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Abstract

Lately a big attention has been paid to the gauge transformations and their
applications. The gauge theory of second order was studied by Gh. Munteanu
in [16], [17] , [18]. In [7] and [8] some generalizations are given. Fundamental
results in gauge theory can be found in [1], [2] etc. The transformations of type
(1.1) were studied in [9], [10], [17], [18]. Some other types of transformation with
more variables and their applications were studied in [3], [9], [13], [14], [15], [16].

Here in the tangent space TF such an adapted basis is constructed, that the
horizontal and the two vertical distributions with respect to the given metric
structure are mutualy orthogonal. The torsion free generalized connection is
determined and its coefficients are obtained under condition that the metric
structure is parallel or recurrent. The Einstein-Yang Mills equations are also
given.
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1. Adapted basis in TF

Let F be an n + m + l dimensional C∞ manifold. Some point u ∈ F has coordinates
(xi, ya, zp) and the allowable coordinate transformations are given by the equations

xi′ = xi′(x) i, j, h, k = 1, . . . , n,

ya′ = ya′(x, y) a, b, c, d, e = n + 1, . . . , n + m,

zp′ = zp′(x, z) p, q, r, s, t = n + m + 1, . . . , n + m + l,

(1.1)

where

rank

[
∂xi′

∂xi

]
= n, rank

[
∂ya′

∂ya

]
= m, rank

[
∂zp′

∂zp

]
= l.

Proposition 1.1. The coordinate transformations of type (1.1) form a pseudo group.
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If the functions N b′
i′ (x

′, y′) and Mp′

i′ (x
′, z′) satisfy the following law of transfor-

mation ([18]):

N b
i (x, y) = N b′

i′ (x
′, y′)

∂xi′

∂xi

∂yb

∂yb′ +
∂ya′

∂xi

∂yb

∂ya′ ,(1.2)

Mp
i (x, z) = Mp′

i′ (x
′, z′)

∂xi′

∂xi

∂zp

∂zp′ +
∂zp′

∂xi

∂zp

∂zp′ ,(1.3)

then the adapted basis of TF is B(N ,M) =
{

δ
δxi ,

∂
∂ya , ∂

∂zp

}
, where

δ

δxi
=

∂

∂xi
−N b

i (x, y)
∂

∂yb
−Mp

i (x, z)
∂

∂zp
.(1.4)

Let us denote by THF , TV1F , TV2F the subspaces of TF spanned by { δ
δxi }, { ∂

∂ya },
{ ∂

∂zp } respectively, then

TF = THF ⊕ TV1F ⊕ TV2F.

Theorem 1.1. The horizontal distribution THF is integrable if

N c
i j =

(
∂N c

i

∂xj
−N b

j

∂N c
i

∂yb

)
− (i, j) = 0,(1.5)

M q
i j =

(
∂Mq

i

∂xj
−Mp

j

∂Mq
i

∂zp

)
− (i, j) = 0,(1.6)

and (i, j) is the expression in the previous bracket, in which i and j change their
places. TV1 and TV2 are integrable distributions.

Proof. By direct calculation using the abbreviations δi = δ
δxi , ∂i = ∂

∂xi , ∂a = ∂
∂ya ,

∂p = ∂
∂zp , we get

[δi, δj ] = N c
i j ∂c +M q

i j∂q(1.7)

and this vector is in THF only if N c
i j = 0 and M q

i j = 0. On the other side it is
obvious, that

[∂a, ∂b] = 0, [∂p, ∂q] = 0.

Putting
δya = dya +N a

i (x, y)dxi,(1.8)

δzp = dzp +Mp
i (x, z)dxi,(1.9)

the adapted basis B∗(N ,M) = {dxi, δya, δzp} of T ∗F is formed.
There are so many adapted basis B(N ,M) and B∗(N ,M) as many solutions have

the equations (1.2) and (1.3). In the next section we shall determine such N and M
((2.9)), that THF , TV1F and TV2F are mutually orthogonal subbundles with respect
to the given metric G.

Some d-tensor gauge T on F in the bases B and B∗ is expressed in the form:

T = T ...i ...a ...r ...
....j... b... s...

δ

δxi
⊗ dxj · · · ∂

∂ya
⊗ δyb · · · ∂

∂zr
⊗ δzs · · ·
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The components of d-tensor gauge T , with respect to the coordinate transforma-
tions (1.1) are transformed in the following way:

T ...i′ ...a′ ...r′ ...
....j′... b′... s′... = T ...i ...a ...r ...

....j... b... s...

∂xi′

∂xi

∂xj

∂xj′ · · ·
∂ya′

∂ya

∂yb

∂yb′ · · ·
∂zr′

∂zr

∂zs

∂zs′ · · ·

Theorem 1.2. The adapted bases B and B∗ are dual to each other.

2. Orthogonality of the subspaces of TF

The metric tensor G in F is a symmetric, positive definite tensor of type (0, 2). In the
natural basis of T ∗F , B̄∗ = {dxi, dya, dzp}, G has the form:

G = ḡijdxi ⊗ dxj + ḡibdxi ⊗ dyb + ḡiqdxi ⊗ dzq +(2.1)
ḡajdya ⊗ dxj + ḡabdya ⊗ dyb + ḡaqdya ⊗ dzq +
ḡpjdzp ⊗ dxj + ḡpbdzp ⊗ dyb + ḡpqdzp ⊗ dzq.

In the adapted basis B∗ = {dxi, δya, δyb} of T ∗F the metric tensor G has the
following components:

G = gijdxi ⊗ dxj + gibdxi ⊗ δyb + giqdxi ⊗ δzq +(2.2)
gajδy

a ⊗ dxj + gabδy
a ⊗ δyb + gaqδy

a ⊗ δzq +
gpjδz

p ⊗ dxj + gpbδz
p ⊗ δyb + gpqδz

p ⊗ δzq.

Proposition 2.1. The components of the metric tensor G expressed in the bases
B̄∗ and B∗ are connected by formulae:

gij = ḡij − ḡcjN c
i − ḡicN c

j − ḡrjMr
i − ḡirMr

j +(2.3)

ḡabN a
i N b

j + ḡaqN a
i Mq

j + ḡpbMp
iN b

j + ḡpqMp
iMq

j ,

gib = ḡib − ḡabN a
i − ḡpbMp

i

gaj = ḡaj − ḡabN b
j − ḡaqMq

j

giq = ḡiq − ḡaqN a
i − ḡpqMp

i

gpj = ḡpj − ḡpbN b
j − ḡpqMq

r

gab = ḡab, gaq = ḡaq, gpb = ḡpb, gpq = ḡpq.(2.4)

The proof follows from (1.8), (1.9), (2.1) and (2.2).
Proposition 2.2. If THF , TV1F and TV2F are mutually orthogonal spaces with

respect to the metric tensor G, then (2.3) has the form:

gij = ḡij − ḡcjN c
i − ḡicN c

j − ḡrjMr
i − ḡirMr

j +(2.5)

gpqMp
iMq

j + gabN a
i N b

j ,

0 = ḡib − gabN a
i , 0 = ḡaj − gabN b

j ,(2.6)

0 = ḡiq − gpqMp
i , 0 = ḡpj − gpqMq

j .(2.7)
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Proof. FromFrom the orthogonallity of THF , TV1F and TV2F with respect to the
metric tensor G, follows that in (2.2) we have:

gib = 0, giq = 0, gaj = 0, gaq = 0, gpj = 0, gpb = 0.(2.8)

Substituting (2.4) and (2.8) into (2.3) we obtain (2.5), (2.6) and (2.7).
Theorem 2.1. If THF , TV1F and TV2F are mutually orthogonal with respect to

the metric tensor G given by (2.1), then:

N c
i = ḡibg

bc, Mr
j = ḡpjg

pr,(2.9)

where (gbc) and (gpr) are the inverse matrices of (gab) and (grs) respectively. If TV1

is orthogonal to TV2 with respect to G and (2.9) are satisfied, then TH is orthogonal
to TV1 and to TV2 .

Proof. The first assertion follows from (2.6) and (2.7). The existence of inverse
matrices follows from the fact, that G is positive definite. From the symmetry of the
metric tensor and (2.9) follow (2.6) and (2.7). From the orthogonality of TV1 and TV2

we have gaq = ḡaq = 0, gpb = ḡpb = 0. From these relations, (2.6) and (2.9), using
(2.3), we obtain gib = 0, gaj = 0, giq = 0, gpj = 0.

Proposition 2.3. The nonlinear connections N c
i and Mr

j determined by (2.9)
satisfy the transformation laws (1.2) and (1.3).

Proof. Using the relations

dxi′ =
∂xi′

∂xi
dxi, dya′ =

∂ya′

∂xi
dxi +

∂ya′

∂ya
dya,

dzp′ =
∂zp′

∂xi
dxi +

∂zp′

∂zp
dzp

and the expression similar to (2.1) for the metric tensor G in B̄∗′ = {dxi′ , dya′ , dzp′}
we get

ḡib = ḡi′b′
∂xi′

∂xi

∂yb′

∂yb
+ ḡa′b′

∂ya′

∂xi

∂yb′

∂yb
+ ḡp′b′

∂zp′

∂xi

∂yb′

∂yb
(2.10)

ḡab = ga′b′
∂ya′

∂ya

∂yb′

∂yb
.(2.11)

From

gib = gi′b′
∂xi′

∂xi

∂yb′

∂yb
and gib = ḡib − ḡabN a

i

follows

ḡib − ḡabN
a
i = (ḡi′b′ − ḡa′b′N

a′
i′ )

∂xi′

∂xi

∂yb′

∂yb
.(2.12)

Subsituting (2.10) and (2.11) into (2.12) and using the fact that TV1 is orthogonal to
TV2 , i.e. gpb = gp′b′ = 0 = ḡp′b′ we get

ga′b′
∂ya′

∂xi

∂yb′

∂yb
− ga′b′

∂ya′

∂ya

∂yb′

∂yb
Na

i =(2.13)

−ga′b′N
a′
i′

∂xi′

∂xi

∂yb′

∂yb
.
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If we multiply (2.13) with ∂yb

∂yc′ g
c′d′ ∂ya

∂yd′ we obtain (1.2). In the similar way we can
obtain (1.3).

Proposition 2.4. If the adapted basis B = {δi, ∂a, ∂p} is formed by N c
i and Mr

j

determined by (2.9), then the horizontal distribution THF is integrable iff:

N c
i j = [∂j ḡiagac)− ḡjdg

db∂b(ḡiagac)]− [i, j] = 0
M q

i j = [∂j(ḡipg
pq)− ḡjpg

pr∂r(ḡisg
sq)]− [i, j] = 0.

The proof follows from Theorem 1.1 and (2.9).
The connection between adapted basis and metric structure for the generalized

Finsler space was studied in [5], [6].

3. Gauge covariant derivatives of the second order

We shall suppose that on F the metric tensor G is given by (2.1).
If we form the adapted basis B∗ using the nonlinear connection coefficients N c

i

and Mr
j determined by (2.9), as functions of the metric tensor G and suppose that

TV1 is orthogonal to TV2 , then according to Theorem 2.1 it follows that THF , TV1F ,
TV2F are mutually orthogonal subbundles with respect to G and in this basis the
metric tensor instead of (2.2) has the form:

G = gijdxi ⊗ dxj + gabδy
a ⊗ δyb + gpqδz

p ⊗ δzq.(3.1)

From now on we shall always choose such adapted bases B and B∗ in which N c
i

and Mr
j are determined by (2.9).

Definition 3.1. Let ∇ : TF ×TF → TF (× is the Descarte’s product) be a usual
linear connection, such that ∇ : (X, Y ) → ∇XY ∈ TF , ∀X, Y ∈ TF . The operator ∇
is called generalized gauge connection of the second order.

A generalized gauge connection ∇ of the second order locally is expressed by

∇∂α∂β = F γ
β α∂γ ,(3.2)

where α, β, γ, . . . = 1, . . . , n + m + l and ∂α are elements of the basis B.
It is called d-gauge connection of second order if ∇XY is in THF , TV1F or TV2F

if Y is in THF , TV1F or TV2F respectively, ∀X ∈ TF . It has been studied by many
authors, mostly romanian geometers ([2], [16], [17], [18]). The generalized connection
in K-Hamilton spaces and in dual vector bundles were studied in [3] and [4].

Theorem 3.1. If the vector fields X, Y expressed in B have the form

X = Xα∂α = Xiδi + Xa∂a + Xp∂p,

Y = Y β∂β = Y jδj + Y b∂b + Y q∂q,

then
∇Y X = Xα

|βY β∂α,(3.3)

where
Xα
|β = ∂βXα + F α

γ βXγ = ∂βXα + F α
i β Xi + F α

a βXa + F α
p βXp.(3.4)
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Theorem 3.2. The covariant derivatives are transformed as tensors if all connec-
tion coefficients are transformed as tensors except

(a) F k
j i = F k′

j′ i′
∂xi′

∂xi

∂xk

∂xk′
∂xj′

∂xj
+

∂2xk′

∂xi∂xj

∂xk

∂xk′

(b) F c
b i = F c′

b′ i′
∂xi′

∂xi

∂yb′

∂yb

∂yc

∂yc′ +
∂2yc′

∂xi∂yb

∂yc

∂yc′ −N a
i

∂2yc′

∂yb∂ya

∂yc

∂yc′

(c) F r
q i = F r′

q′ i′
∂xi′

∂xi

∂zq′

∂zq

∂zr

∂zr′ +
∂2zr′

∂xi∂zq

∂zr

∂zr′ −Ms
i

∂2zr′

∂zs∂zq

∂zr

∂zr′

(d) F c
b a = F c′

b′ a′
∂yb′

∂yb

∂ya′

∂ya

∂yc

∂yc′ +
∂2yc′

∂ya∂yb

∂yc

∂yc′

(e) F r
q p = F r′

q′ p′
∂zq′

∂zq

∂zp′

∂zp

∂zr

∂zr′ +
∂2zr′

∂zq∂zp

∂zr

∂zr′

The torsion tensor T (X, Y ) is defined in the usual way by:

T (X,Y ) = ∇XY −∇Y X − [X, Y ].(3.5)

Theorem 3.3. The torsion tensor for the generalized gauge connection of the
second order has the form:

T (X,Y ) = T kδk + T c∂c + T r∂r,(3.6)

where

Tα = T α
j i Y jXi + T α

j b Y jXb + T α
j q Y jXq +(3.7)

T α
b i Y bXi + T α

b a Y bXa + T α
b q Y bXq +

T α
p i Y pXi + T α

p b Y pXb + T α
p q Y pXq,

where α = k or α = c or α = r. The components of the torsion tensor are expressed
as the difference of the corresponding connection coefficients for instance

T k
j i = F k

j i − F k
i j T k

j b = F k
j b − F k

b j , . . .

except the following

T c
j i = F c

j i − F c
i j −N c

i j

T c
j b = F c

j b − F c
b j + (∂bN c

j )
T c

b i = F c
b i − F c

i b − (∂bN c
i )

T r
j i = F r

j i − F r
i j −M r

i j

T r
j q = F r

j q − F r
q j + ∂qMr

j

T r
p i = F r

p i − F r
i p − ∂pMr

i
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Theorem 3.4. The generalized gauge connection of the second order is torsion free
if all connection coefficients are symmetric in the lower indices except the following:

(a) F c
j b = F c

b j − ∂bN c
j , F r

j q = F r
q j − ∂qMr

j(3.8)
(b) F c

j i = F c
i j +N c

i j

(c) F r
j i = F r

i j +M r
i j

As N c
i j and M r

i j are tensors, so all F ’s appeared in (3.8)(b) and (3.8)(c) are also
tensors. When the horizontal distribution is integrable, then N c

i j = 0 and M r
i j = 0

(Theorem 1.1) and then F c
j i = F c

i j and F r
j i = F r

i j .
Using (1.2), (1.3) and (b), (c) from Theorem 3.2 it can be proved that F c

j i and
F r

j q given by (3.8)(a) are transformed as tensors, as was stated in Theorem 3.2. By
the proof the relation

(∂c′∂b′y
c)(∂by

b′) + (∂b∂ayb′)(∂c′y
a)(∂b′y

c) =

∂c′ [(∂b′y
c)(∂by

b′ ] = ∂c′δ
c
b = 0

(similar for z) is used.
The proofs of Theorems 3.2, 3.3 and 3.4 are given in [8] and the curvature theory

of ∇ is given in [7].

4. Recurrent gauge connection of
second order

As before we shall use such adapted basis B∗ in which the nonlinear connections are
given by (2.9) and the metric tensor G has the form (3.1).

Definition 4.1. The generalized gauge connection ∇ of second order is recurrent
(metric) if

gαβ|γ = wγgαβ (gαβ|γ = 0),(4.1)

where
w = whdxh + wdδy

d + wsδz
s

is a 1-form in T ∗F and

gαβ|γ = ∂γgαβ − F κ
α γgκβ − F κ

β γgακ.(4.2)

Theorem 4.1. The connection coefficients of the recurrent gauge connection of
the second order are determined by

2F γ
α β = gκγ(γακβ − wακβ + T̃ακβ),(4.3)

where
γακβ = ∂βgακ + ∂αgκβ − ∂κgαβ(4.4)

wαγβ = wαgγβ + wβgαγ − wγgαβ ,(4.5)
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T̃αγβ = T̄ ρ
α γgρβ + T̄ ρ

β γgρα + T̄ ρ
α βgργ ,(4.6)

T̄ ρ
α γ = F ρ

α γ − F ρ
γ α.(4.7)

From (3.1) and (4.1) follows

gaj|γ = 0, gpj|γ = 0, gaq|γ = 0,(4.8)

where
γ = i, or γ = b, or γ = s.

Theorem 4.2. The connection coefficients of the metric gauge connection of the
second order are given by

2F γ
α β = gκγ(γακβ + T̃αγβ).(4.9)

Theorem 4.3. The connection coefficients of the recurrent torsion free gauge
connections of the second order are given by (4.3) in which T̃αγβ = 0 except when in
(4.6)

T̄ c
j b = −∂bN c

i = −T̄ c
b j , T̄ r

j q = −∂qMr
j = −T̄ r

q j

T̄ c
j i = N c

i j , T̄ r
j i = M r

i j .
(4.10)

appear.
The proof follows from Theorem 3.4.
If the horizontal distribution THF is integrable, then according to the Theorem

1.1 for the torsion free connection (in (4.10)) we have T̄ c
j i = 0 and T̄ r

j i = 0.
From (4.3) we can obtain all 33 types of connection coefficients. In the following

we shall give some explicite expressions for (4.3). In all calculations it is important
that such an adapted basis B∗ is used in which the metric tensor G is determined by
(3.1).

Case 1. For (α, β, γ) = (i, j, a) we get

2F a
i j = gab(γibj − ωibj + T̃ibj),(4.11)

where

γibj = −∂bgij , ωibj = −ωbgij ,

T̃ibj = T̄ h
i b ghj + T̄ h

j b gih + T̄ c
i j gbc.

Using (4.7) and (4.10) for the torsion free connection the above equation has the
form

T̃ibj = N c
i j gbc,

because in this case
T̄ h

i b = F h
i b − F h

b i = T h
i b = 0.

If the horizontal distribution THF is integrable, then T̃ibj = 0(N c
i j = 0). In this case

for the torsion free metric connection (4.11) reduces to the form
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2F a
i j = −gab∂bgij .

Case 2. For (α, β, γ) = (i, j, r) we get

2F r
i j = grp(γipj − ωipj + T̃ipj),(4.12)

where

γipj = −∂pgij , ωipj = −ωpgij ,

T̃ipj = T̄ h
i p ghj + T̄ h

j pghi + T̄ q
i j gqp.

For the torsion free connection we have

T̄ h
i p = 0, T̄ h

j p = 0, T̄ q
i j = M q

i j

and if beside the above conditions the horizontal distribution THF is integrable
(M q

i j = 0), then T̄ q
i j = 0. In this case (4.12) reduces to

2F r
i j = grp(−∂pgij − ωpgij).

For the metric connection in the above equation ωp = 0.

Case 3. For (α, β, γ) = (j, b, c) we get

2F c
j b = gcd(γjdb − ωjdb + T̃jdb),(4.13)

where

γjdb = ∂jgdb, ωjdb = ωjgdb,

T̃jdb = T̄ c
j dgcb + T̄ i

b dgij + T̄ c
j bgcd.

For the torsion free connection we have

T̄ i
b d = 0, T̄ c

j d = −∂dN c
j

and
T̃jdb = −(∂dN c

j )gcb − (∂bN c
j )gcd.

For the torsion free metric connection (4.13) has the form:

2F c
j b = gcd(∂jgdb − gab∂dN a

j − gad∂bN a
j ).

The other coefficients of the generalized recurrent second order gauge connection
∇ can be obtained in the similar manner.

5. Einstein-Yang Mills equations of the
second order

Let L(x, y, z) be a Lagrangian defined on the compact set Ω ⊂ Rn+m+l. As it is a
scalar field we have
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L(x, y, z) = L(x′, y′, z′).(5.1)

We shall suppose, that the adapted basis B = {δi, ∂a, ∂p} of T (F ) and its dual
basis B∗ = {dxi, δya, δzp} are choosen in such a way, that THF , TV1F , TV2F are
mutually orthogonal with respect to G, i.e. when (2.9) is satisfied. The metric tensor
in this basis has the form

G = gijdxi ⊗ dxj + gabδy
a ⊗ δyb + gpqδz

p ⊗ δzpq.(5.2)

We have
g = detG(x, y, z) = |gij | · |gab| · |gpq|.(5.3)

As

gij = gi′j′
∂xi′

∂xi

∂xj′

∂xj

gab = ga′b′
∂ya′

∂ya

∂yb′

∂yb

gpq = gp′q′
∂zp′

∂zp

∂zq′

∂zq

and the determinant of the Jacobian matrix is

|J | =
∣∣∣∣
D(x′, y′, z′)
D(x, y, z)

∣∣∣∣ =

∣∣∣∣∣
∂xi′

∂xi

∣∣∣∣∣

∣∣∣∣∣
∂ya′

∂ya

∣∣∣∣∣

∣∣∣∣∣
∂zp′

∂zp

∣∣∣∣∣(5.4)

from (5.3) we obtain

|G(x, y, z)| = |gi′j′ ||ga′b′ ||gp′q′ ||J |2 = |G(x′, y′, z′)||J |2.(5.5)

Let us define the Lagrangian density by

L(x, y, z) = L(x, y, z)
√

G(x, y, z) =
√

gL(x, y, z).(5.6)

The substitution of (5.1) and (5.5) into (5.6) results

L(x, y, z) = L(x′, y′, z′)
√
|G(x′, y′, z′)||J | = L(x′, y′, z′)|J |.(5.7)

The elementary volume element dω in Ω is

dω(x, y, z) = dx1 ∧ . . . ∧ dxn ∧ dyn+1 ∧ . . . ∧ dyn+m ∧ dzn+m+1 ∧ . . . ∧ dzn+m+l.

It is known, that
dω(x′, y′, z′) = |J |dω(x, y, z).(5.8)

Proposition 5.1. The integral of action

I =
∫

Ω

L(x, y, z)dω(5.9)
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does not depend on coordinate system if and only if L(x, y, z) satisfies the relation

L(x, y, z) = |J |L(x′, y′, z′).(5.10)

Proof. I is invariant if

L(x, y, z)dω(x, y, z) = L(x′, y′, z′)dω(x′, y′, z′).(5.11)

The substitution of (5.8) into (5.11) results (5.10). The proof in the opposite
direction is obvious.

From (5.6) and (5.7) it follows, that one example for L, which gives coordinate
invariant integral of action is

L(x, y, z) =
√

gL(x, y, z).

Proposition 5.2. For arbitrary C2 function L(x, y, z) the following relation is
valid:

dL = (δiL)δxi + (δaL)δya + (δpL)δzp.(5.12)

Proof. As L = L(x, y, z) we have:

dL = (∂iL)dxi + (∂aL)dya + (∂pL)dzp.(5.13)

From (1.4), (1.8) and (1.9) we have

δi = ∂i −N b
i ∂b −Mp

i ∂p, δa = ∂a, δp = ∂p(5.14)

δxi = dxi, δya = dya + Na
i dxi, δzp = dzp + Mp

i dxi.(5.15)

The substitution of (5.14), (5.15) into (5.13) results (5.12).
We shall suppose that the Lagrangian L(x, y, z) is the function of φA(x, y, z),

∂iφ
A(x, y, z), ∂aφA(x, y, z) and ∂pφ

A(x, y, z), where φA(x, y, z) are scalar fields, i.e.

φA(x, y, z) = φA(x′, y′, z′) A = 1, 2, . . . , p.(5.16)

For the simplification, we shall consider only one function φ = φ(x, y, z) and use
these abbreviations:

∂iφ = ∂iφ(x, y, z), ∂aφ = ∂aφ(x, y, z), ∂pφ = ∂pφ(x, y, z).(5.17)

Now we have

L(φ, ∂iφ, ∂aφ, ∂pφ) =
√

gL(φ, ∂iφ, ∂aφ, ∂pφ)(5.18)

and the integral of action has the form

I(φ) =
∫

Ω

L(φ, ∂iφ, ∂aφ, ∂pφ)dω.(5.19)
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We are looking for such functions φ, for which I(φ) has maximal or minimal value,
i.e. for which δI(φ) = 0.

For the simplicity we shall suppose that Ω is the n + m + l dimensional rectangle,
such that

∫

Ω

dω =

bi∫

ai

dxi

ba∫

aa

dya

bp∫

ap

dzp
i = 1, . . . , n
a = n + 1, . . . , n + m
l = n + m + 1, . . . , n + m + l

(5.20)

and the variation of φ on the boundary of Ω is equal to zero, i.e.

δφ(bi, y, z) = δφ(ai, y, z) = 0, i = 1, 2, . . . , n(5.21)

δφ(x, ba, z) = δφ(x, aa, z) = 0, a = n + 1, . . . , n + m(5.22)

δφ(x, y, bp) = δφ(x, y, ap) = 0, p = n + m + 1, . . . , n + m + l(5.23)

where for instance

bi∫

ai

dxi =

b1∫

a1

dx1

b2∫

a2

dx2 . . .

bn∫

an

dxn,

δφ(b1, y, z) = δφ(b1, x2, . . . , xn, y, z), . . .
δφ(x, y, bn+m+l) = δφ(x, y, zn+m+1, . . . , bn+m+l).

From the variation principle we have

δI(φ) =
∫

Ω

δL(x, y, z)dω =(5.24)

∫

Ω

[
∂L
∂φ

δφ +
∂L

∂(∂iφ)
δ(∂iφ) +

∂L
∂(∂aφ)

δ(∂aφ) +
∂L

∂(∂pφ)
δ(∂pφ)

]
dω.

From (5.19) it can be seen that L is function of independent variables φ, ∂iφ, ∂aφ,
∂pφ. To express this fact we shall write in (5.24)

∂L
∂(∂iφ)

=
dL

d(∂iφ)
,

∂L
∂(∂aφ)

=
dL

d(∂aφ)
,

∂L
∂(∂pφ)

=
dL

d(∂pφ)
.(5.25)

From (5.14) it follows

L(φ, ∂iφ, ∂aφ, ∂pφ) = L(φ, δiφ, ∂aφ, ∂pφ),(5.26)

δiφ = ∂iφ−Na
i ∂aφ−Mp

i ∂pφ,(5.27)

so we have
dL

d(∂iφ)
=

∂L
∂(δiφ)

∂(δiφ)
∂(∂iφ)

=
∂L

∂(δiφ)
= A,(5.28)
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dL
d(∂aφ)

=
∂L

∂(δiφ)
∂(δiφ)
∂(∂aφ)

+
∂L

∂(∂aφ)
=

∂L
∂(δiφ)

(−Na
i ) +

∂L
∂(∂aφ)

= B.(5.29)

dL
d(∂pφ)

=
∂L

∂(δiφ)
∂(δiφ)
∂(∂pφ)

+
∂L

∂(∂pφ)
=

∂L
∂(δiφ)

(−Mp
i ) +

∂L
∂(∂pφ)

= C.(5.30)

We shall suppose

δ(∂iφ) = ∂i(δφ), δ(∂aφ) = ∂a(δφ), δ(∂pφ) = ∂p(δφ).(5.31)

From (5.24)-(5.31) we obtain

δL =
dL
dφ

δφ +
dL

d(∂iφ)
δ(∂iφ) +

dL
d(∂aφ)

δ(∂aφ) +
dL

d(∂pφ)
δ(∂pφ) =(5.32)

∂L
∂φ

δφ + Aδ(∂iφ) + Bδ(∂aφ) + Cδ(∂pφ) =

∂L
∂φ

δφ + A∂i(δφ) + B∂a(δφ) + C(∂pδφ) =

∂L
∂φ

δφ + ∂i(Aδφ) + ∂a(Bδφ) + ∂p(Cδφ)

−(∂iA)δφ− ∂a(B)δφ− ∂p(C)δφ.

Using (5.20) and (5.21) we have

∫

Ω

∂i(Aδφ)dω =

ba∫

aa

dya

bp∫

ap

dzp

bi∫

ai

∂i(Aδφ)dxi =(5.33)

ba∫

aa

dya

bp∫

ap

dzp(Aδφ)|bi

ai = 0.

In the similar way we obtain
∫

Ω

∂a(Bδφ)dω = 0
∫

Ω

∂p(Cδφ)dω = 0.(5.34)

From (5.32)-(5.34) it follows

δI(φ) =
∫

Ω

δLdω =
∫

Ω

(
∂L
∂φ

− ∂iA− ∂aB − ∂pC

)
δφdω.(5.35)

The extrem value of integral of action is obtained, when δL = 0. If we in (5.35)
substitute A, B and C from (5.28), (5.29) and (5.30) we obtain

δL =
∂L
∂φ

− ∂i

(
∂L

∂(δiφ)

)
− ∂a

(
∂L

∂(∂aφ)

)
− ∂p

(
∂L

∂(∂pφ)

)

+Na
i ∂a

∂L
∂(δiφ)

+
∂L

∂(δiφ)
∂aNa

i

+Ma
i ∂p

(
∂L

∂(δiφ)

)
+

∂L
∂(δiφ)

∂pM
p
i .
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Theorem 5.1. The Einstein-Yang Mills equation for the gauge transformation
(1.1) are given by

δL =
∂L
∂φ

− δi

(
∂L

∂(δiφ)

)
− ∂a

(
∂L

∂(∂aφ)

)
− ∂p

(
∂L

∂(∂pφ)

)
(5.36)

+
∂L

∂(δiφ)
(∂aNa

i + ∂pM
p
i ) = 0.

As from (5.18) L =
√

gL, and
√

g is not the function of φ, ∂iφ, ∂aφ and ∂pφ from
(5.36) we get

∂(
√

gL)
∂φ

− δi

(√
g

∂L

∂(δiφ)

)
− ∂a

(√
g

∂L

∂(∂aφ)

)
− ∂p

(√
g

∂L

∂(∂pφ)

)
(5.37)

+
√

g
∂L

∂(δiφ)
(∂aNa

i + ∂pM
p
i ) = 0.

Theorem 5.2. The Einstein-Yang Mills equation for the gauge transformation
(1.1) expressed as function of the Lagrangian L and metric function is given by

[
∂L

∂φ
− δi

(
∂L

∂(δiφ)

)
− ∂a

(
∂L

∂(∂aφ)

)
− ∂p

(
∂L

∂(∂pφ)

)
(5.38)

+
∂L

∂(δiφ)
(∂aNa

i + ∂pM
p
i )

]
−

1√
g

[
∂L

∂(δiφ)
δi
√

g +
∂L

∂(∂aφ)
∂a
√

g +
∂L

∂(∂pφ)
∂p
√

g

]
= 0.

Proof. The proof follows from (5.37).
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