relations §6. (5) and (8) implies (F (k), G(k)) to be self adjoint iff

∂F j(k)
∂pi(k)

=
∂F i(k)
∂pj(k)

∂Gj(k)
∂qi

k

=
∂Gi(k)

∂qj
k

(42)

∂F i(k)
∂qj

k

+
∂F i(k − 1)

∂qj
k

+
∂Gj(k)
∂pi(k)

+
∂Gj(k + 1)

∂pi(k)
= 0

i, j = 1, n, ∀k.
Proposition 8. The functions system

F i(k) = qi
k+1 − qi

k − h
∂H(k)
∂pi(k)

(43)

Gi(k) = pi(k)− pi(k − 1) + h
∂H(k)
∂qi

k

is selfadjoint.
This system represents the Euler implicit algorithm for numerical integration

of an Hamiltonian system.
Identically with the functions §6. (1) we can deduce that the functions system

F i(k) = F i(qk, pk, qk+1), Gi(k) = Gi(qk, pk, pk+1)(44)

is selfadjoint iff

∂F i(k)
∂pj(k)

=
∂F j(k)
∂pi(k)

,
∂Gi(k)

∂qj
k

=
∂Gj(k)

∂qi
k

,(45)

∂F i(k)
∂qj

k

+
∂F i(k − 1)

∂qj
k

+
∂Gj(k)
∂pi(k)

+
∂Gj(k − 1)

∂pi(k)
= 0

i, j = 1, n, ∀k.
Proposition 9. The system a).

F i(k) = qi
k+1 − f i(k)(46)

b).
Gi(k) = pi(k + 1)− gi(k)

where f i(k) = f i(qk) is selfadjoint iff

gi(k) =
(

2δj
i −

∂f j(k)
∂qi

k

)
pj(k) +

∂ψ(k)
∂qj

k

(47)

where ψ(k) = ψ(qk).
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It can be profed using §6. (12). The system §6. (14)b). is called the adjoint
of §6. (14)a)..

We can give some examples. For the logistic function

F (k) = qk+1 − aqn
k (1− qr

k)(48)

the adjoint function is

G(k) = pk+1 − [2− naqn−1
k − a(n + r)qn+r−1

k ]pk +
∂ψ(k)
∂qk

(49)

For the functions system
F i(k) = qi

k+1 − ai
jq

j
k(50)

the adjoint functions are

Gi(k) = pi(k + 1)− (2δj
i − aj

i )pj(k) +
∂ψ

∂qi
k

(51)

Examples
1. Let be the function F(k) = aqk−1+bqk+1+f(qk). The selfadjoint condition

§3. (7) leads to a = b. Let be pk = qk − qk−1. We replace it in F(k) and obtain

F (k) = qk − qk−1 − pk(52)

G(k) = bpk+1 − apk + (a + b)qk + F (qk)

The selfadjoint condition §6. (12) for the new functions system leads us to
a = b. These two conditions in this case are equivalent.

2. Let be the functions system

Fi(k) = Aijq
j
k+1 − fi(qk, qk−1) i = 1, n(53)

with Aij = Aji, det(Aij) 6= 0. The system §6. (14) is selfadjoint iff

fi(k) = −Aijq
j
k−1 +

∂ψ(k)
∂qj

k

(54)

From §6. (14) and (15) we obtain

Fi(k) = Aijq
j
k+1 + Aijq

j
k−1 −

∂ψ(k)
∂qi

k

(55)

Let be pi(k) = Aij(q
j
k−1 − qj

k). We replace it in Fi(k) and obtain the functions
system

F i(k) = qi
k − qi

k−1 + Ãijpj(k)(56)

Gi(k) = pi(k + 1)− pi(k)− 2Aijq
j
k +

∂ψ(k)
∂qi

k
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The last functions system is selfadjoint.
Conclusions

All the principal results of this paper have been discussed throughout the
text.

We studied the general inverse problem of a difference equation system. We
established the selfadjoint conditions and deduced the discrete Helmholtz con-
ditions. Finally we wrote the discrete Hamilton equations used in numerical
schemes and gave some examples.
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