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Abstract

We prove that the study of Rimmer bifurcation of symmetric fixed
points in two–dimensional discrete reversible dynamical systems can be
achieved analysing either bifurcation of critical points of a symmetric
Hamiltonian function or the bifurcation of symmetric equilibrium points
for a nonconservative reversible vector field. We give the normal forms
for generating functions of area preserving reversible diffeomorphisms and
the normal forms for nonconservative reversible vector fields associated to
Rimmer bifurcation.
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1 Introduction

In classical mechanics a lot of dynamical systems possess time–reversal symme-
try, i.e. the equations of evolution are invariant under the transformation t → −t.
In connection to the study of the 3–body problem, Moser [5] generalized the re-
versibility of a system on R2n, defining time–reversal symmetry with respect
to a linear reflection (involution) R (R ◦ R = id). Namely, given a dynamical
system defined by the complete vector field X on R2n, the system is called R–
reversible if R X = −X R. Devaney [1] studied reversible dynamical systems
on even dimensional compact manifolds M , reversibility being introduced by a
nonlinear smooth involution R having the fixed point set, Fix(R), of dimension
dim(M)/2. In the nonlinear context R–reversibility means

1.1 TR ◦X = −X ◦R,

where T is the tangent functor on the category of smooth manifolds. Denoting
by Φt the flow of the vector field X defined on M , condition (1.1) implies:

1.2 RΦt = Φ−tR, ∀t ∈ R
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Let X be a smooth complete R–reversible vector field on Rn, having the
flow Φt. The orbit Φtx0 of the point x0 ∈ Rn is called symmetric with respect
to R if Φtx0 = R Φ−tx0. Taking t = 0 we get R x0 = x0, i.e. a symmetric orbit
is the orbit of a point in the set Fix(R). An equilibrium point of X is called
symmetric if it lies on Fix(R). If x0 is a nonsymmetric equilibrium point then
R(x0) is also an equilibrium point.

In the discrete context, if R is a smooth involution of the smooth manifold
M2n, with dim(Fix(R)) = n, a diffeomorphism f of M is called R–reversible
diffeomorphism if I = f◦R is also an involution. So f = I◦R, and f−1 = R◦f◦R.

Definition 1.1 Let R be a linear involution of R2n. A linear map L of R2n is
called R–reversible if I = L ◦R is also an involution of R2n. A linear map A is
called infinitesimally R–reversible if A R = −R A.

If L : R2n → R2n is a R–reversible linear map then λ is an eigenvalue for L
iff λ−1 is also an eigenvalue for L.

For an infinitesimally R–reversible map A : R2n → R2n if λ is an eigenvalue
of A of multiplicity k then −λ is also an eigenvalue of multiplicity k. Moreover,
the eigenvalue 0 has even multiplicity if it occurs.

Now we are able to characterize the eigenvalues of a linear R–reversible map
L : R2 → R2: The only nontrivial linear involutions of R2 are S(x, y) = (−x, y),
S(x, y) = (x,−y) and S(x, y) = (−x,−y). So their determinant is ±1. Since
L = I ◦ R, it follows that det(L) = ±1. If L is orientation preserving then
det(L) = 1, i.e. the product of their eigenvalues is 1: λλ−1 = 1. Therefore the
normal forms for orientation preserving linear R–reversibile systems on R2 are:

[
λ 0
0 λ−1

] [
1 b
0 1

] [ −1 b
0 −1

] [
cos θ − sin θ
sin θ cos θ

]

If x0 is a fixed point of the R–reversible diffeomorphism f : M → M , where
M = R2 or a two dimensional smooth manifold, then the linear map dx0f is
also R–reversible. Therefore we can clasify fixed points of a two–dimensional R–
reversible smooth mapping according to the properties of the eigenvalues λ, λ−1

of its linear part dx0f :

1. x0 is a hyperbolic fixed point if λ ∈ R, and λ 6= 1

2. elliptic if λ, λ−1 ∈ C, and |λ| = 1;

3. parabolic if λ = λ−1 = ±1. x0 is called 1 : 1 resonant fixed point if the
both eigenvalues are 1, and 1 : 2 resonant if the both eigenvalues are −1.

2 Bifurcation of symmetric 1 : 1 resonant fixed
points in two–dimensional reversible dynami-
cal systems

During the last decade much attention was paid to the study of the dynamics
of a reversible system (see [9] and references therein) and particularly to the



A Study of the Rimmer Bifurcation 89

bifurcation of points of equilibrium of revesible vector fields [3] or bifurcation of
fixed points of reversible diffeomorphisms [7].

Next we study the so called Rimmer bifurcation of a 1 : 1 resonant equilib-
rium/fixed point of a planar R–reversible system. Rimmer [8] studied bifurcation
of a 1 : 1 fixed point in area preserving R–reversible maps using a Poincaré gen-
erating function

The Rimmer’s result states:
If (x, µ) → f(x, µ), µ ∈ I is a smooth family of area preserving R–reversible

maps of an open set of the plane (R(x, y) = ±(−x, y)) and (x0, µ0) is a 1 :
1 resonant symmetric fixed point of f , and the Poincaré generating function
satisfies some conditions, then at µ = 0 f undergoes a symmetry breaking
bifurcation, that is (x0, µ0) is embedded in a family of symmetric fixed points
that change the type from hyperbolic to elliptic or conversely, when traverse the
bifurcation point, and two further families of asymmetric fixed points bifurcate
from (x0, µ0).

The generating function involved in the treatment of Rimmer bifurcation is
somewhat artifficial and the proofs are very laborious.

In the following, we shall use a different generating function suggested
by Meyer [4] in the study of bifurcation of fixed points in area preserving
(non-reversible) maps. In fact we establish a local correspondence between R–
reversible flows and R–reversible diffeomorphism.

Let Ψ be the fractional linear transformation of C, defined by: Ψ(z) =
(1 + z)(1 − z)−1. Its inverse is defined as Ψ−1(z) = (z − 1)(z + 1)−1. It is
straightforward that Ψ({z|Re(z) = 0}) = S1 (S1 is the unit circle), and the
left half complex plane is mapped to the interior of the unit disc. Denote by
L1(Rn), respectively L−1(Rn) the subset of linear transformations of Rn with
no eigenvalue 1, respectively with no eigenvalue −1. Meyer [4] proved:

1. Ψ maps L1(Rn) onto L−1(Rn), and if λi, i = 1, n are eigenvalues of A ∈
L1(Rn), then Ψ(λi) are the eigenvalues of Ψ(A).

2. If A ∈ L1(R2n) is a Hamiltonian matrix then Ψ(A) is symplectic, and
conversely, if B ∈ L−1(R2n) is a symplectic transformation then Ψ−1(B)
is a Hamiltonian linear transformation.

Next we study the action of the map Ψ on the subspace of infinitesimally
R–reversible linear maps.

Proposition 2.1 If A is an infinitesimally R–reversible linear map of Rn having
no eigenvalue 1, then Ψ(A) is a linear R–reversible map, and conversely, if B is a
linear R–reversible map having no eigenvalue −1, then Ψ−1(B) is infinitesimally
R–reversible.
Proof. Let B = Ψ(A). Then R B R = R (I + A) (I − A)−1 R = R (R2 −
R A R)(R2 + R AR)−1= (I −A)(I + A)−1 = B−1, that is B is R–reversible.

Conversely, let A = Ψ−1(B) = (B − I)(B + I)−1. B being R–reversible,
it is conjugated to its inverse: B = R B−1 R. Hence R A = R (R B−1 R −
R2)(R B−1 R + R2) = R2 (B−1 − I) (B−1 + I)R = Ψ−1(B−1)R = −Ψ(B)R =
−AR. q.e.d.
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In order to discuss the bifurcation of a 1 : 1 fixed point of a R–reversible
diffeomorphism we extend the action of the application Ψ to the nonlinear maps.

Let V be an open neighbourhood of 0 in R2 and X a R–reversible vector
field defined on V having 0 as equilibrium point such that the linear vector field
d0X has no eigenvalue 1. Hence id − X is locally invertible in a neibourhood
of 0, and we can associate to X the map f defined in that neighbourhood by
f = Ψ(X) = (id + X)(id −X)−1. So f is a R–reversible local diffeomorphism,
having 0 as fixed point. If X depends smoothly on a parameter then so does f ,
and thus bifurcation of the R–reversible map f reduces to the bifurcation of the
equilibrium points of X.

Exploiting this correspondence we give a simpler proof for the Rimmer bi-
furcations of a 1 : 1 resonant fixed point of an area preserving R–reversible
diffeomorphism of the plane.

It is well known in the theory of area preserving diffeomorphisms that fixed
points are critical points for a generating function. We associate a generating
function in the following way: Consider a smooth area preserving R–reversible
map f (R(x, y) = (x,−y)) defined on a simply connected neighbourhood of the
origin of R2. Suppose that (0, 0) is 1 : 1 resonant fixed point for f . Then the
vector field X = (f−id)◦(f +id)−1 is well defined on the same neighbourhood of
the origin, it is R–reversible, and has (0, 0) as double zero equilibrium point. One

verifies that the vector field Y = J−1 X, ( J =
(

0 −1
1 0

)
) has the property

that ∂Y1
∂y = ∂Y2

∂x . Therefore there exists a smooth real function H, such that
Y = gradH. Hence the local vector field X = J Y is a hamiltonian vector
field, and (0, 0) is a critical point for the Hamiltonian function H. Moreover,
H ◦ R = H. Conversely, to a vector field X = JgradH, where H ◦ R = H,
gradH(0) = 0, and J d2H(0) has no eigenvalue 1, one associates through Ψ an
area preserving R–reversible diffeomorphism f , having 0 as fixed point.

Thus the bifurcation of symmetric fixed points of f is reduced to the bifur-
cation of critical points of the Hamiltonian function H.

Proposition 2.2 Let fµ, µ ∈ (−ε, ε) be a family of area preserving R–reversible
smooth local diffeomorphisms , defined on a simply connected neighbouhood of
the origin, having for µ = 0 the 1 : 1 resonant fixed point (0, 0). If the normal
form of the Hamiltonian generating function of fµ is H(x, y) = x2 − µy2 ± y4,
then the family fµ undergoes a Rimmer bifurcation at µ = 0
Proof

∂H

∂x
= 2x

∂H

∂y
= ±4y3 − 2µy

and

d2H =
[

2 0
0 ±12y2 − 2µ

]

For any µ ∈ (−ε, ε), x = 0, y = 0 is a critical point of the function H, hence
an equilibrium point for the associated vector field X, and a symmetric fixed
point for the local symplectomorphism f . The eigenvalues of the linear vector
field A = J d2

0H are the solution of equation:
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λ2 + detd2
0H = 0

For µ = 0, det(d2
0H) = 0, hence Ψ(0) = 1 and (0, 0) is a parabolic fixed point

for f .
If µ < 0, det(d2

0H) > 0, and (0, 0) is an elliptic fixed point for f , while for
µ > 0 det(d2

0H) < 0, i.e. (0, 0) is a hyperbolic fixed point for f . Observe that
when µ traverses the value 0 two assymetric fixed points (critical points for H)
arise:

• in the case ” + ” and µ > 0 (0,
√

µ/2) and (0,−
√

µ/2.

The determinant of the hessian d2H evaluated at these points is 8µ > 0,
hence the fixed points are of elliptic type. Therefore a curve of symmetric
fixed points passes through (0, 0) and further two curves of elliptic asym-
metric fixed points bifurcates from (0, 0).

e h¡
¡

@
@

e

e

• in the case ”−” and µ < 0 the two assymetric fixed points are (0,
√
−µ/2)

and (0,−
√
−µ/2, and they are of hyperbolic type.

e h@
@

¡
¡

h

h q.e.d.

An example of a family of area preserving reversible diffeomorphisms ex-
hibiting this type of bifurcation of symmetric periodic points is analysed in [6]
in connection to disappearence/reappearence of some KAM invariant curves.

Next we show that a Rimmer type bifurcation holds for a nonconservative
R–reversible diffeomorphism of the plane. In order to do that we consider a R–
reversible vector field X defined on the neighbourhood of (0, 0) ∈ R2, R(x, y) =
(−x, y) (This choice is not a restriction because by a change of coordinates we
can change the reversor).

Proposition 2.3. Let R be the reversor defined by R(x1, x2) = (−x1, x2). Then
the normal forms of a R–reversible vector field X = (X1, X2) defined on an open
set U ⊂ R2, (0, 0) ∈ U , having origin as a double-zero symmetric equilibrium
point are:

X1(x1, x2) = x2 +O(| x |4)
X2(x1, x2) = x1 x2 ± x3

1 +O(| x |4)
Proof
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R–reversibility of the vector field ensures that X1 is even in x1, while X2 is
odd in the same argument. Moreover the the origin being a double zero equi-

librium point the jacobian matrix is of the form [d0X] =
[

0 α
0 0

]
, α 6= 0.

That is, a double zero equilibrium point of a planar reversible vector field is a
codimension one equilibrium point.

The system of differential equations associated to the vector field X is:

ẋ = d0X(x) + V (x),

where V = X − d0X. By the change of coordinates y1 = x1/α, y2 = x2 the

system becomes: ẏ = Jy + F (y), where J =
[

0 1
0 0

]
is the Jordan canonical

form of the matrix [d0X]. The R–reversibility was preserved by the chosen change
of coordinates. Expanding F as a Taylor series one obtains: ẏ = Jy + F2(y) +
F3(y) + O(|y|4), where the terms Fk(y) are terms of degree k in the Taylor
expansion.

Consider the real vector space Pk generated by 2–vector valued monomials of
degree k. Namely, if (e1, e2) is the standard basis in R2 then the corresponding
basis in Pk is xk1yk2ei,

∑2
j=1 kj = k.

Our goal is to seek succesive changes of coordinates preserving R–reversibi-
lity of the system, and such that to reduce as much as possible from the k-order
terms of the system. We choose the changes of the form y = z +h2(z), and then
z = u + h3(u), where hk ∈ Pk, k = 2, 3. In order to preserve R–reversibility, the
double valued polynomials hk must have the first/second component odd/even
in the first argument. From the normal form theory [] it is known that can
be eliminated by such changes of coordinates the terms of Fk that are in the
image of the linear operator LJ : Pk → Pk defined by LJ(Q) = JQ − dQ JQ,
where J is the above Jordan matrix. In our special case Pk splits as Ho

e ⊕ He
o

(the super/subscripts e and o stand for even, respectively odd). For example the
subspace Ho

e ⊂ P2 is generated by the two vector valued monomials:
{

E1 =
(

z1z2

0

)
, E2 =

(
0
z2
1

)
, E3 =

(
0
z2
2

)}

and the subspace He
o by:

{
E4 =

(
z2
1

0

)
, E5 =

(
z2
2

0

)
, E6 =

(
0
z1z2

)}

Because we have to choose particular changes of coordinates that preserve
the R–reversibility, we study only the efect of the operator LJ on the subspace
Ho

e . It is easy to see that the image Im(LJ |Ho
e
) ⊂ He

o . Therefore the normal form
of the considered vector field will contain only the terms of order k, k = 1, 2 that
belong to the complement Dk of the subspace LJ (Ho

e ) in He
o . By straightforward

computation we get that the terms
(

0
z1z2

)
,
(

0
u3

1

)
can not be reduced by

the chosen changes of coordinates.
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After renaming the variables we have the normal form of the system of dif-
ferential equations associated the vector field under the consideration:

ẋ = y +O(| (x, y) |4)
ẏ = a xy + b x3 +O(| (x, y) |4)

We take the truncated normal form :

ẋ = y
ẏ = a xy + b x3

and make the rescaling :
x → α x
y → β y
t → γ t

in order to get the simplest coefficients. Our system then becomes:

ẋ =
γ β

α
y

ẏ = γ α a xy + b
γ α2

β
x3

Next we require

2.1
γ β

α
= 1, i.e. γ =

α

β

For the stability not be affected under the rescaling, α and β must have the
same signs. We also require

2.2
γα2 b

β
= 1,

and

2.3 γα a = 1

By (2.1), (2.3) becomes

aβ
α2

β2
= 1

while (2.2):

2.4 bα
α2

β2
= 1

If (2.4) is to hold, then a and b must have the same sign. But this is a too
restrictive condition. In order to have a full generality we require bαα2

β2 = ±1.
So the normal form is:

ẋ = y
ẏ = xy ± x3
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q.e.d.

Next we consider a candidate for a versal deformation:

ẋ = y
ẏ = −µx + xy + s x3, s = ±1

and study the local dynamics.
For s = 1, the origin is a symmetric equilibrium point for every µ. For µ < 0

it is of hyperbolic type, while for µ > 0 it is elliptic. When µ passes through
zero (from negative to positive values) two hyperbolic asymmetric equilibrium
points are born (±√µ, 0). In the case s = −1 when µ decreases from positive to
negative values again two asymmetric equilibrium points are born: (

√−µ, 0) – a
repulsor, and (−√−µ, 0) an attractor. Hence a Rimmer type bifurcation occurs.
Remark. One verifies that the system

ẋ = y +O(| (x, y) |4)
ẏ = −µx + xy + s x3 +O(| (x, y) |4)

is locally topologically equivalent near the origin to the system

ẋ = y
ẏ = −µx + xy + s x3

Therefore () is indeed a versal deformation.
Remark. Given a family fµ of non-area preserving R–reversible diffeomorfisms,
such that f0 has (0, 0) as a 1 : 1 resonant fixed point, then the associated family of
R– reversible vectors fields Xµ = Ψ−1(fµ) undergoes a Rimmer type bifurcation
as we have seen above. By Prop. 2.1 the family fµ also undergoes the same type
of bifurcation. Moreover the type of created assymetric fixed points is preserved
through Ψ.

Examples of families of nonconservative diffeomorphisms exhibiting this type
of bifurcation are given in [7]. Post [7] proved that Rimmer type bifurcation also
occurs in non-reversible systems if only a certain order of local reversibility is
satisfied.
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