Two Sandwich Theorems for Linear Operators and the Moment Problem

Octav Olteanu

Abstract

We give a direct proof for theorem 2 [13] (which is equivalent to theorem 1 [15]). Then we apply theorems 1 [15] and 4 [15] to some concrete spaces of sequences or functions which have a Schauder basis. The polynomials $x_j(t) = t^j, j \in N$ considered in the classical moment problem, are replaced by the elements of the Schauder basis.

Mathematics Subject Classification: 46A22, 47A57. Key words: extension of linear operators, moment problems.

1 Introduction

Before stating the abstract moment problem, we recall some definitions. A subset X_+ of a real vector space X is said to be a convex cone if $X_+ + X_+ \subset X_+$ and $\alpha X_+ \subset X_+$ for any $\alpha \in [0, \infty)$. An ordered vector space is a vector space X endowed with an order relation defined by a convex cone $X_+ \subset X$ in the following way: $x_1 \leq x_2$ iff $x_2 - x_1 \in X_+$. X_+ is said to be the positive cone of X. A vector lattice is an ordered vector space Y such that for any $y_1, y_2 \in Y$, there exists the supremum $\sup\{y_1, y_2\} =: y_1 \lor y_2$. An order complete vector lattice is a vector lattice in which any family $\{y_j : j \in J\} \subset Y$ bounded from above has a supremum $\sup\{y_j : j \in J\} =: \bigvee_{j \in J} y_j \in Y$. For a deep study of ordered vector spaces see [6] or [20].

The abstract moment problem may be stated in the following way. One give two ordered vector spaces X, Y and two families of elements $\{x_j : j \in J\} \subset X$, $\{y_j : j \in J\} \subset Y$. One also gives a convex operator $p : X \to Y$. The problem is to find necessary and sufficient conditions on y_j (which are called *moments* since they generalize the classical moments), for the existence of a linear operator $f \in L(X, Y)$, with the following properties:

(1.1) $f(x_j) = y_j \quad \forall j \in J$ (the moment conditions),

Balkan Journal of Geometry and Its Applications, Vol.1, No.2, 1996, pp. 75-85 ©Balkan Society of Geometers, Geometry Balkan Press

(1.2)
$$f(X_+) \subset Y_+$$
 (positivity).

(1.3) $f(x) \le p(x) \quad \forall x \in X$ (the generalization of the continuity).

In the classical moment problem we have Y = R, X is a space of functions on an interval $I \subset R$ containing the polynomials $x_j(t) = t^j$, $j \in N$, $t \in I$ and $p: X \to R$ is a seminorm on X. X_+ is usually a convex cone such that pis monotone $(0 \le x_1 \le x_2 \Rightarrow p(x_1) \le p(x_2))$. In the moment problem we are interested in the existence, unicity and construction of the solution $f \in L(X, Y)$. The main purpose of the present work is to characterize the existence of f. If we note $X_0 := Sp\{x_j : j \in J\}$ and if we suppose that

$$f_0: X_0 \to Y, \ f_0\left(\sum_{j \in F} \lambda_j x_j\right) := \sum_{j \in F} \lambda_j y_j$$

 $(F \subset J$ being a finite subset), is well defined, then the problem of the existence of the solution is in fact the problem of extending f_0 to a linear operator $f \in L(X, Y)$ which has the properties (1.2) and (1.3). When Y is an order complete vector lattice, the abstract moment problem is solved by theorem 1', which is equivalent to theorem 1, both of them being stated and proved below (here we give a direct proof for theorem 1). The Hahn-Banach theorem is a particular case of theorem 1. It may be obtained taking in theorem 1 $X_+ := \{0\}$, when the order relation on X is the equality relation. The theorem of H. Bauer (see [3] or [20]) may be easily obtained from theorem 1. The corollary 2 [9, p.336] may be also got using theorem 1'. In [16] we applied theorem 1' to some calssical spaces X of functions (we considered $X = C^1([0,b]), C^2([0,b]), C^1([0,b_1] \times$ $[0,b_2]), L^1([0,b_1] \times [0,b_2]), BV([a,b]))$. On the other hand, in [17] we proved theorem 2 of the present work and we applied it to some spaces of functions and measures. In section 3 of the present work we prove some applications of the two general theorems of section 2.

2 General theorems

Theorem 1. Let X be an ordered vector space, let Y be an order complete vector lattice and let $p: X \to Y$ be a convex operator. Let $X_0 \subset X$ be a vector subspace and let $f_0 \in L(X_0, Y)$ be a linear operator. The following statements are equivalent:

(a) there exists a linear and positive extension $f \in L(X,Y)$ of f_0 such that $f(x) \le p(x) \quad \forall x \in X;$

(b) $f_0(x') \le p(x) \quad \forall (x', x) \in X_0 \times X \text{ with } x' \le x.$

This theorem was published in [13], without proof. An indirect proof was published in [14], where we deduced it from a more general result. Here we give a direct proof.

Proof of theorem 1.

(a) \Rightarrow (b) is almost obvious $(f_0(x') = f(x') \leq f(x) \leq p(x) \quad \forall (x', x) \in X_0 \times X$ with $x' \leq x$, since $f(x') \leq f(x)$ by the positivity and linearity of f). (b) \Rightarrow (a) Let $S := \{(S, f_s) : X_0 \subset S \subset X, S \text{ is a vector subspace of } X, f_s \in L(S,Y), f_s/X_0 = f_0, f_s(x) \geq 0 \quad \forall x \in S \cap X_+ \text{ and } (x', x) \in S \times X, x' \leq x, \text{ imply } f_s(x') \leq p(x)\}.$

We consider the following natural order relation on $S: (S_1, f_{s_1}) < (S_2, f_{s_2})$ iff $S_1 \subset S_2$ and $f_{s_2}/S_1 = f_{s_1}$. It is easy to see that S is inductively ordered with respect to this order relation. Let $(M, f_M) \in S$ be a maximal element of S, which exists by Zorn's lemma. To finish the proof, it is sufficient to prove that M = X. Supposing the contrary, let $\tilde{x} \in X \setminus M$. We construct an element $(\tilde{M}, f_{\tilde{M}}) \in S$, where $\tilde{M} := M \oplus Sp\{\tilde{x}\}, f_{\tilde{M}} : \tilde{M} \to Y$ being a linear extension of f_M . This will contradict the maximality of (M, f_M) in S. We have to choose $\tilde{y} \in Y$ such that defining $f_{\tilde{M}} : \tilde{M} \to Y$ by $f_{\tilde{M}}(m + \lambda \tilde{x}) := f_M(m) + \lambda \tilde{y}$, to have $(\tilde{M}, f_{\tilde{M}}) \in S$. So, we must show that

(2.1)
$$m_1 + \alpha \tilde{x} \in X_+, \ m_1 \in M, \ \alpha \in R, \ \text{imply} \ f_M(m_1) + \alpha \tilde{y} \ge 0 \ \text{in} \ Y,$$

(2.2)
$$m_2 + \beta \tilde{x} \leq x, m_2 \in M, \beta \in R, x \in X, \text{ imply } f_M(m_2) + \beta \tilde{y} \leq p(x) \text{ in } Y.$$

For $\alpha = 0$, (2.1) is true since $(M, f_M) \in S$. For $\beta = 0$, (2.2) is accomplished by the same reason. For $\alpha \neq 0$ (2.1) is equivalent to (2.1.1) and (2.1.2) taken together, where:

(2.1.1)
$$\begin{array}{c} m_1 + \lambda_1 \tilde{x} \in X_+, \ m_1 \in M, \ \lambda_1 > 0 \Rightarrow \\ \Rightarrow f_M(m_1) + \lambda_1 \tilde{y} \ge 0, \ \text{i.e.} \ \tilde{y} \ge -f_M(m_1)/\lambda_1, \end{array}$$

(2.1.2)
$$\tilde{m}_1 + \mu_1 \tilde{x} \in X_+, \ \tilde{m}_1 \in M, \ \mu_1 < 0 \Rightarrow \\ f_M(\tilde{m}_1) + \mu_1 \tilde{y} \ge 0, \ \text{i.e.} \ \tilde{y} \le -f_M(\tilde{m}_1)/\mu_1$$

Hence (2.1) is equivalent to (2.1'), where:

(2.1')
$$y_1 := -f_M(m_1)/\lambda_1 \le \tilde{y} \le -f_M(\tilde{m}_1)/\mu_1 =: \tilde{y}_1, \\ \lambda_1 > 0, \ \mu_1 < 0, \ m_1 + \lambda_1 \tilde{x} \in X_+, \ \tilde{m}_1 + \mu_1 \tilde{x} \in X_+$$

Similarly, (2.2) is equivalent to (2.2'):

$$(2.2') \qquad \tilde{y}_2 := (1/\mu_2)[p(\tilde{x}') - f_M(\tilde{m}_2)] \le \tilde{y} \le (1/\lambda_2)[p(x') - f_M(m_2)] =: y_2,$$

where

$$\lambda_2 > 0, \ \mu_2 < 0, \ m_2 + \lambda_2 \tilde{x} \le x', \ \tilde{m}_2 + \mu_2 \tilde{x} \le \tilde{x}'.$$

To find an $\tilde{y} \in Y$ which fulfills (2.1') and (2.2'), we must prove the following four inequalities:

(2.3)
$$y_1 \leq \tilde{y}_1, \ y_1 \leq y_2, \ \tilde{y}_2 \leq \tilde{y}_1, \ \tilde{y}_2 \leq y_2.$$

Supposing that (2.3) are proved, we may choose \tilde{y} such that

$$y_1 \vee \tilde{y}_2 \le \tilde{y} \le \tilde{y}_1 \wedge y_2.$$

The proof of the inequalities (2.3) is not difficult. Here we prove that $y_1 \leq y_2$. Let $\lambda_1 > 0$, $\lambda_2 > 0$, $m_1, m_2 \in M$ such that $m_1 + \lambda_1 \tilde{x} \ge 0$ and $m_2 + \lambda_2 \tilde{x} \le x' \in X$. Then we get:

$$-(1/\lambda_1)m_1 \le \tilde{x} \le (1/\lambda_2)(x'-m_2),$$

which imply

(2.4)
$$\lambda_2[-(1/\lambda_1)m_1 + (1/\lambda_2)m_2] \le x'.$$

On the other hand, $(M, f_M) \in S$ and (2.4) imply:

$$\lambda_2[-(1/\lambda_1)f_M(m_1) + (1/\lambda_2)f_M(m_2)] \le p(x'),$$

which may be rewritten as follows:

$$-f_M(m_1)\lambda_1 \le (1/\lambda_2)[p(x') - f_M(m_2)],$$

i.e.

$$y_1 \le y_2.$$

Theorem 1'. (Theorem 1 [15]). Let X, Y, p be as in theorem 1 stated above. Let $\{x_j : j \in J\} \subset X, \{y_j : j \in J\} \subset Y$. The following statements are equivalent:

(a) there exists $f \in L(X,Y)$ such that $f(x) \ge 0 \ \forall x \in X_+, \ f(x_j) = y_j \ \forall j \in J$ and $f(x) \le p(x) \ \forall x \in X;$

(b) for any finite subset $F \subset J$ and any $\{\lambda_j : j \in F\} \subset R$, the relation $\sum_{j \in F} \lambda_j x_j \leq x$ in X implies $\sum_{j \in F} \lambda_j y_j \leq p(x)$ in Y. Theorem 1' is a rewritting of theorem 1 (we take in theorem 1 $X_0 := Sp\{x_j : x_j > 0\}$

 $j \in J$, etc).

Theorem 2. (Theorem 4 [15] and 2.1. [17]). Let $X, Y, \{x_j : j \in J\}, \{y_j : j \in J\}$ $j \in J$ be as in theorem 1' and let $f_1, f_2 \in L(X, Y)$. Let us consider the following statements:

(a) there exists $f \in L(X,Y)$ such that $f(x_j) = y_j, \forall j \in J$ and $f_1(z) \leq J$ $f(z) \le f_2(z) \quad \forall z \in X_+;$

(b) for any finite subset $F \subset J$ and any $\{\lambda_j : J \in F\} \subset R$, we have:

(2.5)
$$\sum_{j \in F} \lambda_j x_j = z_2 - z_1 \quad with$$
$$z_1, z_2 \in X_+ \Rightarrow \sum_{j \in F} \lambda_j y_j \leq f_2(z_2) - f_1(z_1)$$

If X is a vector lattice, we also consider the statement (b'):

(b') $f_1(z) \leq f_2(z) \ \forall z \in X_+$ and for any finite subset $F \subset J$ and any $\{\lambda_j :$ $j \in F \} \subset R$, we have

(2.6)
$$\sum_{j \in F} \lambda_j y_j \le f_2 \left(\left(\sum_{j \in F} \lambda_j x_j \right)^+ \right) - f_1 \left(\left(\sum_{j \in F} \lambda_j x_j \right)^- \right);$$

(for each $x \in X$, we note $x^+ := x \vee 0$, $x^- := (-x) \vee 0$ and we have x = $x^+ - x^- \ \forall x \in X$);

(c) if $x_j \in X_+ \ \forall j \in J$, then $f_1(x_j) \leq y_j \leq f_2(x_j) \ \forall j \in J$.

Then $(b) \Leftrightarrow (a) \Rightarrow (c)$ and, if X is a vector lattice, we have $(b') \Leftrightarrow (b) \Leftrightarrow$ $(a) \Rightarrow (c).$

3 Applications

Theorem 3. Let X be a real separable Hilbert space and let $\{x_j : j \in N\}$ a fixed orthonormal basis in X. Let $X_+ := \{x \in X : \langle x, x_j \rangle \ge 0 \ \forall j \in N\}$ and let $\{y_j : j \in N\} \subset X_+$ such that if we note $\rho_m := \sum_{j=0}^{\infty} \langle y_j, x_m \rangle$ we must have $\sum_{m=0}^{\infty} \rho_m^2 < \infty$. Then there exists $f \in L(X, X), \ f(X_+) \subset X_+, \ f(x_j) = y_j \ \forall j \in N$ and $f(x) \le \|x\| \ \tilde{y}$, where

$$\tilde{y} := \sum_{m=0}^{\infty} \rho_m x_m, \ x \in X.$$

Proof. We shall apply theorem 1', (b) \Rightarrow (a). Let $n \in N$, let $\{\lambda_0, ..., \lambda_n\} \subset R$ and let $x \in X$ such that

$$\sum_{j=0}^{n} \lambda_j x_j \le x = \sum_{m=0}^{\infty} \langle x, x_m \rangle x_m$$

By the definition of X_+ , this implies

(3.1)
$$\lambda_j \leq \langle x, x_j \rangle \quad \forall j \in \{0, 1, \dots, n\}.$$

On the other hand, $y_j \in X_+ \quad \forall j \in N$, is equivalent to

$$(3.2) \qquad \qquad < y_j, x_m \ge 0 \quad \forall (j,m) \in N^2.$$

So, from (3.1) and (3.2) we deduce

$$\sum_{j=0}^{n} \lambda_j y_j = \sum_{j=0}^{n} \lambda_j \left(\sum_{m=0}^{\infty} \langle y_j, x_m \rangle x_m \right) = \sum_{m=0}^{\infty} \left(\sum_{j=0}^{n} \lambda_j \langle y_j, x_m \rangle \right) x_m \le$$
$$\le \sum_{m=0}^{\infty} \left(\sum_{j=0}^{n} \langle x, x_j \rangle \langle y_j, x_m \rangle \right) x_m \le \|x\| \left[\sum_{m=0}^{\infty} \left(\sum_{j=0}^{n} \langle y_j, x_m \rangle \right) x_m \right] \le$$
$$\|x\| \left(\sum_{m=0}^{\infty} \rho_m x_m \right) = \|x\|\tilde{y} =: p(x),$$

where $||x|| = \langle x, x \rangle^{1/2}$. By theorem 1', (b) \Rightarrow (a), the conclusion follows. The theorem is proved.

We go on by two applications of theorem 2. We recall the following notations:

$$l^{1} := \{ (\alpha_{0}, ..., \alpha_{n}, ...) \in R^{N} : \sum_{j=0}^{\infty} | \alpha_{j} | < \infty \},$$
$$l^{\infty} := \{ (\beta_{0}, ..., \beta_{n}, ...) \in R^{N} : sup_{j \in N} | \beta_{j} | < \infty \},$$

We consider the operator $f_2: l^1 \to l^\infty$ defined by:

$$f_2((\alpha_0, ..., \alpha_n, ...)) = (\beta_0, ..., \beta_n, ...)$$

where

$$\beta_n := \sum_{k=0}^n \alpha_k.$$

In l^1 and l^{∞} we consider the convex cone of sequences which have all their components positive. It is clear that $l^1 \subset l^{\infty}$ and $\forall x \in l^1_+$, we have $x \leq f_2(x)$. It is also well known that l^{∞} is an order complete vector lattice. So, we may apply theorem 2, (b') \Rightarrow (a), for $X := l^1$, $Y := l^{\infty}$, $f_1(x) = x \forall x \in X$ and f_2 defined as above. We get the following result.

Theorem 4. Let $X := l^1$, $Y := l^{\infty}$, let $x_j \in X$, $x_j := (0, ..., 0, 1, 0, ..., 0, ...)$, $j \in N$, $\{y_j : j \in N\} \subset X \subset Y$, $y_j = \sum_{m=0}^{\infty} \alpha_m^{(j)} x_m$. The following statements are equivalent:

(a) there exists $f \in L(X,Y)$, $f(x_j) = y_j \ \forall j \in N$, $x \leq f(x) \leq f_2(x) \ \forall x \in X_+$;

(b) for any $n \in N$ and any $\{\lambda_0, ..., \lambda_n\} \subset R$, we have:

(b₁)
$$\sum_{j=0}^{n} \lambda_j \, \alpha_m^{(j)} \leq \lambda_0^+ + \dots + \lambda_{m-1}^+ + \lambda_m, \quad \text{if} \quad 0 \leq m \leq n,$$

and

$$(b_2) \qquad \sum_{j=0}^n \lambda_j \ \alpha_m^{(j)} \le \lambda_0^+ + \dots + \lambda_p^+ + \dots + \lambda_n^+, \quad if \quad m \ge n+1, m \in N$$

(c) the following three conditions are fulfilled:

(c₁)
$$\alpha_m^{(j)} = 0 \quad \forall j \in N, \quad \forall m \in N \text{ such that } 0 \le m \le j-1,$$

$$(c_2) \qquad \qquad \alpha_j^{(j)} = 1 \quad \forall j \in N,$$

(c₃).
$$\alpha_m^{(j)} \in [0,1] \quad \forall j \in N, \quad \forall m \ge j+1, \quad m \in N$$

Proof. To prove (a) \Leftrightarrow (b), we use (a) \Leftrightarrow (b') of theorem 2. We have only to show that the relations (b_1) and (b_2) (together) are equivalent to (2.6). We have:

$$\sum_{j=0}^{n} \lambda_j \ y_j = \sum_{j=0}^{n} \lambda_j \left(\sum_{m=0}^{\infty} \alpha_m^{(j)} x_m \right) = \sum_{m=0}^{\infty} \left(\sum_{j=0}^{n} \lambda_j \alpha_m^{(j)} \right) x_m$$

and so, (2.6) may be written as follows:

$$\sum_{m=0}^{\infty} \left(\sum_{j=0}^{n} \lambda_j \alpha_m^{(j)} \right) x_m \le f_2((\lambda_0^+, ..., \lambda_k^+, ..., \lambda_n^+, 0, 0, ...) - (\lambda_0^-, ..., \lambda_k^-, ..., \lambda_n^-, 0, 0, ...) =$$

80

$$= (\lambda_0^+, \lambda_0^+ + \lambda_1^+, ..., \lambda_0^+ + ... + \lambda_n^+, \lambda_0^+ + ... + \lambda_n^+, 0, ...) - (\lambda_0^-, \lambda_1^-, ..., \lambda_n^-, 0, ...) =$$

= $(\lambda_0, \lambda_0^+ + \lambda_1, ..., \lambda_0^+ + ... + \lambda_{n-1}^+ + \lambda_n, \lambda_0^+ + ... + \lambda_{n-1}^+ + \lambda_n^+, \lambda_0^+ + ... + \lambda_{n-1}^+ + \lambda_n^+, ...).$

By the definition of Y_+ , (2.6) is equivalent to the statement (b) of theorem 4.

(a) \Rightarrow (c) is almost obvious. Indeed, since $x_j \in X_+$, we have:

$$x_j = (0, ..., 0, 1, 0, ...) \le y_j = (\alpha_0^{(j)}, ..., \alpha_j^{(j)}, ..., \alpha_m^{(j)}, ...) \le T_2(x_j) = (0, ..., 0, 1, 1, 1, ...)$$

which imply (c).

(c) \Rightarrow (b) To prove (c) \Rightarrow (b₁), let $n \in N$ and $m \in N$, $m \leq n$. From $(c_1), (c_2)$ and (c_3) we deduce:

$$\sum_{j=0}^{n} \lambda_{j} \alpha_{m}^{(j)} = \sum_{j=0}^{m-1} \lambda_{j} \alpha_{m}^{(j)} + \lambda_{m} \alpha_{m}^{(m)} + \sum_{j=m+1}^{n} \lambda_{j} \alpha_{m}^{(j)} =$$
$$\sum_{j=0}^{m-1} \lambda_{j} \alpha_{m}^{(j)} + \lambda_{m} \leq \sum_{j=0}^{m-1} \lambda_{j}^{+} + \lambda_{m} = \lambda_{0}^{+} + \dots + \lambda_{m-1}^{+} + \lambda_{m}$$

This proves (b_1) . To finish the proof, we have to show that $(c) \Rightarrow (b_2)$.

Let $m, n \in N$, $m \ge n + 1$. If $j \in N$, $j \le n \le m - 1$, then $m \ge j + 1$ and, by $(c_3), \alpha_m^{(j)} \in [0, 1]$. This implies:

$$\sum_{j=0}^n \lambda_j \, \alpha_m^{(j)} \le \sum_{j=0}^n \lambda_j^+,$$

i.e. (b_2) . The theorem is proved.

We go on by an application of theorem 2 to a space of analitic functions.

Let $\rho > 0$. We denote by A_{ρ} the set of all complex functions, defined on the open disk $|z| < \rho$ of the complex plane, which can be represented as the sum of an absolutely convergent series

$$x(z) = \sum_{j=0}^{\infty} \alpha_j z^j,$$

the coefficients α_j being real numbers. Then $X = A_\rho$ is a real vector space which can be ordered by the convex cone

(3.3)
$$X_+ := \left\{ x \in A_\rho : x(z) = \sum_{j=0}^\infty \alpha_j \ z^j, \quad \alpha_j \ge 0 \quad \forall j \in N \right\}.$$

It is easy to see that X is an order complete vector lattice.

Theorem 5. Let $X = A_{\rho}$ and let X_{+} be the cone defined by (3.3). Let us denote $x_{j}(z) := z^{j}, j \in N, |z| < \rho$ and let us consider the function $g \in X, g(z) = 1 + z$. On the other hand, let $\{y_{j} : j \in N\} \subset X$ be a sequence in

X, $y_j(z) = \sum_{m=0}^{\infty} \alpha_m^{(j)} z^m$, $j \in N$, $|z| < \rho$. Let us consider the following statements:

(a) there exists $f \in L(X, X)$ such that $f(x_j) = y_j \quad \forall j \in N, \ x \leq f(x) \leq xg \ \forall x \in X_+ \ ;$

(b) for any $n \in N$ and any $\{\lambda_0, \lambda_1, ..., \lambda_n\} \subset R$, we have:

$$(b_1) \qquad \qquad \sum_{j=0}^n \lambda_j \alpha_0^{(j)} \le \lambda_0,$$

(b₂)
$$\sum_{j=0}^{n} \lambda_j \alpha_m^{(j)} \le \lambda_{m-1}^+ + \lambda_m, \quad \forall m \in \{1, 2, ..., n\},$$

(b₃)
$$\sum_{j=0}^{n} \lambda_j \alpha_{n+1}^{(j)} \le \lambda_n^+,$$

(b₄)
$$\sum_{j=0}^{n} \lambda_j \alpha_m^{(j)} \le 0 \quad \forall m \in \{n+2, n+3, ...\};$$

(c) the $\alpha_m^{(j)}$ fulfill the conditions:

(c₁)
$$\alpha_m^{(j)} = 0 \quad j \in N, \quad \forall m \in N \setminus \{j, j+1\},$$

$$(c_2) \qquad \qquad \alpha_j^{(j)} = 1 \quad \forall j \in N,$$

$$(c_3) 0 \le \alpha_{j+1}^{(j)} \le 1 \quad \forall j \in N.$$

Then we have (a) \Leftrightarrow (b) \Leftrightarrow (c).

Proof. For (a) \Leftrightarrow (b) we apply theorem 2, (a) \Leftrightarrow (b'), for Y = X, $f_1(x) = x$, $f_2(x) = xg$, $\forall x \in X$. We check that the assertion (b) of theorem 5 is equivalent to the assertion (b') of theorem 2. We remark that for any $x = \sum_{m=0}^{\infty} \alpha_m x_m \in X_+$, the relation $f_1(x) := x \leq f_2(x) := xg$ is true. Indeed, we have:

$$(xg)(z) = x(z)g(z) = \left(\sum_{m=0}^{\infty} \alpha_m z^m\right)(1+z) = \sum_{0}^{\infty} \alpha_m z^m + \sum_{0}^{\infty} \alpha_m z^{m+1} = \sum_{m=0}^{\infty} \alpha_m z^m + \sum_{m=1}^{\infty} \alpha_{m-1} z^m = \alpha_0 + \sum_{m=1}^{\infty} (\alpha_m + \alpha_{m-1}) z^m.$$

So, we have got:

Two Sandwich Theorems for Linear Operators

$$xg = \alpha_0 x_0 + \sum_{m=1}^{\infty} (\alpha_m + \alpha_{m-1}) x_m \ge \alpha_0 x_0 + \sum_{m=1}^{\infty} \alpha_m x_m$$

since $\alpha_{m-1} \geq 0 \quad \forall m \in \{1, 2, ...\}$ by the definition of $X_+ \ni x$. So, we have only to verify the equivalence (2.6) \Leftrightarrow (b) of theorem 5. Let us write (2.6) in our particular case. Let $n \in N$, $\{\lambda_0, \lambda_1, ..., \lambda_n\} \subset R$. Then (2.6) may be written in the following way:

$$\sum_{j=0}^{n} \lambda_j y_j = \sum_{j=0}^{n} \lambda_j \left(\sum_{m=0}^{\infty} \alpha_m^{(j)} x_m \right) = \sum_{m=0}^{\infty} \left(\sum_{j=0}^{n} \lambda_j \alpha_m^{(j)} \right) x_m \le$$

$$\le f_2 \left(\left(\left(\sum_{j=0}^{n} \lambda_j x_j \right)^+ \right) - f_1 \left(\left(\sum_{j=0}^{n} \lambda_j x_j \right)^- \right) =$$

$$= f_2 \left(\sum_{j=0}^{n} \lambda_j^+ x_j \right) - f_1 \left(\sum_{j=0}^{n} \lambda_j^- x_j \right) =$$

$$= \left(\sum_{m=0}^{n} \lambda_m^+ x_m \right) (1 + x_1) - \sum_{m=0}^{n} \lambda_m^- x_m =$$

$$= \sum_{m=0}^{n} \lambda_m x_m + \sum_{m=0}^{n} \lambda_m^+ x_{m+1} - \sum_{m=0}^{n} \lambda_m^- x_m =$$

$$= \sum_{m=0}^{n} \lambda_m x_m + \sum_{m=1}^{n+1} \lambda_{m-1}^+ x_m =$$

$$= \sum_{m=1}^{n} \left(\lambda_{m-1}^+ + \lambda_m \right) x_m + \lambda_0 x_0 + \lambda_n^+ x_{n+1}.$$

By the definition of X_+ , this is equivalent to (b) of theorem 5.

(a) \Rightarrow (c) Since $x_j \in X_+$, we have from (a):

$$x_j = f_1(x_j) \le \sum_{m=0}^{\infty} \alpha_m^{(j)} x_m = y_j = f(x_j) \le f_2(x_j) = x_j(1+x_1) = x_j + x_{j+1}.$$

By the definition of X_+ , (c) follows.

 $(c) \Rightarrow (b)$

(b₁)
$$\sum_{j=0}^{n} \lambda_j \alpha_0^{(j)} = \lambda_0 \alpha_0^{(0)} + \sum_{j=1}^{n} \lambda_j \alpha_0^{(j)} = \lambda_0,$$

by (c_1) and (c_2) .

$$(b_2) \qquad m \in \{1, 2, ..., n\} \Rightarrow \sum_{j=0}^n \lambda_j \alpha_m^{(j)} = \lambda_m \alpha_m^{(m)} + \lambda_{m-1} \alpha_m^{(m-1)} =$$
$$= \lambda_m + \lambda_{m-1} \alpha_m^{(m-1)} \le \lambda_m + \lambda_{m-1}^+$$

by $(c_1), (c_2)$ and (c_3) .

(b₃)
$$\sum_{j=0}^{n} \lambda_j \alpha_{n+1}^{(j)} = \lambda_n \alpha_{n+1}^{(n)} \le \lambda_n^+, \quad \text{by } (c_1) \text{ and } (c_3).$$

$$(b_4) \qquad \qquad \sum_{j=0}^n \lambda_j \alpha_m^{(j)} = 0$$

if $m \ge n+2$, by (c_1) . The theorem is proved.

References

- N.I.Ahiezer and M.G.Krein, Some questions in the theory of moments, Transl. Math. Mono. 22, Amer. Math. Soc., Providence, R.I., 1962.
- [2] N.I.Ahiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh and London, 1965.
- [3] H.Bauer, Sur le prolongement des formes linéaires positives dans un espace vectoriel ordonné, C.R.Acad. Sci. Paris, 244(1957), 289-292.
- [4] I.Colojoară, *Mathematical analysis*, Didactical and Pedagogical Publishing House, Bucharest, 1983 (in Romanian).
- [5] R.Cristescu, *Functional analysis*, 2-nd ed., Didactical and Pedagogical Publishing House, Bucharest, 1970 (in Romanian).
- [6] R.Cristescu, Ordered vector spaces and linear operators, Romanian Academy Publishing House, Bucharest, Romania, Abacus Press, Tunbridge Wells, Kent, England, 1976 (in English).
- [7] R.Cristescu, Gh.Grigore, C.Niculescu, G.Păltineanu, N.Popa and D.T.Vuza, Order structures in functional analysis, vol. 3, Romanian Academy Publishing House, Bucharest, 1992 (in Romanian).
- [8] M.G.Krein and A.A.Nudelman, Markov moment problem and extremal problems, Transl. Math. Mono., Amer. Math. Soc., Providence R.I., 1977.
- [9] M.Landsberg and W.Schirotzek, Mazur-Orlicz type theorems with some applications, Math. Nachr. 79 (1977), 331-341.
- [10] S.Mazur and W.Orlicz, Sur les espaces métriques linéaires II, Studia Math. 13(1953), 137-179.
- [11] M.Nicolescu, Mathematical analysis, vol. I, II, III, Technical Publishing House, Bucharest, 1957, 1958, 1960.
- [12] C.Niculescu and N.Popa, *Elements of theory of Banach spaces*, Romanian Academy Publishing House, Bucharest, 1981 (in Romanian).
- [13] O.Olteanu, Convexité et prolongement d'opérateurs linéaires, C.R.Acad. Sci. Paris, 286 (1978), 511-514.
- [14] O.Olteanu, Théorèmes de prolongement d'opérateurs linéaires, Rev. Roumaine Math. Pures et Appl. XXVIII, 10(1983), 953-983.
- [15] O.Olteanu, Application de théorèmes de prolongement d'opérateurs linéaires au problème des moments et à une généralisation d'un théorème de Mazur-Orlicz, C.R.Acad. Sci. Paris 313 (1991), 739-742.
- [16] O.Olteanu, Applications of the solution of the abstract moment problem to the classical moment problem, St. Cerc. Mat. (Mathematical Reports), to appear.

- [17] O.Olteanu, Applications of a general sandwich theorem for operators to the moment problem, Rev. Roum. Math. Pures et Appl., 41, 7-8(1996), 513-521.
- [18] G.Păltineanu, Elements of approximation theory of continuous functions (Theorems of Stone-Weierstrass type), Romanian Academy Publishing House, Bucharest, 1982 (in Romanian).
- [19] W.Rudin, Real and complex analysis, New York, Mc.Graw-Hill, 1966.
- [20] H.H.Schaefer, *Topological vector spaces*, Macmillian Company, New York, London, 1966.

Politehnica University of Bucharest Department of Mathematics I Splaiul Independenței 313 77206 Bucharest, ROMANIA