Two Sandwich Theorems for Linear Operators and the Moment Problem

Octav Olteanu

Abstract

We give a direct proof for theorem 2 [13] (which is equivalent to theorem 1 [15]). Then we apply theorems 1 [15] and 4 [15] to some concrete spaces of sequences or functions which have a Schauder basis. The polynomials $x_{j}(t)=t^{j}, j \in N$ considered in the classical moment problem, are replaced by the elements of the Schauder basis.

Mathematics Subject Classification: 46A22, 47A57.
Key words: extension of linear operators, moment problems.

1 Introduction

Before stating the abstract moment problem, we recall some definitions. A subset X_{+}of a real vector space X is said to be a convex cone if $X_{+}+X_{+} \subset X_{+}$and $\alpha X_{+} \subset X_{+}$for any $\alpha \in[0, \infty)$. An ordered vector space is a vector space X endowed with an order relation defined by a convex cone $X_{+} \subset X$ in the following way: $x_{1} \leq x_{2}$ iff $x_{2}-x_{1} \in X_{+} . X_{+}$is said to be the positive cone of X. A vector lattice is an ordered vector space Y such that for any $y_{1}, y_{2} \in Y$, there exists the supremum $\sup \left\{y_{1}, y_{2}\right\}=: y_{1} \vee y_{2}$. An order complete vector lattice is a vector lattice in which any family $\left\{y_{j}: j \in J\right\} \subset Y$ bounded from above has a supremum $\sup \left\{y_{j}: j \in J\right\}=: \vee_{j \in J} y_{j} \in Y$. For a deep study of ordered vector spaces see [6] or [20].

The abstract moment problem may be stated in the following way. One give two ordered vector spaces X, Y and two families of elements $\left\{x_{j}: j \in J\right\} \subset$ $X, \quad\left\{y_{j}: j \in J\right\} \subset Y$. One also gives a convex operator $p: X \rightarrow Y$. The problem is to find necessary and sufficient conditions on y_{j} (which are called moments since they generalize the classical moments), for the existence of a linear operator $f \in L(X, Y)$, with the following properties:

$$
\begin{equation*}
f\left(x_{j}\right)=y_{j} \quad \forall j \in J \quad \text { (the moment conditions), } \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
f\left(X_{+}\right) \subset Y_{+} \quad(\text { positivity }) \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
f(x) \leq p(x) \quad \forall x \in X \quad \text { (the generalization of the continuity). } \tag{1.3}
\end{equation*}
$$

In the classical moment problem we have $Y=R, X$ is a space of functions on an interval $I \subset R$ containing the polynomials $x_{j}(t)=t^{j}, j \in N, t \in I$ and $p: X \rightarrow R$ is a seminorm on $X . X_{+}$is usually a convex cone such that p is monotone $\left(0 \leq x_{1} \leq x_{2} \Rightarrow p\left(x_{1}\right) \leq p\left(x_{2}\right)\right)$. In the moment problem we are interested in the existence, unicity and construction of the solution $f \in L(X, Y)$. The main purpose of the present work is to characterize the existence of f. If we note $X_{0}:=S p\left\{x_{j}: j \in J\right\}$ and if we suppose that

$$
f_{0}: X_{0} \rightarrow Y, f_{0}\left(\sum_{j \in F} \lambda_{j} x_{j}\right):=\sum_{j \in F} \lambda_{j} y_{j}
$$

($F \subset J$ being a finite subset), is well defined, then the problem of the existence of the solution is in fact the problem of extending f_{0} to a linear operator $f \in$ $L(X, Y)$ which has the properties (1.2) and (1.3). When Y is an order complete vector lattice, the abstract moment problem is solved by theorem 1^{\prime}, which is equivalent to theorem 1, both of them being stated and proved below (here we give a direct proof for theorem 1). The Hahn-Banach theorem is a particular case of theorem 1. It may be obtained taking in theorem $1 X_{+}:=\{0\}$, when the order relation on X is the equality relation. The theorem of H . Bauer (see [3] or [20]) may be easily obtained from theorem 1 . The corollary 2 [9, p.336] may be also got using theorem 1^{\prime}. In [16] we applied theorem 1^{\prime} to some calssical spaces X of functions (we considered $X=C^{1}([0, b]), C^{2}([0, b]), C^{1}\left(\left[0, b_{1}\right] \times\right.$ $\left.\left.\left[0, b_{2}\right]\right), L^{1}\left(\left[0, b_{1}\right] \times\left[0, b_{2}\right]\right), B V([a, b])\right)$. On the other hand, in $[17]$ we proved theorem 2 of the present work and we applied it to some spaces of functions and measures. In section 3 of the present work we prove some applications of the two general theorems of section 2.

2 General theorems

Theorem 1. Let X be an ordered vector space, let Y be an order complete vector lattice and let $p: X \rightarrow Y$ be a convex operator. Let $X_{0} \subset X$ be a vector subspace and let $f_{0} \in L\left(X_{0}, Y\right)$ be a linear operator. The following statements are equivalent:
(a) there exists a linear and positive extension $f \in L(X, Y)$ of f_{0} such that $f(x) \leq p(x) \quad \forall x \in X$;
(b) $f_{0}\left(x^{\prime}\right) \leq p(x) \quad \forall\left(x^{\prime}, x\right) \in X_{0} \times X$ with $x^{\prime} \leq x$.

This theorem was published in [13], without proof. An indirect proof was published in [14], where we deduced it from a more general result. Here we give a direct proof.

Proof of theorem 1.

(a) \Rightarrow (b) is almost obvious $\left(f_{0}\left(x^{\prime}\right)=f\left(x^{\prime}\right) \leq f(x) \leq p(x) \quad \forall\left(x^{\prime}, x\right) \in X_{0} \times X\right.$ with $x^{\prime} \leq x$, since $f\left(x^{\prime}\right) \leq f(x)$ by the positivity and linearity of $\left.f\right)$.
(b) \Rightarrow (a) Let $\mathcal{S}:=\left\{\left(S, f_{s}\right): X_{0} \subset S \subset X, S\right.$ is a vector subspace of $X, f_{s} \in$ $L(S, Y), f_{s} / X_{0}=f_{0}, \quad f_{s}(x) \geq 0 \quad \forall x \in S \cap X_{+}$and $\left(x^{\prime}, x\right) \in S \times X, x^{\prime} \leq x$, imply $\left.f_{s}\left(x^{\prime}\right) \leq p(x)\right\}$.

We consider the following natural order relation on $\mathcal{S}:\left(S_{1}, f_{s_{1}}\right)<\left(S_{2}, f_{s_{2}}\right)$ iff $S_{1} \subset S_{2}$ and $f_{s_{2}} / S_{1}=f_{s_{1}}$. It is easy to see that \mathcal{S} is inductively ordered with respect to this order relation. Let $\left(M, f_{M}\right) \in \mathcal{S}$ be a maximal element of \mathcal{S}, which exists by Zorn's lemma. To finish the proof, it is sufficient to prove that $M=X$. Supposing the contrary, let $\tilde{x} \in X \backslash M$. We construct an element $\left(\tilde{M}, f_{\tilde{M}}\right) \in \mathcal{S}$, where $\tilde{M}:=M \oplus S p\{\tilde{x}\}, f_{\tilde{M}}: \tilde{M} \rightarrow Y$ being a linear extension of f_{M}. This will contradict the maximality of $\left(M, f_{M}\right)$ in \mathcal{S}. We have to choose $\tilde{y} \in Y$ such that defining $f_{\tilde{M}}: \tilde{M} \rightarrow Y$ by $f_{\tilde{M}}(m+\lambda \tilde{x}):=f_{M}(m)+\lambda \tilde{y}$, to have $\left(\tilde{M}, f_{\tilde{M}}\right) \in \mathcal{S}$. So, we must show that

$$
\begin{equation*}
m_{1}+\alpha \tilde{x} \in X_{+}, m_{1} \in M, \alpha \in R, \text { imply } f_{M}\left(m_{1}\right)+\alpha \tilde{y} \geq 0 \text { in } Y \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
m_{2}+\beta \tilde{x} \leq x, m_{2} \in M, \beta \in R, x \in X, \text { imply } f_{M}\left(m_{2}\right)+\beta \tilde{y} \leq p(x) \text { in } Y . \tag{2.2}
\end{equation*}
$$

For $\alpha=0,(2.1)$ is true since $\left(M, f_{M}\right) \in \mathcal{S}$. For $\beta=0,(2.2)$ is accomplished by the same reason. For $\alpha \neq 0$ (2.1) is equivalent to (2.1.1) and (2.1.2) taken together, where:

$$
\begin{gather*}
m_{1}+\lambda_{1} \tilde{x} \in X_{+}, m_{1} \in M, \lambda_{1}>0 \Rightarrow \\
\Rightarrow f_{M}\left(m_{1}\right)+\lambda_{1} \tilde{y} \geq 0, \text { i.e. } \tilde{y} \geq-f_{M}\left(m_{1}\right) / \lambda_{1} \tag{2.1.1}\\
\\
\tilde{m}_{1}+\mu_{1} \tilde{x} \in X_{+}, \tilde{m}_{1} \in M, \mu_{1}<0 \Rightarrow \tag{2.1.2}\\
f_{M}\left(\tilde{m}_{1}\right)+\mu_{1} \tilde{y} \geq 0, \text { i.e. } \tilde{y} \leq-f_{M}\left(\tilde{m}_{1}\right) / \mu_{1}
\end{gather*}
$$

Hence (2.1) is equivalent to $\left(2.1^{\prime}\right)$, where:

$$
\begin{gather*}
y_{1}:=-f_{M}\left(m_{1}\right) / \lambda_{1} \leq \tilde{y} \leq-f_{M}\left(\tilde{m}_{1}\right) / \mu_{1}=: \tilde{y}_{1} \\
\lambda_{1}>0, \mu_{1}<0, m_{1}+\lambda_{1} \tilde{x} \in X_{+}, \tilde{m}_{1}+\mu_{1} \tilde{x} \in X_{+} .
\end{gather*}
$$

Similarly, (2.2) is equivalent to (2.2'):

$$
\tilde{y}_{2}:=\left(1 / \mu_{2}\right)\left[p\left(\tilde{x}^{\prime}\right)-f_{M}\left(\tilde{m}_{2}\right)\right] \leq \tilde{y} \leq\left(1 / \lambda_{2}\right)\left[p\left(x^{\prime}\right)-f_{M}\left(m_{2}\right)\right]=: y_{2}
$$

where

$$
\lambda_{2}>0, \mu_{2}<0, m_{2}+\lambda_{2} \tilde{x} \leq x^{\prime}, \tilde{m}_{2}+\mu_{2} \tilde{x} \leq \tilde{x}^{\prime}
$$

To find an $\tilde{y} \in Y$ which fulfills $\left(2.1^{\prime}\right)$ and (2.2'), we must prove the following four inequalities:

$$
\begin{equation*}
y_{1} \leq \tilde{y}_{1}, y_{1} \leq y_{2}, \tilde{y}_{2} \leq \tilde{y}_{1}, \tilde{y}_{2} \leq y_{2} . \tag{2.3}
\end{equation*}
$$

Supposing that (2.3) are proved, we may choose \tilde{y} such that

$$
y_{1} \vee \tilde{y}_{2} \leq \tilde{y} \leq \tilde{y}_{1} \wedge y_{2} .
$$

The proof of the inequalities (2.3) is not difficult. Here we prove that $y_{1} \leq y_{2}$. Let $\lambda_{1}>0, \lambda_{2}>0, m_{1}, m_{2} \in M$ such that $m_{1}+\lambda_{1} \tilde{x} \geq 0$ and $m_{2}+\lambda_{2} \tilde{x} \leq x^{\prime} \in X$. Then we get:

$$
-\left(1 / \lambda_{1}\right) m_{1} \leq \tilde{x} \leq\left(1 / \lambda_{2}\right)\left(x^{\prime}-m_{2}\right)
$$

which imply

$$
\begin{equation*}
\lambda_{2}\left[-\left(1 / \lambda_{1}\right) m_{1}+\left(1 / \lambda_{2}\right) m_{2}\right] \leq x^{\prime} \tag{2.4}
\end{equation*}
$$

On the other hand, $\left(M, f_{M}\right) \in \mathcal{S}$ and (2.4) imply:

$$
\lambda_{2}\left[-\left(1 / \lambda_{1}\right) f_{M}\left(m_{1}\right)+\left(1 / \lambda_{2}\right) f_{M}\left(m_{2}\right)\right] \leq p\left(x^{\prime}\right)
$$

which may be rewritten as follows:

$$
-f_{M}\left(m_{1}\right) \lambda_{1} \leq\left(1 / \lambda_{2}\right)\left[p\left(x^{\prime}\right)-f_{M}\left(m_{2}\right)\right]
$$

i.e.

$$
y_{1} \leq y_{2} .
$$

Theorem 1'. (Theorem 1 [15]). Let X, Y, p be as in theorem 1 stated above. Let $\left\{x_{j}: j \in J\right\} \subset X,\left\{y_{j}: j \in J\right\} \subset Y$. The following statements are equivalent:
(a) there exists $f \in L(X, Y)$ such that $f(x) \geq 0 \forall x \in X_{+}, f\left(x_{j}\right)=y_{j} \forall j \in J$ and $f(x) \leq p(x) \forall x \in X$;
(b) for any finite subset $F \subset J$ and any $\left\{\lambda_{j}: j \in F\right\} \subset R$, the relation $\sum_{j \in F} \lambda_{j} x_{j} \leq x$ in X implies $\sum_{j \in F} \lambda_{j} y_{j} \leq p(x)$ in Y.

Theorem 1^{\prime} is a rewritting of theorem 1 (we take in theorem $1 X_{0}:=S p\left\{x_{j}\right.$: $j \in J\}$, etc).
Theorem 2. (Theorem 4 [15] and 2.1. [17]). Let $X, Y,\left\{x_{j}: j \in J\right\},\left\{y_{j}\right.$: $j \in J\}$ be as in theorem 1^{\prime} and let $f_{1}, f_{2} \in L(X, Y)$. Let us consider the following statements:
(a) there exists $f \in L(X, Y)$ such that $f\left(x_{j}\right)=y_{j}, \forall j \in J$ and $f_{1}(z) \leq$ $f(z) \leq f_{2}(z) \quad \forall z \in X_{+} ;$
(b) for any finite subset $F \subset J$ and any $\left\{\lambda_{j}: J \in F\right\} \subset R$, we have:

$$
\begin{gather*}
\sum_{j \in F} \lambda_{j} x_{j}=z_{2}-z_{1} \quad \text { with } \tag{2.5}\\
z_{1}, z_{2} \in X_{+} \Rightarrow \sum_{j \in F} \lambda_{j} y_{j} \leq f_{2}\left(z_{2}\right)-f_{1}\left(z_{1}\right)
\end{gather*}
$$

If X is a vector lattice, we also consider the statement $\left(b^{\prime}\right)$:
(b^{\prime}) $f_{1}(z) \leq f_{2}(z) \forall z \in X_{+}$and for any finite subset $F \subset J$ and any $\left\{\lambda_{j}:\right.$ $j \in F\} \subset R$, we have

$$
\begin{equation*}
\sum_{j \in F} \lambda_{j} y_{j} \leq f_{2}\left(\left(\sum_{j \in F} \lambda_{j} x_{j}\right)^{+}\right)-f_{1}\left(\left(\sum_{j \in F} \lambda_{j} x_{j}\right)^{-}\right) \tag{2.6}
\end{equation*}
$$

(for each $x \in X$, we note $x^{+}:=x \vee 0, x^{-}:=(-x) \vee 0$ and we have $x=$ $\left.x^{+}-x^{-} \forall x \in X\right)$;
(c) if $x_{j} \in X_{+} \forall j \in J$, then $f_{1}\left(x_{j}\right) \leq y_{j} \leq f_{2}\left(x_{j}\right) \forall j \in J$.

Then $(b) \Leftrightarrow(a) \Rightarrow(c)$ and, if X is a vector lattice, we have $\left(b^{\prime}\right) \Leftrightarrow(b) \Leftrightarrow$ $(a) \Rightarrow(c)$.

3 Applications

Theorem 3. Let X be a real separable Hilbert space and let $\left\{x_{j}: j \in N\right\}$ a fixed orthonormal basis in X. Let $X_{+}:=\left\{x \in X:<x, x_{j}>\geq 0 \forall j \in N\right\}$ and let $\left\{y_{j}: j \in N\right\} \subset X_{+}$such that if we note $\rho_{m}:=\sum_{j=0}^{\infty}<y_{j}, x_{m}>$ we must have $\sum_{m=0}^{\infty} \rho_{m}^{2}<\infty$. Then there exists $f \in L(X, X), f\left(X_{+}\right) \subset X_{+}, f\left(x_{j}\right)=y_{j} \forall j \in$ N and $f(x) \leq\|x\| \tilde{y}$, where

$$
\tilde{y}:=\sum_{m=0}^{\infty} \rho_{m} x_{m}, x \in X
$$

Proof. We shall apply theorem $1^{\prime},(\mathrm{b}) \Rightarrow(\mathrm{a})$. Let $n \in N$, let $\left\{\lambda_{0}, \ldots, \lambda_{n}\right\} \subset R$ and let $x \in X$ such that

$$
\sum_{j=0}^{n} \lambda_{j} x_{j} \leq x=\sum_{m=0}^{\infty}<x, x_{m}>x_{m}
$$

By the definition of X_{+}, this implies

$$
\begin{equation*}
\lambda_{j} \leq<x, x_{j}>\quad \forall j \in\{0,1, \ldots, n\} \tag{3.1}
\end{equation*}
$$

On the other hand, $y_{j} \in X_{+} \quad \forall j \in N$, is equivalent to

$$
\begin{equation*}
<y_{j}, x_{m}>\geq 0 \quad \forall(j, m) \in N^{2} \tag{3.2}
\end{equation*}
$$

So, from (3.1) and (3.2) we deduce

$$
\begin{aligned}
& \sum_{j=0}^{n} \lambda_{j} y_{j}=\sum_{j=0}^{n} \lambda_{j}\left(\sum_{m=0}^{\infty}<y_{j}, x_{m}>x_{m}\right)\left.=\sum_{m=0}^{\infty}\left(\sum_{j=0}^{n} \lambda_{j}<y_{j}, x_{m}\right\rangle\right) x_{m} \leq \\
&\left.\leq \sum_{m=0}^{\infty}\left(\sum_{j=0}^{n}<x, x_{j}><y_{j}, x_{m}>\right) x_{m} \leq\|x\|\left[\sum_{m=0}^{\infty}\left(\sum_{j=0}^{n}<y_{j}, x_{m}\right\rangle\right) x_{m}\right] \leq \\
&\|x\|\left(\sum_{m=0}^{\infty} \rho_{m} x_{m}\right)=\|x\| \tilde{y}=: p(x)
\end{aligned}
$$

where $\|x\|=<x, x>^{1 / 2}$. By theorem $1^{\prime},(\mathrm{b}) \Rightarrow(\mathrm{a})$, the conclusion follows.
The theorem is proved.
We go on by two applications of theorem 2 . We recall the following notations:

$$
\begin{gathered}
l^{1}:=\left\{\left(\alpha_{0}, \ldots, \alpha_{n}, \ldots\right) \in R^{N}: \sum_{j=0}^{\infty}\left|\alpha_{j}\right|<\infty\right\}, \\
l^{\infty}:=\left\{\left(\beta_{0}, \ldots, \beta_{n}, \ldots\right) \in R^{N}: \sup _{j \in N}\left|\beta_{j}\right|<\infty\right\},
\end{gathered}
$$

We consider the operator $f_{2}: l^{1} \rightarrow l^{\infty}$ defined by:

$$
f_{2}\left(\left(\alpha_{0}, \ldots, \alpha_{n}, \ldots\right)\right)=\left(\beta_{0}, \ldots, \beta_{n}, \ldots\right)
$$

where

$$
\beta_{n}:=\sum_{k=0}^{n} \alpha_{k}
$$

In l^{1} and l^{∞} we consider the convex cone of sequences which have all their components positive. It is clear that $l^{1} \subset l^{\infty}$ and $\forall x \in l_{+}^{1}$, we have $x \leq f_{2}(x)$. It is also well known that l^{∞} is an order complete vector lattice. So, we may apply theorem $2,\left(\mathrm{~b}^{\prime}\right) \Rightarrow(\mathrm{a})$, for $X:=l^{1}, Y:=l^{\infty}, f_{1}(x)=x \forall x \in X$ and f_{2} defined as above. We get the following result.
Theorem 4. Let $X:=l^{1}, Y:=l^{\infty}$, let $x_{j} \in X, x_{j}:=(0, \ldots, 0,1,0, \ldots, 0, \ldots), j \in$ $N,\left\{y_{j}: j \in N\right\} \subset X \subset Y, y_{j}=\sum_{m=0}^{\infty} \alpha_{m}^{(j)} x_{m}$. The following statements are equivalent:
(a) there exists $f \in L(X, Y), f\left(x_{j}\right)=y_{j} \forall j \in N, x \leq f(x) \leq f_{2}(x) \forall x \in$ X_{+};
(b) for any $n \in N$ and any $\left\{\lambda_{0}, \ldots, \lambda_{n}\right\} \subset R$, we have:
$\left(b_{1}\right) \quad \sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)} \leq \lambda_{0}^{+}+\ldots+\lambda_{m-1}^{+}+\lambda_{m}, \quad$ if $\quad 0 \leq m \leq n$,
and
(b_{2}) $\quad \sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)} \leq \lambda_{0}^{+}+\ldots+\lambda_{p}^{+}+\ldots+\lambda_{n}^{+}, \quad$ if $m \geq n+1, m \in N$
(c) the following three conditions are fulfilled:
$\left(c_{1}\right) \quad \alpha_{m}^{(j)}=0 \quad \forall j \in N, \quad \forall m \in N$ such that $0 \leq m \leq j-1$,
$\left(c_{2}\right)$

$$
\alpha_{j}^{(j)}=1 \quad \forall j \in N
$$

$\left(c_{3}\right)$.

$$
\alpha_{m}^{(j)} \in[0,1] \quad \forall j \in N, \quad \forall m \geq j+1, \quad m \in N
$$

Proof. To prove (a) $\Leftrightarrow(\mathrm{b})$, we use $(\mathrm{a}) \Leftrightarrow\left(\mathrm{b}^{\prime}\right)$ of theorem 2 . We have only to show that the relations $\left(b_{1}\right)$ and $\left(b_{2}\right)$ (together) are equivalent to (2.6). We have:

$$
\sum_{j=0}^{n} \lambda_{j} y_{j}=\sum_{j=0}^{n} \lambda_{j}\left(\sum_{m=0}^{\infty} \alpha_{m}^{(j)} x_{m}\right)=\sum_{m=0}^{\infty}\left(\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)}\right) x_{m}
$$

and so, (2.6) may be written as follows:

$$
\sum_{m=0}^{\infty}\left(\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)}\right) x_{m} \leq f_{2}\left(\left(\lambda_{0}^{+}, \ldots, \lambda_{k}^{+}, \ldots, \lambda_{n}^{+}, 0,0, \ldots\right)-\left(\lambda_{0}^{-}, \ldots, \lambda_{k}^{-}, \ldots, \lambda_{n}^{-}, 0,0, \ldots\right)=\right.
$$

$=\left(\lambda_{0}^{+}, \lambda_{0}^{+}+\lambda_{1}^{+}, \ldots, \lambda_{0}^{+}+\ldots+\lambda_{n}^{+}, \lambda_{0}^{+}+\ldots+\lambda_{n}^{+}, 0, \ldots\right)-\left(\lambda_{0}^{-}, \lambda_{1}^{-}, \ldots, \lambda_{n}^{-}, 0, \ldots\right)=$
$=\left(\lambda_{0}, \lambda_{0}^{+}+\lambda_{1}, \ldots, \lambda_{0}^{+}+\ldots+\lambda_{n-1}^{+}+\lambda_{n}, \lambda_{0}^{+}+\ldots+\lambda_{n-1}^{+}+\lambda_{n}^{+}, \lambda_{0}^{+}+\ldots+\lambda_{n-1}^{+}+\lambda_{n}^{+}, \ldots\right)$.
By the definition of $Y_{+},(2.6)$ is equivalent to the statement (b) of theorem 4.
(a) $\Rightarrow(\mathrm{c})$ is almost obvious. Indeed, since $x_{j} \in X_{+}$, we have:
$x_{j}=(0, \ldots, 0,1,0, \ldots) \leq y_{j}=\left(\alpha_{0}^{(j)}, \ldots, \alpha_{j}^{(j)}, \ldots, \alpha_{m}^{(j)}, \ldots\right) \leq T_{2}\left(x_{j}\right)=(0, \ldots, 0,1,1,1, \ldots)$
which imply (c).
(c) \Rightarrow (b) To prove (c) $\Rightarrow\left(b_{1}\right)$, let $n \in N$ and $m \in N, m \leq n$.

From $\left(c_{1}\right),\left(c_{2}\right)$ and $\left(c_{3}\right)$ we deduce:

$$
\begin{gathered}
\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)}=\sum_{j=0}^{m-1} \lambda_{j} \alpha_{m}^{(j)}+\lambda_{m} \alpha_{m}^{(m)}+\sum_{j=m+1}^{n} \lambda_{j} \alpha_{m}^{(j)}= \\
\sum_{j=0}^{m-1} \lambda_{j} \alpha_{m}^{(j)}+\lambda_{m} \leq \sum_{j=0}^{m-1} \lambda_{j}^{+}+\lambda_{m}=\lambda_{0}^{+}+\ldots+\lambda_{m-1}^{+}+\lambda_{m}
\end{gathered}
$$

This proves $\left(b_{1}\right)$. To finish the proof, we have to show that $(\mathrm{c}) \Rightarrow\left(b_{2}\right)$.
Let $m, n \in N, m \geq n+1$. If $j \in N, j \leq n \leq m-1$, then $m \geq j+1$ and, by $\left(c_{3}\right), \alpha_{m}^{(j)} \in[0,1]$. This implies:

$$
\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)} \leq \sum_{j=0}^{n} \lambda_{j}^{+}
$$

i.e. $\left(b_{2}\right)$. The theorem is proved.

We go on by an application of theorem 2 to a space of analitic functions.
Let $\rho>0$. We denote by A_{ρ} the set of all complex functions, defined on the open disk $|z|<\rho$ of the complex plane, which can be represented as the sum of an absolutely convergent series

$$
x(z)=\sum_{j=0}^{\infty} \alpha_{j} z^{j}
$$

the coefficients α_{j} being real numbers. Then $X=A_{\rho}$ is a real vector space which can be ordered by the convex cone

$$
\begin{equation*}
X_{+}:=\left\{x \in A_{\rho}: x(z)=\sum_{j=0}^{\infty} \alpha_{j} z^{j}, \quad \alpha_{j} \geq 0 \quad \forall j \in N\right\} \tag{3.3}
\end{equation*}
$$

It is easy to see that X is an order complete vector lattice.
Theorem 5. Let $X=A_{\rho}$ and let X_{+}be the cone defined by (3.3). Let us denote $x_{j}(z):=z^{j}, j \in N,|z|<\rho$ and let us consider the function $g \in$ $X, g(z)=1+z$. On the other hand, let $\left\{y_{j}: j \in N\right\} \subset X$ be a sequence in
$X, y_{j}(z)=\sum_{m=0}^{\infty} \alpha_{m}^{(j)} z^{m}, j \in N,|z|<\rho$. Let us consider the following statements:
(a) there exists $f \in L(X, X)$ such that $f\left(x_{j}\right)=y_{j} \quad \forall j \in N, x \leq f(x) \leq$ $x g \forall x \in X_{+}$;
(b) for any $n \in N$ and any $\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\} \subset R$, we have:
$\left(b_{1}\right)$

$$
\sum_{j=0}^{n} \lambda_{j} \alpha_{0}^{(j)} \leq \lambda_{0}
$$

$\left(b_{2}\right)$

$$
\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)} \leq \lambda_{m-1}^{+}+\lambda_{m}, \quad \forall m \in\{1,2, \ldots, n\}
$$

$\left(b_{3}\right)$

$$
\sum_{j=0}^{n} \lambda_{j} \alpha_{n+1}^{(j)} \leq \lambda_{n}^{+}
$$

$\left(b_{4}\right)$

$$
\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)} \leq 0 \quad \forall m \in\{n+2, n+3, \ldots\}
$$

(c) the $\alpha_{m}^{(j)}$ fulfill the conditions:
$\left(c_{1}\right)$

$$
\alpha_{m}^{(j)}=0 \quad j \in N, \quad \forall m \in N \backslash\{j, j+1\}
$$

$\left(c_{2}\right)$

$$
\alpha_{j}^{(j)}=1 \quad \forall j \in N
$$

$\left(c_{3}\right)$

$$
0 \leq \alpha_{j+1}^{(j)} \leq 1 \quad \forall j \in N
$$

Then we have $(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$.
Proof. For (a) \Leftrightarrow (b) we apply theorem $2,(\mathrm{a}) \Leftrightarrow\left(\mathrm{b}^{\prime}\right)$, for $Y=X, f_{1}(x)=$ $x, f_{2}(x)=x g, \quad \forall x \in X$. We check that the assertion (b) of theorem 5 is equivalent to the assertion (b^{\prime}) of theorem 2 . We remark that for any $x=$ $\sum_{m=0}^{\infty} \alpha_{m} x_{m} \in X_{+}$, the relation $f_{1}(x):=x \leq f_{2}(x):=x g$ is true. Indeed, we have:

$$
\begin{gathered}
(x g)(z)=x(z) g(z)=\left(\sum_{m=0}^{\infty} \alpha_{m} z^{m}\right)(1+z)=\sum_{0}^{\infty} \alpha_{m} z^{m}+ \\
+\sum_{0}^{\infty} \alpha_{m} z^{m+1}=\sum_{m=0}^{\infty} \alpha_{m} z^{m}+ \\
+\sum_{m=1}^{\infty} \alpha_{m-1} z^{m}=\alpha_{0}+\sum_{m=1}^{\infty}\left(\alpha_{m}+\alpha_{m-1}\right) z^{m}
\end{gathered}
$$

So, we have got:

$$
x g=\alpha_{0} x_{0}+\sum_{m=1}^{\infty}\left(\alpha_{m}+\alpha_{m-1}\right) x_{m} \geq \alpha_{0} x_{0}+\sum_{m=1}^{\infty} \alpha_{m} x_{m}
$$

since $\alpha_{m-1} \geq 0 \quad \forall m \in\{1,2, \ldots\}$ by the definition of $X_{+} \ni x$.
So, we have only to verify the equivalence $(2.6) \Leftrightarrow(\mathrm{b})$ of theorem 5 . Let us write (2.6) in our particular case. Let $n \in N,\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\} \subset R$. Then (2.6) may be written in the following way:

$$
\begin{aligned}
\sum_{j=0}^{n} \lambda_{j} y_{j}= & \sum_{j=0}^{n} \lambda_{j}\left(\sum_{m=0}^{\infty} \alpha_{m}^{(j)} x_{m}\right)=\sum_{m=0}^{\infty}\left(\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)}\right) x_{m} \leq \\
& \leq f_{2}\left(\left(\left(\sum_{j=0}^{n} \lambda_{j} x_{j}\right)^{+}\right)-f_{1}\left(\left(\sum_{j=0}^{n} \lambda_{j} x_{j}\right)^{-}\right)=\right. \\
& =f_{2}\left(\sum_{j=0}^{n} \lambda_{j}^{+} x_{j}\right)-f_{1}\left(\sum_{j=0}^{n} \lambda_{j}^{-} x_{j}\right)= \\
& =\left(\sum_{m=0}^{n} \lambda_{m}^{+} x_{m}\right)\left(1+x_{1}\right)-\sum_{m=0}^{n} \lambda_{m}^{-} x_{m}= \\
& =\sum_{m=0}^{n} \lambda_{m}^{+} x_{m}+\sum_{m=0}^{n} \lambda_{m}^{+} x_{m+1}-\sum_{m=0}^{n} \lambda_{m}^{-} x_{m}= \\
& =\sum_{m=0}^{n} \lambda_{m} x_{m}+\sum_{m=1}^{n+1} \lambda_{m-1}^{+} x_{m}= \\
& =\sum_{m=1}^{n}\left(\lambda_{m-1}^{+}+\lambda_{m}\right) x_{m}+\lambda_{0} x_{0}+\lambda_{n}^{+} x_{n+1} .
\end{aligned}
$$

By the definition of X_{+}, this is equivalent to (b) of theorem 5 .
(a) \Rightarrow (c) Since $x_{j} \in X_{+}$, we have from (a):

$$
x_{j}=f_{1}\left(x_{j}\right) \leq \sum_{m=0}^{\infty} \alpha_{m}^{(j)} x_{m}=y_{j}=f\left(x_{j}\right) \leq f_{2}\left(x_{j}\right)=x_{j}\left(1+x_{1}\right)=x_{j}+x_{j+1}
$$

By the definition of X_{+}, (c) follows.
(c) \Rightarrow (b)
$\left(b_{1}\right)$

$$
\sum_{j=0}^{n} \lambda_{j} \alpha_{0}^{(j)}=\lambda_{0} \alpha_{0}^{(0)}+\sum_{j=1}^{n} \lambda_{j} \alpha_{0}^{(j)}=\lambda_{0}
$$

by $\left(c_{1}\right)$ and $\left(c_{2}\right)$.
$\left(b_{2}\right) \quad m \in\{1,2, \ldots, n\} \Rightarrow \sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)}=\lambda_{m} \alpha_{m}^{(m)}+\lambda_{m-1} \alpha_{m}^{(m-1)}=$ $=\lambda_{m}+\lambda_{m-1} \alpha_{m}^{(m-1)} \leq \lambda_{m}+\lambda_{m-1}^{+}$
by $\left(c_{1}\right),\left(c_{2}\right)$ and $\left(c_{3}\right)$.
$\left(b_{3}\right)$

$$
\sum_{j=0}^{n} \lambda_{j} \alpha_{n+1}^{(j)}=\lambda_{n} \alpha_{n+1}^{(n)} \leq \lambda_{n}^{+}, \quad \text { by }\left(c_{1}\right) \text { and }\left(c_{3}\right)
$$

$\left(b_{4}\right)$

$$
\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)}=0
$$

if $m \geq n+2$, by $\left(c_{1}\right)$. The theorem is proved.

References

[1] N.I.Ahiezer and M.G.Krein, Some questions in the theory of moments, Transl. Math. Mono. 22, Amer. Math. Soc., Providence, R.I., 1962.
[2] N.I.Ahiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh and London, 1965.
[3] H.Bauer, Sur le prolongement des formes linéaires positives dans un espace vectoriel ordonné, C.R.Acad. Sci. Paris, 244(1957), 289-292.
[4] I.Colojoară, Mathematical analysis, Didactical and Pedagogical Publishing House, Bucharest, 1983 (in Romanian).
[5] R.Cristescu, Functional analysis, 2-nd ed., Didactical and Pedagogical Publishing House, Bucharest, 1970 (in Romanian).
[6] R.Cristescu, Ordered vector spaces and linear operators, Romanian Academy Publishing House, Bucharest, Romania, Abacus Press, Tunbridge Wells, Kent, England, 1976 (in English).
[7] R.Cristescu, Gh.Grigore, C.Niculescu, G.Păltineanu, N.Popa and D.T.Vuza, Order structures in functional analysis, vol. 3, Romanian Academy Publishing House, Bucharest, 1992 (in Romanian).
[8] M.G.Krein and A.A.Nudelman, Markov moment problem and extremal problems, Transl. Math. Mono., Amer. Math. Soc., Providence R.I., 1977.
[9] M.Landsberg and W.Schirotzek, Mazur-Orlicz type theorems with some applications, Math. Nachr. 79 (1977), 331-341.
[10] S.Mazur and W.Orlicz, Sur les espaces métriques linéaires II, Studia Math. 13(1953), 137-179.
[11] M.Nicolescu, Mathematical analysis, vol. I, II, III, Technical Publishing House, Bucharest, 1957, 1958, 1960.
[12] C.Niculescu and N.Popa, Elements of theory of Banach spaces, Romanian Academy Publishing House, Bucharest, 1981 (in Romanian).
[13] O.Olteanu, Convexité et prolongement d'opérateurs linéaires, C.R.Acad. Sci. Paris, 286 (1978), 511-514.
[14] O.Olteanu, Théorèmes de prolongement d'opérateurs linéaires, Rev. Roumaine Math. Pures et Appl. XXVIII, 10(1983), 953-983.
[15] O.Olteanu, Application de théorèmes de prolongement d'opérateurs linéaires au problème des moments et à une généralisation d'un théorème de Mazur-Orlicz, C.R.Acad. Sci. Paris 313 (1991), 739-742.
[16] O.Olteanu, Applications of the solution of the abstract moment problem to the classical moment problem, St. Cerc. Mat. (Mathematical Reports), to appear.
[17] O.Olteanu, Applications of a general sandwich theorem for operators to the moment problem, Rev. Roum. Math. Pures et Appl., 41, 7-8(1996), 513-521.
[18] G.Păltineanu, Elements of approximation theory of continuous functions (Theorems of Stone-Weierstrass type), Romanian Academy Publishing House, Bucharest, 1982 (in Romanian).
[19] W.Rudin, Real and complex analysis, New York, Mc.Graw-Hill, 1966.
[20] H.H.Schaefer, Topological vector spaces, Macmillian Company, New York, London, 1966.

Politehnica University of Bucharest
Department of Mathematics I
Splaiul Independenței 313
77206 Bucharest, ROMANIA

