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Abstract

We give a classification of (κ, µ)-manifolds, whose concircular curvature ten-
sor Z and Ricci tensor S satisfy Z (ξ, X) · S = 0.
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1 Introduction

A transformation of an n-dimensional Riemannian manifold M , which transforms
every geodesic circle of M into a geodesic circle, is called a concircular transforma-
tion ([9], [16]). A concircular transformation is always a conformal transformation
([9]). Here geodesic circle means a curve in M whose first curvature is constant and
whose second curvature is identically zero. Thus, the geometry of concircular trans-
formations, that is, the concircular geometry, is a generalization of inversive geometry
in the sense that the change of metric is more general than that induced by a cir-
cle preserving diffeomorphism (see also [3]). An interesting invariant of a concircular
transformation is the concircular curvature tensor Z. It is defined by ([16], [17])

Z = R− r

n (n− 1)
R0,

where R is the curvature tensor, r is the scalar curvature and

R0 (X, Y )W = g (Y, W )X − g (X, W ) Y, X, Y, W ∈ TM.

Riemannian manifolds with vanishing concircular curvature tensor are of constant
curvature. Thus, the concircular curvature tensor is a measure of the failure of a
Riemannian manifold to be of constant curvature.
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It is well known that the tangent sphere bundle of a flat Riemannian manifold
admits a contact metric structure satisfying R (X, Y ) ξ = 0 [2]. On the other hand,
on a manifold M equipped with a Sasakian structure (η, ξ, ϕ, g), it follows that (see
equation (2.6))

R(X, Y )ξ = η (Y ) X − η (X)Y = R0 (X,Y ) ξ, X, Y ∈ TM.

As a generalization of both R(X, Y )ξ = 0 and the Sasakian case; D. Blair, T. Koufo-
giorgos and B. J. Papantoniou [5] considered the (κ, µ)-nullity condition (see Section 2)
on a contact metric manifold and gave several reasons for studying it. Thus, they in-
troduced the class of contact metric manifolds M with contact metric structures
(η, ξ, ϕ, g), which satisfies

R(X, Y )ξ = (κI + µh)R0 (X, Y ) ξ, X, Y ∈ TM,

where (κ, µ) ∈ R2 and 2h is the Lie derivative of ϕ in the direction ξ. A contact metric
manifold belonging to this class is called a (κ, µ)-manifold. Characteristic examples
of non-Sasakian (κ, µ)-manifolds are the tangent sphere bundles of Riemannian man-
ifolds of constant sectional curvature not equal to one and certain Lie groups [8].

In a previous paper [6], D. E. Blair and the authors started a study of concircular
curvature tensor of contact metric manifolds. Main result of this paper [6] states that
a (2n + 1)-dimensional N(κ)-contact metric manifold M satisfies Z (ξ, X) · Z = 0 if
and only if M is locally isometric to the sphere S2n+1(1), M is locally isometric to the
Example 2.1 (Example 3.1 of [6]) or M is 3-dimensional and flat. An N(κ)-contact
metric manifold is a (κ, µ)-manifold with µ = 0. Example 2.1 is an N(κ)-contact
metric manifold with κ = 1 − 1

n , n > 1. In this example it is Z(ξ, .) that vanishes
while Z itself is not zero. B. J. Papantoniou [12] and D. Perrone [13] included the
studies of contact metric manifolds satisfying R (X, ξ) · S = 0, where S is the Ricci
tensor. Motivated by these studies, we continue the study of the paper [6] and classify
(κ, µ)-manifolds with concircular curvature tensor Z satisfying Z (ξ, X) · S = 0. In
fact, we prove the following theorems.

Theorem 1.1 A Ricci flat (κ, µ)-manifold must be flat and 3-dimensional.

Theorem 1.2 A non-Sasakian Einstein (κ, µ)-manifold is flat and 3-dimensional.

Theorem 1.3 Let M2n+1 be a non-Sasakian η-Einstein (κ, µ)-manifold. Then the
concircular curvature tensor Z satisfies Z (ξ, X) · S = 0 if and only if M2n+1 is flat
and 3-dimensional.

Theorem 1.4 Let M2n+1 be a (κ, µ)-manifold. The concircular curvature tensor Z
satisfies Z (ξ, X) · S = 0 if and only if we have one of the following :
(a) M2n+1 is flat and 3-dimensional.
(b) M2n+1 is locally isometric to the Example 2.1.
(c) M2n+1 is an Einstein-Sasakian manifold.

The section 2 contains a brief introduction to contact metric manifolds and D-
homothetic deformation. In this section we also recall Example 3.1 of [6] as Exam-
ple 2.1. Section 3 contains some basic results. In the section 4, we prove the above
theorems.
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2 Contact metric manifolds

A differentiable 1-form η on a (2n+1)-dimensional differentiable manifold M is called
a contact form if η ∧ (dη)n 6= 0 everywhere on M , and M equipped with a contact
form is a contact manifold. Since rank of dη is 2n on the Grassmann algebra

∧
T ∗p M

at each point p ∈ M , therefore there exists a unique global vector field ξ, called the
characteristic vector field, such that

η(ξ) = 1, and dη(ξ, ·) = 0.(2.1)

Moreover, it is well-known that there exist a Riemannian metric g and a (1, 1)-tensor
field ϕ such that

ϕξ = 0, η ◦ ϕ = 0, η (X) = g (X, ξ) ,(2.2)

ϕ2 = −I + η ⊗ ξ, dη (X,Y ) = g (X, ϕY ) ,(2.3)

g(X, Y ) = g(ϕX, ϕY ) + η(X)η(Y )(2.4)

for X, Y ∈ TM . The structure (η, ξ, ϕ, g) is called a contact metric structure and the
manifold M endowed with such a structure is said to be a contact metric manifold.

The contact metric structure (η, ξ, ϕ, g) on M gives rise to a natural almost Her-
mitian structure on the product manifold M ×R. If this structure is integrable, then
M is said to be a Sasakian manifold. A Sasakian manifold is characterized by the
condition

∇Xϕ = R0 (ξ,X) , X ∈ TM,(2.5)

where ∇ is Levi-Civita connection. Also, a contact metric manifold M is Sasakian if
and only if the curvature tensor R satisfies

R(X, Y )ξ = R0 (X,Y ) ξ, X, Y ∈ TM.(2.6)

In a contact metric manifold M , the (1, 1)-tensor field h is symmetric and satisfies

hξ = 0, hϕ + ϕh = 0, ∇ξ = −ϕ− ϕh, trace(h) = trace(ϕh) = 0.(2.7)

The (κ, µ)-nullity distribution N(κ, µ) ([5],[12]) of a contact metric manifold M is
defined by

N(κ, µ) : p → Np(κ, µ) = {W ∈ TpM | R(X, Y )W = (κI + µh)R0(X, Y )W}
for all X,Y ∈ TM , where (κ, µ) ∈ R2. A contact metric manifold M with ξ ∈ N(κ, µ)
is called a (κ, µ)-manifold. In this case, we have h2 = (κ− 1) ϕ2. In fact, (κ, µ)-
manifolds exist for all values of κ ≤ 1 and all µ. The class of (κ, µ)-manifolds contains
Sasakian manifolds for κ = 1 and h = 0. If µ = 0, the (κ, µ)-nullity distribution
N(κ, µ) is reduced to the κ-nullity distribution N(κ) [15]. If ξ ∈ N(κ), then we call
a contact metric manifold M an N (κ)-contact metric manifold [15]. For more details
we refer to [1] and [4].

We also recall the notion of a D-homothetic deformation. For a given contact
metric structure (ϕ, ξ, η, g), this is the structure defined by

η̄ = aη, ξ̄ =
1
a

ξ, ϕ̄ = ϕ, ḡ = ag + a(a− 1)η ⊗ η,
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where a is a positive constant. While such a change preserves the state of being contact
metric, K-contact, Sasakian or strongly pseudo-convex CR, it destroys a condition
like R (X, Y ) ξ = 0 or R (X, Y ) ξ = κ(η(Y )X − η(X)Y ). However the form of the
(κ, µ)-nullity condition is preserved under a D-homothetic deformation with

κ̄ =
κ + a2 − 1

a2
, µ̄ =

µ + 2a− 2
a

.

Given a non-Sasakian (κ, µ)-manifold M , E. Boeckx [8] introduced an invariant

IM =
1− µ

2√
1− κ

and showed that for two non-Sasakian (κ, µ)-manifolds (Mi, ϕi, ξi, ηi, gi), i = 1, 2, we
have IM1 = IM2 if and only if up to a D-homothetic deformation, the two manifolds
are locally isometric as contact metric manifolds. Thus we know all non-Sasakian
(κ, µ)-manifolds locally as soon as we have for every odd dimension 2n + 1 and for
every possible value of the invariant I, one (κ, µ)-manifold (M, ϕ, ξ, η, g) with IM = I.
For I > −1 such examples may be found from the standard contact metric structure
on the tangent sphere bundle of a manifold of constant curvature c where we have
I = 1+c

|1−c| . E. Boeckx also gives a Lie algebra construction for any odd dimension and
value of I ≤ −1.

In the following, we recall Example 3.1 of [6].

Example 2.1 [6] For n > 1, the Boeckx invariant for a (2n + 1)-dimensional(
1− 1

n , 0
)
-manifold is

√
n > −1. Therefore, we consider the tangent sphere bundle of

an (n + 1)-dimensional manifold of constant curvature c so chosen that the resulting
D-homothetic deformation will be a

(
1− 1

n , 0
)
-manifold. That is for κ = c(2− c) and

µ = −2c we solve

1− 1
n

=
κ + a2 − 1

a2
, 0 =

µ + 2a− 2
a

for a and c. The result is

c =
(
√

n± 1)2

n− 1
, a = 1 + c

and taking c and a to be these values we obtain a N
(
1− 1

n

)
-contact metric manifold.

The above example is used in Theorem 1.4.

3 Some basic results

From the definition of the concircular curvature tensor Z, in an almost contact metric
manifold M2n+1 we have

Z = R− r

2n (2n + 1)
R0.(3.8)

For a (κ, µ)-manifold, we have

R(X, Y )ξ = (κI + µh)R0(X, Y )ξ,(3.9)
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which is equivalent to
R (ξ,X) = R0 (ξ, (κI + µh)X) .(3.10)

From (3.9), we get
R (ξ, X) ξ = κ (η (X) ξ −X)− µhX.(3.11)

Now, we prove the following

Proposition 3.1 In a (κ, µ)-manifold M2n+1, the concircular curvature tensor Z
satisfies

Z (X, Y ) ξ =
((

κ− r

2n (2n + 1)

)
I + µh

)
R0 (X, Y ) ξ,(3.12)

Z (ξ, X) =
(

κ− r

2n (2n + 1)

)
R0 (ξ, X) + µR0 (ξ, hX) .(3.13)

Consequently, we have

Z (ξ, X) ξ =
(

κ− r

2n (2n + 1)

)
(η (X) ξ −X)− µhX.(3.14)

η (Z (X,Y ) ξ) = 0,(3.15)

η (Z (ξ, X)Y ) =
(

κ− r

2n (2n + 1)

)
(g (X, Y )− η(X)η(Y ))(3.16)

+ µg (hX, Y ) .

Proof. From (3.8), (3.9) and (3.10) the equations (3.12) and (3.13) follow easily. 2

Next, we have the following

Proposition 3.2 In a (κ, µ)-manifold M2n+1, we have

S (Z (ξ,X)Y, ξ) = 2nκµg (hX, Y )(3.17)

+ 2nκ

(
κ− r

2n (2n + 1)

)
(g (X, Y )− η(X)η(Y )) ,

S (Z (ξ, X) ξ, Y ) = 2nκ

(
κ− r

2n (2n + 1)

)
η (X) η (Y )(3.18)

−
(

κ− r

2n (2n + 1)

)
S (X, Y )− µS (hX, Y ) .

Proof. For a (κ, µ)-manifold M2n+1, it is well known that

S (X, ξ) = 2nκη (X) .(3.19)

From (3.19) and (3.16) we get (3.17), while (3.18) follows from (3.14) and (3.19). 2

Now, we prove a key Lemma for later use.
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Lemma 3.3 Let M2n+1 be a (κ, µ)-manifold satisfying Z(ξ, X) · S = 0. Then

0 =
(

κ− r

2n (2n + 1)

)
(S (X, Y )− 2nκg (X,Y ))(3.20)

+ µ (S (hX, Y )− 2nκg (hX, Y )) .

Proof. In an almost contact metric manifold, the condition Z (ξ, X) · S = 0 implies
that

S (Z (ξ, X)Y, ξ) + S (Y, Z (ξ, X) ξ) = 0,(3.21)

which in view of (3.17) and (3.18) gives (3.20). 2

It is well known that in a non-Sasakian (κ, µ)-manifold M2n+1 the Ricci operator
Q is given by [5]

Q = (2(n− 1)− nµ)I + (2(n− 1) + µ)h(3.22)
+ (2(1− n) + n(2κ + µ))η ⊗ ξ.

Consequently, the Ricci tensor S and the scalar curvature r are given by

S (X,Y ) = (2 (n− 1)− nµ) g (X, Y ) + (2 (n− 1) + µ) g (hX, Y )(3.23)
+ (2 (1− n) + n (2κ + µ)) η (X) η (Y ) ,

r = 2n (2n− 2 + κ− nµ) .(3.24)

From (3.23), we also have

S (hX, Y ) = (2 (n− 1)− nµ) g (hX, Y )(3.25)
− (κ− 1) (2 (n− 1) + µ) g (X, Y )
+ (κ− 1) (2 (n− 1) + µ) η (X) η (Y ) ,

where η ◦ h = 0, h2 = (κ− 1)ϕ2 and (2.4) are used.

We also recall the following theorems for later use.

Theorem 3.4 (Olszak [11] or see [4] pp. 98-99) A contact metric manifold of con-
stant curvature is necessarily a Sasakian manifold of constant curvature +1 or is
3-dimensional and flat.

Theorem 3.5 (Blair [2] or see [4] p. 101) Let M2n+1 be a contact metric manifold
satisfying R(X,Y )ξ = 0. Then, M2n+1 is locally isometric to En+1(0) × Sn(4) for
n > 1 and flat for n = 1.

4 Proof of Theorems

In this section, we prove Theorems 1.1, 1.2, 1.3 and 1.4.

Proof of Theorem 1.1. Let M2n+1 be a Ricci flat (κ, µ)-manifold. Then from (3.19),
we get

0 = S (ξ, ξ) = 2nκ,
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which implies that κ = 0. Using κ = 0 in (3.24) and (3.25), we get

nµ = 2 (n− 1)(4.26)

and

0 = S (hX, Y ) = (2 (n− 1) + µ) (g (X, Y )− η (X) η (Y ))(4.27)
+ (2 (n− 1)− nµ) g (hX, Y )

respectively. The above equation implies that

µ = −2 (n− 1) .(4.28)

Since n is positive, from (4.26) and (4.28) we get n = 1 and consequently µ = 0.
Thus, in view of Theorem 3.5 the proof is complete. 2

Now we give a proof of Theorem 1.2.

Proof of Theorem 1.2. To prove that a non-Sasakian Einstein (κ, µ)-manifold is
3-dimensional and flat, we proceed as follows. If QX = aX and since we know Q, we
have

aX = (2 (n− 1)− nµ)X + (2 (n− 1) + µ) hX(4.29)
+ (2 (1− n) + n (2κ + µ)) η (X) ξ.

Setting X = ξ, we get a = 2nκ. Applying to eigenvectors of h, say hX = λX,
hϕX = −λϕX, and comparing we see that the coefficient of hX must vanish. Thus,
we get µ = −2(n− 1) and then

2nκ = 2(n− 1) + 2n(n− 1) = 2(n2 − 1).(4.30)

Therefore κ = n2−1
n < 1, so n = 1 is the only case. This gives µ = 0 which with n = 1

gives κ = 0. 2

Theorem 1.2 is a generalization of Theorem 5.2 of [15], which states that an Ein-
stein N(κ)-contact metric manifold of dimension ≥ 5 is necessarily Sasakian.

Before proving Theorem 1.3, we give a brief introduction to η-Einstein (κ, µ)-
manifold. A contact metric manifold M is said to be η-Einstein ([10] or see [4] p. 105)
if the Ricci tensor S satisfies

S = ag + bη ⊗ η,(4.31)

where a and b are some smooth functions on the manifold. In particular if b = 0,
then M becomes an Einstein manifold. In dimensions ≥ 5 it is known that for any
η-Einstein K-contact manifold, a and b are constnts [14].

Example 4.1 A contact metric manifold, obtained by a D-homothetic deformation
of the contact metric structure on the tangent sphere bundle of a Riemannian manifold
Mn+1 of constant curvature n2±2n+1

n2−1 , is a non-Sasakian η-Einstein (κ, µ)-manifold.
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From (3.23) and (4.31), we see that a non-Sasakian (κ, µ)-manifold M2n+1 is η-
Einstein if and only if µ = −2 (n− 1). In this case Ricci tensor is given by

S = 2
(
n2 − 1

)
g − 2

(
n2 − nκ− 1

)
η ⊗ η.(4.32)

Putting µ = −2 (n− 1) in (3.24), we get

r = 2n (κ + 2 (n− 1) (n + 1)) .(4.33)

A 3-dimensional contact metric manifold is η-Einstein if and only if it is an N (κ)-
contact metric manifold [7]. More precisely, in a 3-dimensional N (κ)-contact metric
manifold, it follows that

S =
(r

2
− κ

)
g +

(
3κ− r

2

)
η ⊗ η.(4.34)

Now, we provide a proof of Theorem 1.3 as follows:

Proof of Theorem 1.3. From (3.17), we get

S (Z (ξ, X) Y, ξ) = 4n (1− n)κg (hX, Y )(4.35)

+ 2nκ

(
κ− r

2n (2n + 1)

)
(g (X, Y )− η(X)η(Y )) .

In view of (4.32) and (3.18), we get

S (Z (ξ,X) ξ, Y ) = 4 (n− 1)
(
n2 − 1

)
g (hX, Y )(4.36)

− 2
(
n2 − 1

) (
κ− r

2n (2n + 1)

)
(g (X,Y )− η(X)η(Y )) .

If M satisfies Z (ξ,X) · S = 0, from (4.35), (4.36) and (3.21), we get

0 = S (Z (ξ, X)Y, ξ) + S (Z (ξ, X) ξ, Y )

= 2
(
1 + nκ− n2

)(
κ− r

2n (2n + 1)

)
(g (X, Y )− η(X)η(Y ))

− 4 (n− 1)
(
1 + nκ− n2

)
g (hX, Y ) .

Contracting the above equation and using trace(h) = 0, we get

4n
(
1 + nκ− n2

) (
κ− r

2n (2n + 1)

)
= 0.

In view of (4.33), κ − r
2n(2n+1) = 0 is equivalent to κ = n2−1

n , which is equivalent to
1+nκ−n2 = 0. In this case M2n+1 reduces to an Einstein manifold. Therefore in view
of Theorem 1.2, M2n+1 is flat and 3-dimensional. The converse is straightforward. 2

Finally, we prove Theorem 1.4.

Proof of Theorem 1.4. Let M be a (2n + 1)-dimensional (κ, µ)-manifold satisfying
Z (ξ, X) · S = 0. We have the following four possible cases.
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Case I. κ = 0 = µ. From (3.9) we have R(X,Y )ξ = 0. Thus, in view of Theo-
rem 3.5, M satisfies the statement (a).

Case II. κ 6= 0 = µ. Using µ = 0 in (3.20), we have
(

κ− r

2n (2n + 1)

)
(S (X,Y )− 2nκg (X, Y )) = 0.(4.37)

Therefore, either r = 2n (2n + 1) κ or S = 2nκg. In the second case M2n+1 reduces to
an Einstein manifold. Therefore in view of Theorem 1.2, we have either the statement
(a) or the statement (c).

If r = 2n (2n + 1) κ, we note from (3.24) that the scalar curvature of an N(κ)-
contact metric manifold is r = 2n (2n− 2 + κ). Comparing gives κ = 1− 1

n and hence
M is locally isometric to the Example 2.1 for n > 1 and to the flat case if n = 1. This
is the statement (b). Conversely it is straightforward to check that when κ = 1− 1

n ,
QX = 2(n− 1)(X + hX) and in turn Z(ξ, X) · S = 0.

Case III. κ = 0 6= µ.
Case IIIa. κ = 0 6= µ and n = 1. Using κ = 0 and n = 1 in (3.23), (3.20), (3.25)

we get
S (X, Y ) = −µ (g (X,Y )− η (X) η (Y )) + µg (hX, Y ) ,

rS (X, Y ) = 6µS (hX, Y ) ,

S (hX, Y ) = −µg (hX, Y ) + µ (g (X, Y )− η (X) η (Y ))

respectively. From the above three relations, we get
(

r
6µ + 1

)
S (X,Y ) = 0. Either

r
6µ + 1 = 0 or S = 0. If r

6µ + 1 = 0, then r = −6µ. Putting κ = 0 and n = 1 in
(3.24), we get r = −2µ. Thus r

6µ + 1 = 0 is not possible. If S = 0, then in view
of Theorem 1.1, we get µ = 0, which is a contradiction. Thus, the Case IIIa is not
possible.

Case IIIb. κ = 0 6= µ and n > 1. Using κ = 0 in (3.23), (3.20), (3.25) we get

S (X, Y ) = (2 (n− 1)− nµ) (g (X, Y )− η (X) η (Y ))
+ (2 (n− 1) + µ) g (hX, Y ) ,

rS (X, Y ) = 2n (2n + 1) µS (hX, Y ) ,

S (hX, Y ) = (2 (n− 1)− nµ) g (hX, Y )
+ (2 (n− 1) + µ) (g (X,Y )− η (X) η (Y ))

respectively. From the above three equations, we get

S (X, Y ) = a(g(X, Y )− η(X)η(Y ))

for some suitable a. Now, in view of Theorem 1.3, we see that the Case IIIb is also
not possible.

Case IV. κ 6= 0 6= µ.
Case IVa. κ 6= 0 6= µ and n = 1. Putting n = 1 in (3.23), (3.20), (3.25), we get

S (X, Y ) = −µg (X,Y ) + µg (hX, Y ) + (2κ + µ) η (X) η (Y ) ,
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(
κ− r

6

)
S (X, Y ) = 2κ

(
κ− r

6

)
g (X,Y ) + 2κµg (hX, Y )− µS (hX, Y ) ,

S (hX, Y ) = −µg (hX, Y )− (κ− 1) µg (X, Y ) + (κ− 1) µη (X) η (Y )

respectively. Eliminating g (hX, Y ) and S (hX, Y ) from the above three equations, we
have

S (X, Y ) = ag (X, Y ) + bη (X) η (Y )

for some suitable a and b. Thus, M is an η-Einstein manifold. Since in the η-Einstein
case µ = −2 (n− 1), therefore for n = 1, we get µ = 0, which is a contradiction. Thus
the Case IVa is not possible.

Case IVb. κ 6= 0 6= µ and n > 1. After eliminating g (hX, Y ) and S (hX, Y )
from (3.23), (3.20) and (3.25); we get S (X,Y ) = ag (X, Y ) + bη (X) η (Y ), for some
suitable a and b. Hence, in view of Theorem 1.3, the Case IVb also does not exist.
Thus the proof is complete. 2
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