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Abstract

In this paper, we find an upper bound of the squared norm of the second
fundamental tensor of a complete space-like hypersurface in a Lorentz space
form M7"(c) satisfying some curvature conditions . Then it gives naturally an
extension of some theorems of Cheng and Nakagawa ([3]), Ishihara ([7]), Li ([8])
and Nishikawa ([9]).
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1 Introduction

In connection with the negative settlement of the Berstein problem by Calabi ([2]),
Cheng-Yau ([4]) and Chouque-Bruhat et al.([6]) proved the following famous theorem
independently.

Theorem A Let M be a complete space-like Lorentz space form M *(c), ¢ > 0.

If M is maximal, then it is totally geodesic.

On the other hand, complete space-like hypersurface with constant mean curvature
in a Lorentz space form MJ"(c) are investigated by many differential geometers in
various view points ; for example Akutagawa ([1]), Cheng and Nakagawa ([3]), Li ([8]),
Nishikawa([9]) and Ramanathan ([11]). In this paper, we’ll give an upper bound of the
sequared norm of the second fundamental form, of complete space-like hypersurface
with constant mean curvature in a Lorentz space form M{"(c). Namely, the following
assertion is our main theorem.

Main Theorem Let M be an (n + 1)-dimensional Lorentz manifold which
satisfies the condition (x) and M be a complete space-like hypersurface with constant
mean curvature. If M is not maximal and if it satisfies
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2ncg +c¢1 > 0,

then there exist a positive constant ay depending on ¢y, ca,c3, h and n such that he <
a1, where the condition (x) means (5.1), (5.2) and (5.3) , ha denotes the square norm
of the second fundamental form.

As an application of this result, we able to make a generalization of some theorem
which are investigated by Cheng and Nakagawa ([3]), Ishihara ([7]), Li ([8]), and
Nishikawa ([9]) in new different view point.

2 Definitions

Let M = (M,,g,)be a Lorentz manifold with a Lorentz metric g, of signature
(=4, ,+). M " has uniquely defined torsion-free affine connection v compati-
ble with the metric g/. M’ is called locally symmetric if the curvature tensor R of M’
is parallel, that is, V'R = 0. Let M be a hypersurface immersed in M'. M is said to
be space-like if the Lorentz metric g/ of M" induces a Riemannian metric g on M. For
a space-like hypersurface M there is naturally defined the second fundamental form
(the extrinsic curvature) v of M. M is called mazimal space-like if the mean(extrinsic)
curvature H=Tr «, the trace of a, of M vanishes identically. M is maximal space-
like if and only if it is extreme under the variations, with compact support through
space-like hypersurfaces, for the induced volume. M is said to be totally geodesic (a
moment of time symmetry) if the second fundamental form « vanishes identically.

3 Preliminaries

Let M be a space-like hypersurface in a Lorentz (n + 1)-manifold M/:(M/, g/). We
choose a local field of Lorentz orthonormal frames eg, - - -, e, are tangent to M " such
that, restricted to M, the vectors ey, - -, e, are tangent to M. Here and in the sequel
the following convention on the range of indices used throughout this paper, unless
otherwise stated:

ivjakv"':1727"'7n a7ﬁ7"'7:07172"'n
Let w, be its dual frame field so that the Lorentz metric g/ can be written as

g= — wi+ >, w?. then the connection forms w,z of M are characterized by the
equations
(3.1) dw; = —Zwik N wg + wio N\ wo,

k

dwo = — Z wWokr N Wk, Wag + Waa = 0.
k

The curvature forms Q; g of M " are given by
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(3.2) Qij = dwij + Zwik AN wij — wio N woy,
k
Q= dwoi + Y wok A Wi,
k

and we have

]_ ’
~,8

where R'aﬁws are components of the curvature tensor R of M'. We restrict these
forms to M.

Then
(34) W = 07

and the induced Riemannian metric g of M is written as ¢ = >, w?. From formulas
(3.1) ~ (3.4), we obtain the structure equations of M

(35) dwq, = — qu;k; A Wk, wZ‘j + wji = 0)
k
dwij = —Zwik/\wk]— +wi0/\woj +Qij7
k
1
Qi = dwij+ zk:wik NWg; = 3 ; Rijriwi A wy,

where €2;; and R;ji; denote the curvature forms and the components of the curvature
tensor R of M, respectively. We can also write

(3.6) wip = th‘jwp
J

where h;; are components of the second fundamental form o =},  hjjw; @ w; of M.
Using (3.6) in (3.5) then gives the Gauss formula

(3.7) Riji = R;j}gl = (hakhji = hahjk)-

Let hiji denote the covariant derivative of h;; so that

(3.8) Z hijkwk = dhij — Z hkjwki — Z hikwkj-
k k k
Then, by exterior differentiating (3.6), we obtain the Codazzi equation
(3.9) hiji — hikj = Réijk-

From the exterior derivative of (3.8) , we define the second covariant derivative of
hij by
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§ hijriwr = dhij, — E hijrwi — E hiewij — E hijiwig.
I 1 ] I

Then we obtain the Ricci formula
(3.10) hijrt = hijik = > Pnj Bmikt + > Pim Rt

The components of the Ricci tensor S and the scalar curvature r of M are given
by

Sij = > Rpary — hhij + hij,
k
V—— ZRkjkj - h2 + h27
jik
where h =37, hi; , hi; = 32, hirhej and ha = 37, b3,

. . . / !
Let us now denote the covariant derivative of IR, 3450 @8 & curvature tensor of M,

by R Then restricting on M, Ré)ijk;l is given by

aByén:
(3.11) Roijrg = Roijr — Roiorhji — ROijohkl - ZRmijkhmla

m
where Rzn‘j . denotes the covariant derivative of R;M-j © as a tensor on M so that

’ ’ ’ ’ ’
E ROijklwl = dROijk - E ROljkwli - E Roypwi; — E ROijlwlk'
1 l 1 l

For the sake of brevity, a tensor hf]m and a function ho,, on M, for any integer
m(> 2), are introduced as follows:

2 2 2
§ : hiilhi1i2 e him—lj’
11, lm -1

hom = Y W™

?

2m
h2!

First of all, let us introduce a fundamental property for the generalized maximal
principle due to Omori ([10]) and Yau([13]).

Theorem 3.1 ([10], [13]) Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below on M. Let F be a C?-function bounded from below
on M, then for any € > 0, there exists a point p such that

IVE(p)| <€, AF(p)>—e and inf F+e> F(p).

We also know the following result ([5]).
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Theorem 3.2 ([5]) Let M be a complete Riemannian manifold whose Ricci curva-
ture is bounded from below. Let F' be a polynomial of the variable f with constant
coefficients such that

(3.12) F(fy=cof"+eaf"  + +enf" "+ cppa,

wheren >1,1>n—k >0 and co > cpy1. If a C?-positive function f satisfies

Af =z F(f),

then we have
F(fl) S Oa

where f1 denotes the supremum of the given function f.

4 The Laplacian operator

Let M be a space-like hypersurface of an (n 4 1)-dimensional Lorentz manifold M "
Then the Laplacian Ah;; of the components h;; of o is defined by

Ahi; = Z hijkk.
k
From (3.9) we have
(4.1) Ahij = Z hrije + Z Roijr
k k
and from (3.10) it follows that
(4.2) hiije = hiirg + Z hmi Rk ji + Z Rigm Rk

By using (3.9), replace hyik; in (4.2) by hgri; + R;),“-kj and substitute the right
hand side of (4.2) into hg;; in (4.1). Then we get

(4.3) Dhyy = Z(hkkij + Ré)kikj + R:)ijkk)
k
koom m

From (3.7), (3.11) and (4.3) we have
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(4.4)  Ahy = Z hkkij + Z Ropins; + Z Rogjn
2 k k

+ Z(hkkROijO + hij Rogor)

k
+ Z(hij;nkik + thkR;mjk + hmiR;nkjk)
m,k
= (hmilun bk + Rk B = Tmhmihis = Banilimghig)-
m,k

5 Some curvature conditions

Let M  be an (n+ 1)-dimensional Lorentz manifold and let M be a space-like hyper-
surface of M. For a point z in M let {eo, €1, ++,en} be a local field of orthonormal
frames of M around of z in such a way that, restricted to M, the vectors eq,---, e,
are tangent to M and the other is normal to M. Accordingly, e1, - -, e, are space-like
vectors and eq is a time-like one. For linearly independent vectors v and v in the tan-
gent space T, M /, by which the non-degenerate plane section is spanned, we denote by
K’ (u,v) the sectional curvature of the plane section in M and by R’ or Ric (u,u) the
Riemannian curvature tensor on M or the Ricci curvature in the direction of u in M /,
respectively. Let us denote by V' the Riemannian connection on M . We assume that
the ambient space M satisfies the following three conditions : For some constants
c1,co and c3
’ cq

5.1 K ==
(1) (u,0) = 2,
for any space-like vector u and time-like vector v,
(5.2) K (u,v) > ¢,
for any space-like vectors v and v
(5.3) VR <2

. <

When M’ satisfies the above conditions (5.1), (5.2) and (5.3), it is said simply for
M to satisfy the (%) condition.

Remark 5.1 It can be easily seen that c3=0, then the ambient space M is locally
symmetric.

Remark 5.2 If M is mazimal, then the condition (5.1) can be replaced by
(5.4) Ric (v,v) > 1

for any time-like vector v.
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If M satisfies the conditions (5.4), (5.2) and (5.3), it is said simply for M to
satisfy the condition (x ).

Remark 5.3 If M  is a Lorentz space form Mt (c) of index 1 and of constant
curvature ¢, then it satisfies the condition (x ), where — L =cy=c.

Now we assume that the ambient space M satisfies the condition () and the mean
curvature of the hypersurface M is constant. Then the Laplacian of the squared norm
ho of the second fundamental form « of M is given by

AV A(Z hijhij) = 2 Z(hijkhij)k =2 Z(hijkkhij + hijihiji)
.j irjik irjik

2|Va|2 + 2 Z hijkkhij = 2|Va|2 +2 Z(Ah”)h”,
.5,k i,J
where Va is the covariant derivative of the second fundamental form « and |Va| is the

norm of Va which is defined by Zid’k hijrhiji. Hence, by (4.4) and the assumption
>k hir;=0, we have

Ahy = 2|Val*+ 2Z{Z(R0kik;j + Rogjnk) + Z(hkkROijO + hij Rogor)
j k k
+ Z(Qhka,mijk + hij;nkik + hmiR;nkjk) - hh?j + hahijthij.
k.,m
Thus we get
(5.5) Ahy = 2[Val® +2 Z hij(Rokik.; + Roijr:x)
ik

+ 2(2 hhi;jRo;j0 + ho Z Rogor)

] k
+ 4 Z hij o Ry, + Z R Rogre) — 2(hha — h3),

,3,k,m Jik,m

where we have denoted by hi;=>" hiyhZ; and hg = Y h,. Since the matrix H=(h;;)
can be diagonalized , the component of h;; of H can be expressed by

(5.6) hij = Xidij,

where J; is the principle curvature on M. By definition, we see
N <hy =) A,
i

and hence we have
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(5.7) —Vhy <\ < Vho,

(5.8) —hy < AiAj < ha.

Now, we estimate (5.5) from above. First, we treat with the second term of (5.5).
It is seen that we have

—2 Z(Rokik;j + Rogjks)hij = —2 Z Aj(Rokjrsg + Rojjnse)
1,5,k J.k
< 22 Nl Rokjk:i | + [ Rojjrikl)-
ik

So by (5.3) and (5.7) we have
(5.9) the second term of (5.5) > —4csVha.

Next, we consider the third term of (5.4). It is estimated as follows:

2(2 hhin/OijO + ho Z Rogor) =2 Z(h/\kRékko + ho Z Roor)
k k

1, k

’ C
= 2 Z(hz — hAg)Ropor = QZ(hz - h)\k);l7
k k

where we have used (5.1). Hence we have

2 _ B2
(5.10) the third term of (5.5) = W

It is evident that if the ambient space M is a Lorentz space form M7 (c) of con-
stant curvature ¢ and if the hypersurface M is maximal,then it also holds under (5.4),
namely if M’ satisfies the condition (x ), then the third term of (5.5) > 2c¢1hs. Last
we estimate the fourth term of (5.5). We have by (5.2)

4( Z hijhim Ry + Z thanmkjk) = 4Z(Aj)‘kRkjjlc + )‘?Rkjkj)

i,5,k,m 7,k,m 7,k
=43 (2 = M) Ry = 2D (N — Ak) Ry > 202 Y (A — i)
gk J.k J.k

Accordingly, we obtain

(5.11) the fourth term of (5.5) > 4ca(nhy — h?),

where we have used the formula
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S =) =20 A —2) =20 A -20) )
3.k J gk J J

and the definitions of hy = 3, )\? and h? = (> Aj)2. Thus, substituting (5.9),
(5.10) and (5.11) into (5.5), we can prove the following.

Lemma 5.4 Let M be an (n + 1)-dimensional Lorentz manifold satisfying the con-
dition (x) and M a space-like hypersurface of M . If its mean curvature is constant,
then we have

(2nco + 1) (nhy — h?)

(5.12) Ahy > —4e3Vhy + 2 —2(hhg — h3).

In particular, if M is maximal, we have
Ahy > —4csVhy + 2(2ncy + ¢1)hg + 203,
Also, if M' =MD"+ (c), then we obtain

Ahy > 2c(nhy — h?) — 2(hhs — h3).

6 Proof of Main Theorem

Let M’ be an (n + 1)-dimensional Lorentz manifold and let M be a complete hyper-
surface of M’ with constant mean curvature. Assume that the ambient space satisfies
the condition (x). The condition () is defined by (5.1), (5.2) and (5.3). Now, by (5.12)
in Lemma 5.1 the function ho satisfies

Ahy > —4esVhy + frac2(2ncg + 1) (nhg — h?)n — 2(hhs — h2).

Moreover, we obtain
(6.1)  —2hhg = 20> k% =203 X > 20 Vhy' = —2nhhavha,
i J J

from which together with (5.12) it follows that

2
(6.2) Nhgy > —4(33\/%2 + 2(271(32 + 01)(h2 — %) — 2nhh2\/ﬁz + Qh%

Now we define a non-negative function f by f? = hy. Then it turns out to be

2
(6.3) AfE>20f* —nhf3 4+ (2ncy + c1) f2 — 2c3f — %(271(:2 + 1)l

Proof of the Main Theorem

Let A1,---, A, be principal curvatures on M. The Ricci tensor S;; is expressed by



A certain complete space-like hypersurface 41

Sij == Z(R;ﬂk] - hijhkk + hlkhjk)
k

So we have

h2

Za

which yields the Ricci curvature of M is bounded from below. For the function f
defined by f? = hs, by (6.3) we have

Sjj Z (n— ].)CQ —h>\j +)\§ 2 (TL— 1)62 —

Af2 = F(f?),

where the function F(z) is defined by

3 1 h2
F(z) = 2[z? — nha? + (2ncy + c1)x — 2c302 — — (2ncy + ¢1)].
n

By comparing with (3.12), we get

2h2(2
n=2 n-k=3% ¢ =2 1= _ 2 Cneater) where we have used

n
2ncy + ¢ > 0. Now we are able to apply Theorem 3.2 to the function f2. Then
we obtain

(6.4) F(f}) <0,
where f12 denotes the supremum of the given function f2.
We define the function y = y(z) of the variable x by
2

h
y = y(x) = z* — nha® + (2ncy + ¢1)2? — 2c30 — — (2ncy + ¢1).
n

By the assumption 2ncs+c; > 0 and the fact that the hypersurface is not maximal,
the algebraic equation y(z) = 0 with constant coeflicients has positive roots because
y(0) < 0 and it converges to infinity as « tends to infinity. We denote by v/a; (a1 >
0) the minimal root among the positive roots. So it depends only on the constant
coefficients, namely, it depends on ¢y, co, c3, h and n, and by definition we see that

y‘[ov \/al) <0.

From the above equation together with (6.4) it follows that we have 0 < f; < \/a;.
Since the squared norm hy of the second fundamental form is given by hy = f2, we
have

sup hy = ¥ < ay.

So we get the conclusion. O

If the hypersurface M is maximal, then we have by (6.3)
Af? > 2{f 4+ (2nea + c1) f* = 2esf} = F(f?),

where a non-negative function f is defined by f? = he. By a similar method to the
proof of our Main Theorem, we have

(6.5) F(f7) <0,
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where f; denotes the supremum of the function f. We define a function y of the
variable x by

y = y(x) = z{z® + (2nca + ¢1)r — 2c3}.

By the direct calculus, there exists a unique positive root of the equation y(z) = 0,

say v/aq, if ¢z > 0.

Corollary 6.1 Let M’ be an (n+1)-dimensional Lorentz manifold which satisfies the
condition (x) and let M be a complete space-like mazimal hypersurface. If M is not

locally symmetric, then there exists a positive constant ay depending on ¢y, ca, c3(>
0),h and n such that hy < a;.

Remark 6.2 Corollary 6.1 was proved by Li ([8]) under the additional condition
G+ Erztal g
3 27 :

Remark 6.3 In the case where the ambient space is locally symmetric and it satisfies
the condition (x ), the constant ay is the positive root of the algebraic equation

F(2?) = 2*{2® + (2nca +¢1)} =0,

which yields that if 2nce + ¢; > 0, then F|(0,00) > 0, which means that we have
no positive roots. In the case where 2ncy + ¢ < 0 there exists a unique positive
root of the equation y(x) = 0, say v/a,. In the first case, considering (6.5) we have
f1 = 0. By definition of fi = supf for the non-negative function f, we see that
f wvanishes identically on M. It yields that M 1is totally geodesic. So if it satisfies
2neg + ¢1 < 0, then we have a1 = —(2nce + ¢1). This result was derived by Li ([8]).
The first assertion of Corollary 6.1 was also proved by Nishikawa([9]). In particular,
when M = H"(¢), this reduces to Ishihara’s theorem ([7]).
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