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Abstract

In this paper, we find an upper bound of the squared norm of the second
fundamental tensor of a complete space-like hypersurface in a Lorentz space
form Mm

1 (c) satisfying some curvature conditions . Then it gives naturally an
extension of some theorems of Cheng and Nakagawa ([3]), Ishihara ([7]), Li ([8])
and Nishikawa ([9]).
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1 Introduction

In connection with the negative settlement of the Berstein problem by Calabi ([2]),
Cheng-Yau ([4]) and Chouque-Bruhat et al.([6]) proved the following famous theorem
independently.

Theorem A Let M be a complete space-like Lorentz space form Mn+1
1 (c), c > 0.

If M is maximal, then it is totally geodesic.

On the other hand, complete space-like hypersurface with constant mean curvature
in a Lorentz space form Mm

1 (c) are investigated by many differential geometers in
various view points ; for example Akutagawa ([1]), Cheng and Nakagawa ([3]), Li ([8]),
Nishikawa([9]) and Ramanathan ([11]). In this paper, we’ll give an upper bound of the
sequared norm of the second fundamental form, of complete space-like hypersurface
with constant mean curvature in a Lorentz space form Mm

1 (c). Namely, the following
assertion is our main theorem.

Main Theorem Let M
′

be an (n + 1)-dimensional Lorentz manifold which
satisfies the condition (∗) and M be a complete space-like hypersurface with constant
mean curvature. If M is not maximal and if it satisfies
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2nc2 + c1 > 0,

then there exist a positive constant a1 depending on c1, c2, c3, h and n such that h2 ≤
a1, where the condition (∗) means (5.1), (5.2) and (5.3) , h2 denotes the square norm
of the second fundamental form.

As an application of this result, we able to make a generalization of some theorem
which are investigated by Cheng and Nakagawa ([3]), Ishihara ([7]), Li ([8]), and
Nishikawa ([9]) in new different view point.

2 Definitions

Let M
′

= (M
′
, g
′
)be a Lorentz manifold with a Lorentz metric g

′
of signature

(−, +, · · · , +). M
′

has uniquely defined torsion-free affine connection ∇′
compati-

ble with the metric g
′
. M

′
is called locally symmetric if the curvature tensor R

′
of M

′

is parallel, that is, ∇′
R
′
= 0. Let M be a hypersurface immersed in M

′
. M is said to

be space-like if the Lorentz metric g
′
of M

′
induces a Riemannian metric g on M. For

a space-like hypersurface M there is naturally defined the second fundamental form
(the extrinsic curvature) α of M. M is called maximal space-like if the mean(extrinsic)
curvature H=Tr α, the trace of α, of M vanishes identically. M is maximal space-
like if and only if it is extreme under the variations, with compact support through
space-like hypersurfaces, for the induced volume. M is said to be totally geodesic (a
moment of time symmetry) if the second fundamental form α vanishes identically.

3 Preliminaries

Let M be a space-like hypersurface in a Lorentz (n + 1)-manifold M
′
=(M

′
, g
′
). We

choose a local field of Lorentz orthonormal frames e0, · · · , en are tangent to M
′
such

that, restricted to M , the vectors e1, · · · , en are tangent to M. Here and in the sequel
the following convention on the range of indices used throughout this paper, unless
otherwise stated:

i, j, k, · · · = 1, 2, · · · , n α, β, · · · , = 0, 1, 2 · · ·n
Let ωα be its dual frame field so that the Lorentz metric g

′
can be written as

g
′
= − ω2

0+
∑

i ω2
i . then the connection forms ωαβ of M

′
are characterized by the

equations

dωi = −
∑

k

ωik ∧ ωk + ωi0 ∧ ω0,(3.1)

dω0 = −
∑

k

ω0k ∧ ωk, ωαβ + ωβα = 0.

The curvature forms Ω
′
αβ of M

′
are given by
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Ω
′
ij = dωij +

∑

k

ωik ∧ ωkj − ωi0 ∧ ω0j ,(3.2)

Ω
′
0i = dω0i +

∑

k

ω0k ∧ ωki,

and we have

Ω
′
αβ = −1

2

∑

γ,δ

R
′
αβγδωγ ∧ ωδ,(3.3)

where R
′
αβγδ are components of the curvature tensor R

′
of M

′
. We restrict these

forms to M.
Then

ω0 = 0,(3.4)

and the induced Riemannian metric g of M is written as g =
∑

i ω2
i . From formulas

(3.1) ∼ (3.4), we obtain the structure equations of M

dωi = −
∑

k

ωik ∧ ωk, ωij + ωji = 0,(3.5)

dωij = −
∑

k

ωik ∧ ωkj + ωi0 ∧ ω0j + Ω
′
ij ,

Ωij = dωij +
∑

k

ωik ∧ ωkj = −1
2

∑

k,l

Rijklωk ∧ ωl,

where Ωij and Rijkl denote the curvature forms and the components of the curvature
tensor R of M , respectively. We can also write

ωi0 =
∑

j

hijωj ,(3.6)

where hij are components of the second fundamental form α =
∑

i,j hijωi⊗ωj of M.
Using (3.6) in (3.5) then gives the Gauss formula

Rijkl = R
′
ijkl − (hikhjl − hilhjk).(3.7)

Let hijk denote the covariant derivative of hij so that
∑

k

hijkωk = dhij −
∑

k

hkjωki −
∑

k

hikωkj .(3.8)

Then, by exterior differentiating (3.6), we obtain the Codazzi equation

hijk − hikj = R
′
0ijk.(3.9)

From the exterior derivative of (3.8) , we define the second covariant derivative of
hij by
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∑

l

hijklωl = dhijk −
∑

l

hijkωli −
∑

l

hilkωlj −
∑

l

hijlωlk.

Then we obtain the Ricci formula

hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl.(3.10)

The components of the Ricci tensor S and the scalar curvature r of M are given
by

Sij =
∑

k

R
′
kikj − hhij + h2

ij ,

r =
∑

j,k

Rkjkj − h2 + h2,

where h =
∑

i hii , h2
ij =

∑
r hirhrj and h2 =

∑
j h2

jj .

Let us now denote the covariant derivative of R
′
αβγδ, as a curvature tensor of M

′
,

by R
′
αβγδ;η. Then restricting on M , R

′
0ijk;l is given by

R
′
0ijk;l = R

′
0ijkl −R

′
0i0khjl −R

′
0ij0hkl −

∑
m

R
′
mijkhml,(3.11)

where R
′
0ijkl denotes the covariant derivative of R

′
0ijk as a tensor on M so that

∑

l

R
′
0ijklωl = dR

′
0ijk −

∑

l

R
′
0ljkωli −

∑

l

R
′
0ilkωlj −

∑

l

R
′
0ijlωlk.

For the sake of brevity, a tensor h2m
ij and a function h2m on M , for any integer

m(≥ 2), are introduced as follows:

h2m
ij =

∑

i1,···,im−1

h2
ii1h

2
i1i2 · · ·h2

im−1j ,

h2m =
∑

i

h2m
ii .

First of all, let us introduce a fundamental property for the generalized maximal
principle due to Omori ([10]) and Yau([13]).

Theorem 3.1 ([10], [13]) Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below on M . Let F be a C2-function bounded from below
on M , then for any ε > 0, there exists a point p such that

|∇F (p)| < ε, 4F (p) > −ε and inf F + ε > F (p).

We also know the following result ([5]).
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Theorem 3.2 ([5]) Let M be a complete Riemannian manifold whose Ricci curva-
ture is bounded from below. Let F be a polynomial of the variable f with constant
coefficients such that

F (f) = c0f
n + c1f

n−1 + · · ·+ ckfn−k + ck+1,(3.12)

where n > 1, 1 ≥ n− k ≥ 0 and c0 > ck+1. If a C2-positive function f satisfies

4f ≥ F (f),

then we have
F (f1) ≤ 0,

where f1 denotes the supremum of the given function f .

4 The Laplacian operator

Let M be a space-like hypersurface of an (n + 1)-dimensional Lorentz manifold M
′
.

Then the Laplacian 4hij of the components hij of α is defined by

4hij =
∑

k

hijkk.

From (3.9) we have

4hij =
∑

k

hkijk +
∑

k

R
′
0ijkk,(4.1)

and from (3.10) it follows that

hkijk = hkikj +
∑
m

hmiRmkjk +
∑
m

hkmRmijk.(4.2)

By using (3.9), replace hkikj in (4.2) by hkkij + R
′
0kikj and substitute the right

hand side of (4.2) into hkijk in (4.1). Then we get

4hij =
∑

k

(hkkij + R
′
0kikj + R

′
0ijkk)(4.3)

+
∑

k

(
∑
m

hmiRmkjk +
∑
m

hkmRmijk).

From (3.7), (3.11) and (4.3) we have
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4hij =
∑

k

hkkij +
∑

k

R
′
0kik;j +

∑

k

R
′
0ijk;k(4.4)

+
∑

k

(hkkR
′
0ij0 + hijR

′
0k0k)

+
∑

m,k

(hmjR
′
mkik + 2hmkR

′
mijk + hmiR

′
mkjk)

−
∑

m,k

(hmihmjhkk + hkmhmjhik − hkmhmkhij − hmihmkhkj).

5 Some curvature conditions

Let M
′
be an (n + 1)-dimensional Lorentz manifold and let M be a space-like hyper-

surface of M
′
. For a point x in M let {e0, e1, · · · , en} be a local field of orthonormal

frames of M
′
around of x in such a way that, restricted to M , the vectors e1, · · · , en

are tangent to M and the other is normal to M . Accordingly, e1, · · · , en are space-like
vectors and e0 is a time-like one. For linearly independent vectors u and v in the tan-
gent space TxM

′
, by which the non-degenerate plane section is spanned, we denote by

K
′
(u, v) the sectional curvature of the plane section in M

′
and by R

′
or Ric

′
(u, u) the

Riemannian curvature tensor on M or the Ricci curvature in the direction of u in M
′
,

respectively. Let us denote by ∇′
the Riemannian connection on M

′
. We assume that

the ambient space M
′

satisfies the following three conditions : For some constants
c1, c2 and c3

K
′
(u, v) =

c1

n
,(5.1)

for any space-like vector u and time-like vector v,

K
′
(u, v) ≥ c2,(5.2)

for any space-like vectors u and v

|∇′
R
′ | ≤ c3

n
.(5.3)

When M
′
satisfies the above conditions (5.1), (5.2) and (5.3), it is said simply for

M
′
to satisfy the (∗) condition.

Remark 5.1 It can be easily seen that c3=0, then the ambient space M
′

is locally
symmetric.

Remark 5.2 If M is maximal, then the condition (5.1) can be replaced by

Ric
′
(v, v) ≥ c1(5.4)

for any time-like vector v.
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If M
′

satisfies the conditions (5.4), (5.2) and (5.3), it is said simply for M
′

to
satisfy the condition (∗′).

Remark 5.3 If M
′

is a Lorentz space form Mn+1
1 (c) of index 1 and of constant

curvature c, then it satisfies the condition (∗′), where − c1
n =c2=c.

Now we assume that the ambient space M
′

satisfies the condition (∗) and the mean
curvature of the hypersurface M is constant. Then the Laplacian of the squared norm
h2 of the second fundamental form α of M is given by

4h2 = 4(
∑

i,j

hijhij) = 2
∑

i,j,k

(hijkhij)k = 2
∑

i,j,k

(hijkkhij + hijkhijk)

= 2|∇α|2 + 2
∑

i,j,k

hijkkhij = 2|∇α|2 + 2
∑

i,j

(4hij)hij ,

where∇α is the covariant derivative of the second fundamental form α and |∇α| is the
norm of ∇α which is defined by

∑
i,j,k hijkhijk. Hence, by (4.4) and the assumption∑

k hkkj=0, we have

4h2 = 2|∇α|2 + 2
∑

i,j

{
∑

k

(R
′
0kik;j + R

′
0ijk;k) +

∑

k

(hkkR
′
0ij0 + hijR

′
0k0k)

+
∑

k,m

(2hkmR
′
mijk + hmjR

′
mkik + hmiR

′
mkjk)− hh2

ij + h2hij}hij .

Thus we get

4h2 = 2|∇α|2 + 2
∑

i,j,k

hij(R
′
0kik;j + R

′
0ijk;k)(5.5)

+ 2(
∑

i,j

hhijR
′
0ij0 + h2

∑

k

R
′
0k0k)

+ 4(
∑

i,j,k,m

hijhkmR
′
mijk +

∑

j,k,m

h2
mjR

′
mkjk)− 2(hh3 − h2

2),

where we have denoted by h3
ij=

∑
hirh

2
rj and h3 =

∑
h3

ii. Since the matrix H=(hij)
can be diagonalized , the component of hij of H can be expressed by

hij = λiδij ,(5.6)

where λi is the principle curvature on M . By definition, we see

λ2
i ≤ h2 =

∑

i

λ2
i ,

and hence we have
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−
√

h2 ≤ λi ≤
√

h2,(5.7)

− h2 ≤ λiλj ≤ h2.(5.8)

Now, we estimate (5.5) from above. First, we treat with the second term of (5.5).
It is seen that we have

−2
∑

i,j,k

(R
′
0kik;j + R

′
0ijk;k)hij = −2

∑

j,k

λj(R
′
0kjk;j + R

′
0jjk;k)

≤ 2
∑

j,k

|λj |(|R
′
0kjk;j |+ |R′

0jjk;k|).

So by (5.3) and (5.7) we have

the second term of (5.5) ≥ −4c3

√
h2.(5.9)

Next, we consider the third term of (5.4). It is estimated as follows:

2(
∑

i,j

hhijR
′
0ij0 + h2

∑

k

R
′
0k0k) = 2

∑

k

(hλkR
′
0kk0 + h2

∑

k

R
′
0k0k)

= 2
∑

k

(h2 − hλk)R
′
0k0k = 2

∑

k

(h2 − hλk)
c1

n
,

where we have used (5.1). Hence we have

the third term of (5.5) =
2c1(nh2 − h2)

n
.(5.10)

It is evident that if the ambient space M
′
is a Lorentz space form Mn+1

1 (c) of con-
stant curvature c and if the hypersurface M is maximal,then it also holds under (5.4),
namely if M

′
satisfies the condition (∗′), then the third term of (5.5) ≥ 2c1h2. Last

we estimate the fourth term of (5.5). We have by (5.2)

4(
∑

i,j,k,m

hijhkmR
′
mijk +

∑

j,k,m

h2
mjR

′
mkjk) = 4

∑

j,k

(λjλkR
′
kjjk + λ2

jR
′
kjkj)

= 4
∑

j,k

(λ2
j − λjλk)R

′
kjkj = 2

∑

j,k

(λj − λk)2R
′
kjkj ≥ 2c2

∑

j,k

(λj − λk)2.

Accordingly, we obtain

the fourth term of (5.5) ≥ 4c2(nh2 − h2),(5.11)

where we have used the formula
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∑

j,k

(λj − λk)2 = 2n
∑

j

λ2
j − 2

∑

j,k

λjλk = 2n
∑

j

λ2
j − 2(

∑

j

λj)2

and the definitions of h2 =
∑

j λ2
j and h2 = (

∑
j λj)2. Thus, substituting (5.9),

(5.10) and (5.11) into (5.5), we can prove the following.

Lemma 5.4 Let M
′
be an (n + 1)-dimensional Lorentz manifold satisfying the con-

dition (∗) and M a space-like hypersurface of M
′
. If its mean curvature is constant,

then we have

4h2 ≥ −4c3

√
h2 +

2(2nc2 + c1)(nh2 − h2)
n

− 2(hh3 − h2
2).(5.12)

In particular, if M is maximal, we have

4h2 ≥ −4c3

√
h2 + 2(2nc2 + c1)h2 + 2h2

2.

Also, if M
′
=Mn+1

1 (c), then we obtain

4h2 ≥ 2c(nh2 − h2)− 2(hh3 − h2
2).

6 Proof of Main Theorem

Let M
′
be an (n + 1)-dimensional Lorentz manifold and let M be a complete hyper-

surface of M
′
with constant mean curvature. Assume that the ambient space satisfies

the condition (∗). The condition (∗) is defined by (5.1), (5.2) and (5.3). Now, by (5.12)
in Lemma 5.1 the function h2 satisfies

4h2 ≥ −4c3

√
h2 + frac2(2nc2 + c1)(nh2 − h2)n− 2(hh3 − h2

2).

Moreover, we obtain

− 2hh3 = −2h
∑

i

h3
ii = −2h

∑

j

λ3
j ≥ −2h

∑

j

√
h2

3
= −2nhh2

√
h2,(6.1)

from which together with (5.12) it follows that

4h2 ≥ −4c3

√
h2 + 2(2nc2 + c1)(h2 − h2

n
)− 2nhh2

√
h2 + 2h2

2.(6.2)

Now we define a non-negative function f by f2 = h2. Then it turns out to be

4f2 ≥ 2[f4 − nhf3 + (2nc2 + c1)f2 − 2c3f − h2

n
(2nc2 + c1)].(6.3)

Proof of the Main Theorem

Let λ1, · · · , λn be principal curvatures on M. The Ricci tensor Sij is expressed by
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Sij =
∑

k

(R
′
kikj − hijhkk + hikhjk).

So we have

Sjj ≥ (n− 1)c2 − hλj + λ2
j ≥ (n− 1)c2 − h2

4
,

which yields the Ricci curvature of M is bounded from below. For the function f
defined by f2 = h2, by (6.3) we have

4f2 ≥ F (f2),

where the function F (x) is defined by

F (x) = 2[x2 − nhx
3
2 + (2nc2 + c1)x− 2c3x

1
2 − h2

n
(2nc2 + c1)].

By comparing with (3.12), we get
n = 2, n − k = 1

2 , c0 = 2, ck+1 = − 2h2(2nc2+c1)
n , where we have used

2nc2 + c1 > 0. Now we are able to apply Theorem 3.2 to the function f2. Then
we obtain

F (f2
1 ) ≤ 0,(6.4)

where f2
1 denotes the supremum of the given function f2.

We define the function y = y(x) of the variable x by

y = y(x) = x4 − nhx3 + (2nc2 + c1)x2 − 2c3x− h2

n
(2nc2 + c1).

By the assumption 2nc2+c1 > 0 and the fact that the hypersurface is not maximal,
the algebraic equation y(x) = 0 with constant coefficients has positive roots because
y(0) < 0 and it converges to infinity as x tends to infinity. We denote by

√
a1 (a1 >

0) the minimal root among the positive roots. So it depends only on the constant
coefficients, namely, it depends on c1, c2, c3, h and n, and by definition we see that

y|[0,√a1) < 0.

From the above equation together with (6.4) it follows that we have 0 ≤ f1 ≤
√

a1.
Since the squared norm h2 of the second fundamental form is given by h2 = f2, we
have

sup h2 = f2
1 ≤ a1.

So we get the conclusion. 2

If the hypersurface M is maximal, then we have by (6.3)

4f2 ≥ 2{f4 + (2nc2 + c1)f2 − 2c3f} = F (f2),

where a non-negative function f is defined by f2 = h2. By a similar method to the
proof of our Main Theorem, we have

F (f2
1 ) ≤ 0,(6.5)
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where f1 denotes the supremum of the function f. We define a function y of the
variable x by

y = y(x) = x{x3 + (2nc2 + c1)x− 2c3}.
By the direct calculus, there exists a unique positive root of the equation y(x) = 0,

say
√

a1, if c3 > 0.

Corollary 6.1 Let M
′
be an (n+1)-dimensional Lorentz manifold which satisfies the

condition (∗) and let M be a complete space-like maximal hypersurface. If M
′
is not

locally symmetric, then there exists a positive constant a1 depending on c1, c2, c3(>
0), h and n such that h2 ≤ a1.

Remark 6.2 Corollary 6.1 was proved by Li ([8]) under the additional condition
c2
3 + (2nc2+c1)

3

27 < 0.

Remark 6.3 In the case where the ambient space is locally symmetric and it satisfies
the condition (∗′), the constant a1 is the positive root of the algebraic equation

F (x2) = x2{x2 + (2nc2 + c1)} = 0,

which yields that if 2nc2 + c1 ≥ 0, then F |(0,∞) > 0, which means that we have
no positive roots. In the case where 2nc2 + c1 < 0 there exists a unique positive
root of the equation y(x) = 0, say

√
a1. In the first case, considering (6.5) we have

f1 = 0. By definition of f1 = supf for the non-negative function f, we see that
f vanishes identically on M. It yields that M is totally geodesic. So if it satisfies
2nc2 + c1 < 0, then we have a1 = −(2nc2 + c1). This result was derived by Li ([8]).
The first assertion of Corollary 6.1 was also proved by Nishikawa([9]). In particular,
when M

′
= Hn+1

1 (c), this reduces to Ishihara’s theorem ([7]).
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