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Abstract

In this paper we study the ±(J, ϕ)- holomorphic maps between an almost
Kähler manifold and a metric framed ϕ-manifold. We prove that any ±(J, ϕ)-
holomorphic map is a harmonic map with the minimum energy in its homotopy
class and we prove that a (J, ϕ)-holomorphic map between a Kähler manifold
and a cosymplectic manifold is weakly stable and we calculate the kernel of
Jacobi operator of such a map.
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1 Introduction

Let M be an m-dimensional smooth manifold endowed with a tensor field ϕ of type
(1, 1), satisfying the algebraic condition

ϕ3 + ϕ = 0.(1.1)

The geometric structure on M defined by ϕ is called a ϕ-structure of rank r if the
rank r of ϕ is constant on M and, in this case, M is called a ϕ-manifold. It follows
easily that r is an even number.

If M is a ϕ-manifold and if there are m− r vector fields ξi and m− r differential
1-forms ηi satisfying

ϕ2 = −I +
m−r∑

i=1

ηi ⊗ ξi,(1.2)

ηi(ξj) = δi
j ,(1.3)
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where i, j = 1, 2, ...,m − r, M is said to be globally framed or to have a framed ϕ-
structure. In this case M is called a globally framed ϕ-manifold or, simply, a framed
ϕ-manifold. From (1.2) and (1.3), one obtains by some algebraic computations

ϕξi = 0, ηi ◦ ϕ = 0, ϕ3 + ϕ = 0.(1.4)

If m = 2n + 1 and rank ϕ = 2n one obtains an almost contact structure on M.
Let M be an m-dimensional globally framed ϕ-manifold with structure tensors

(ϕ, ξi, ηi) with rank ϕ = r, and consider the manifold M ×Rm−r. We denote a vector
field on M × Rm−r by (X,

∑m−r
i=1 fi

∂
∂ti ) where X is tangent to M , {t1, ..., tm−r} are

the usual coordinates on Rm−r and {f1, ..., fm−r} are functions on M ×Rm−r. Define
an almost complex structure on M × Rm−r by

J(X,

m−r∑
a=1

fi
∂

∂ti
) = (ϕX −

m−r∑

i=1

fiξi,

m−r∑

i=1

ηi(X)
∂

∂ti
).

It is easy to check that J2 = −I. If J is integrable we say that the framed ϕ-
structure is normal. A framed ϕ-structure is normal if the tensor field S of type (1,2)
defined by

S = Nϕ +
m−r∑

i=1

dηi ⊗ ξi,(1.5)

vanishes, (see [5]), where

Nϕ(X, Y ) = [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + ϕ2[X, Y ], X, Y ∈ χ(M),(1.6)

is the Nijenhuis tensor field of ϕ.
If g is a (semi-)Riemannian metric on M such that

g(ϕX,ϕY ) = g(X, Y )−
m−r∑

i=1

ηi(X)ηi(Y ),(1.7)

then we say that (ϕ, ξi, ηi, g) is a metric framed ϕ-structure and M is called a metric
framed ϕ-manifold.

The metric g is called an associated (semi-)Riemannian metric.
The fundamental 2-form Ω of the considered metric framed ϕ-manifold M, is de-

fined just like in the case of the almost Hermitian and almost contact metric manifold,
by Ω = g(X,ϕY ), for any X, Y ∈ χ(M).

The framed ϕ-manifold M with structure tensors (ϕ, ξi, ηi) is called a C-manifold
if it is normal, dΩ = 0 and dηi = 0, i = 1, ...,m− r, (see [2]).

If on an almost contact manifold (M,ϕ, ξ, η) it is defined an associated Riemannian
metric g then (M, ϕ, ξ, η, g) is called an almost contact metric manifold. If on an almost
contact metric manifold (M,ϕ, ξ, η, g) we have Ω = dη, where Ω is the fundamental
2-form on M , then we say that (M, ϕ, ξ, η, g) is a contact metric manifold.If for an
almost contact metric structure (ϕ, ξ, η, g) which is normal we have dη = 0 and dΩ = 0
then (N,ϕ, ξ, η, g) is called a cosymplectic manifold.

In [1] it is proved the following two results
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Lemma 1.1. For an almost contact metric structure (ϕ, ξ, η, g), the covariant deriv-
ative of ϕ is given by

2g((∇Xϕ)Y,Z)) = 3dΩ(X, ϕY, ϕZ)− 3dΩ(X,Y, Z) + g(Nϕ(Y, Z), ϕX)+

+((LϕY η)(Z)− (LϕZη)(Y ))η(X) + 2dη(ϕY, X)η(Z)− 2dη(ϕZ, X)η(Y ).

where L denote the Lie derivative.

Remark 1.2. In Lemma 1.1 the author use the ”alt” convention for calculus of dΩ
and dη.

Theorem 1.3. An almost contact metric structure (ϕ, ξ, η, g) is cosymplectic if and
only if ϕ is parallel.

Just like in [1] one obtains

Lemma 1.4. If (M, ϕ, ξi, ηi, g) is a metric framed ϕ-manifold, where i = 1, ...n, then

2g((∇Xϕ)Y,Z)) = 3dΩ(X, ϕY, ϕZ)− 3dΩ(X,Y, Z) + g(Nϕ(Y, Z), ϕX)+

+2
n∑

i=1

[dηi(ϕY, X)ηi(Z)− dηi(ϕZ, X)ηi(Y )] +
n∑

i=1

[dηi(ϕY, Z) + dηi(Y, ϕZ)]ηi(X).

Remark 1.5. If (M, ϕ, ξi, ηi, g) is a normal metric framed ϕ-manifold, where i =
1, ...n, then

2g((∇Xϕ)Y,Z)) = 3dΩ(X, ϕY, ϕZ)− 3dΩ(X,Y, Z)+

+2
n∑

i=1

[dηi(ϕY,X)ηi(Z)− dηi(ϕZ,X)ηi(Y )].

Remark 1.6. It is easy to see that if (M, ϕ, ξi, ηi, g) is a C-manifold then ϕ is parallel.

Concerning the harmonic maps between Riemannian manifolds, we should recall
some notions and results as they are presented in [8].

Let f : M → N be a smooth map between two Riemannian manifolds (M, g) and
(N, h). Let f−1(TN) be the induced bundle over M of TN defined as follows, denote
by π : TN → N the projection. Then

f−1TN = {(x, u) ∈ M × TN, π(u) = f(x), x ∈ M} =
⋃

x∈M Tf(x)N.
The set of all C∞-sections of f−1TN , denoted by Γ(f−1TN) is
Γ(f−1TN) = {V : M → TN, C∞-map,V (x) ∈ Tf(x)N, x ∈ M}.
Denote by ∇M ,∇N , the Levi-Civita connections on (M, g) and (N,h) respectively.

Then, for a smooth map f between (M, g) and (N, h), we define the induced connec-
tion ∇̃ on the induced bundle f−1TN as follows, for X ∈ χ(M), V ∈ Γ(f−1TN),
define ∇̃XV ∈ Γ(f−1TN) by ∇̃XV = ∇N

f∗XV .
Then the connection ∇̃ and the metric h are compatible, that is, for V1, V2 ∈

Γ(f−1TN), X ∈ χ(M) we have

X(h(V1, V2)) = h(∇̃XV1, V2) + h(V1, ∇̃XV2).
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In [4] the authors study the maps on C-manifolds, introduce a Lichnerowitz type
invariant on f -structures and prove that a structure-preserving map is an absolute
minimum of the energy functional in its homotopy class.

In the second and the third sections of this paper we give some similarly results
(sometimes with the complete proofs) for the maps between an almost Kähler manifold
and a metric framed ϕ-manifold. In the last section we prove that a (J, ϕ)-holomorphic
map between a Kähler manifold and a cosymplectic manifold is weakly stable and we
calculate the kernel of the Jacobi operator of the inclusion map i : M ↪→ M × R,
where (M, g, J) is a Kähler manifold.

2 ±(J, ϕ)- holomorphic maps

Let (N, ϕ, ξi, ηi) be a framed ϕ-manifold and let TN be its tangent bundle.
Let TCN be the complexification of TN . Then ϕ can be uniquely extended to a

complex linear endomorphism of TCN , denoted also by ϕ, which satisfies (1.2). The
eigenvalues of ϕ are i, 0, -i. Consider the usual decomposition

TCN = T ′N ⊕ T 0N ⊕ T ′′N

of TCN in the eigenbundles corresponding to the eigenvalues i, 0, -i of ϕ.
Let M be an almost complex manifold with the almost complex structure J . Then

the complexification of the tangent space TCM can be decomposed into a direct sum
of the eigenspaces of J

TCM = T ′M ⊕ T ′′M

corresponding to the eigenvalues i, -i.

Definition 2.1. Let f : M → N be a smooth map between the almost complex
manifold (M, J) and the framed ϕ-manifold (N, ϕ, ξ, η). We define

∂f : T ′M → T ′N

∂f : T ′M → T ′′N

∂0f : T ′M → T0N

∂f : T ′′M → T ′N

∂ f : T ′′M → T ′′N

∂0f : T ′′M → T0N

by
df |T ′M= ∂f + ∂f + ∂0f

df |T ′′M= ∂f + ∂ f + ∂0f.

For X ∈ TM, X ′ = 1
2 (X − iJX) ∈ T ′M, X ′′ = 1

2 (X + iJX) ∈ T ′′M , we have

∂f(X ′) =
1
4
(f∗X − if∗JX − ∂0f(X ′)− iϕf∗X − ϕf∗JX),(2.1)

∂f(X ′) =
1
4
(f∗X − if∗JX − ∂0f(X ′) + iϕf∗X + ϕf∗JX).(2.2)
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Definition 2.2. Let f : M → N be a smooth map. If f∗J = ϕf∗, then f is called
a (J, ϕ)-holomorphic map (or a +(J, ϕ)-holomorphic map); if f∗J = −ϕf∗, then f is
called a (J, ϕ)-antiholomorphic map (or a −(J, ϕ)−holomorphic map).

Proposition 2.1. Let f : M → N be a smooth map. Then f is a −(J, ϕ)-
holomorphic map if and only if ∂f = 0 and ∂0f = 0.

Proof. If f : M → N is a −(J, ϕ)−holomorphic map then we have for X ∈
TM, X ′ = 1

2 (X − iJX) ∈ T
′
M, X ′′ = 1

2 (X + iJX) ∈ T ′′M , using (1.4) ∂f(X ′) =
− 1

4∂0f(X ′).
Since ∂f ∈ T ′N, ∂0f ∈ T 0N , then ∂f(X ′) = 0 and ∂0f(X ′) = 0.
Conversely, if ∂f = 0, ∂0f = 0 we have

1
4
(f∗X − if∗JX − iϕf∗X − ϕf∗JX) = 0,

for X ∈ χ(M).
Then f∗J = −ϕf∗.
Similarly, one obtains

Proposition 2.2. Let f : M → N be a smooth map. Then f is a +(J, ϕ)-
holomorphic map if and only if ∂f = 0 and ∂0f = 0.

3 Harmonicity of ±(J, ϕ)-holomorphic maps

Assume that (M, g, J) is an almost Hermitian manifold, i.e. g(JX, JY ) = g(X,Y )
for any vector fields X, Y on M , and (N, ϕ, ξi, ηi, h) is a metric framed ϕ-manifold.
Choosing a local Hermitian frame field {ei, Jei} in M , we have the corresponding
holomorphic orthonormal frame field εi =

√
2

2 (ei − iJei) and the anti-holomorphic
frame field εi =

√
2

2 (ei + iJei). For a smooth map f : M → N we have, after a direct
computation

| ∂f |2 +
1
2
| ∂0f |2= 1

4
[h(f∗ei, f∗ei) + h(f∗Jei, f∗Jei) +(3.1)

+2h(f∗Jei, ϕf∗ei)],

| ∂f |2 +
1
2
| ∂0f |2= 1

4
[h(f∗ei, f∗ei) + h(f∗Jei, f∗Jei)−(3.2)

−2h(f∗Jei, ϕf∗ei)].

Definition 3.1. We call
| ∂f |2 +

1
2
| ∂0f |2= e′(f)

and
| ∂f |2 +

1
2
| ∂0f |2= e′′(f)

partial energy densities. If M is compact,
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E′(f) =
∫

M

e′(f) ∗ 1, E′′(f) =
∫

M

e′′(f) ∗ 1, E(f) = E′(f) + E′′(f),

where E′(f) and E′′(f) are called partial energies, and ∗1 is the volume form on M .

Obviously f is a +(J, ϕ)-holomorphic map if and only if E′(f) = 0 and f is a
−(J, ϕ)-holomorphic map if and only if E′′(f) = 0.

Let ω the fundamental 2-form of the almost Kähler manifold (M, g, J), that is the
2-form defined by ω(X,Y ) = g(X,JY ) for any X, Y ∈ χ(M) which satisfies dω =
0 and Ω the fundamental 2-form of the metric framed ϕ-manifold, (N,ϕ, ξi, ηi, h),
defined by Ω(X, Y ) = h(X,ϕY ), for any X, Y ∈ χ(N), which satisfies dΩ = 0.
Consider

K(f) = E′(f)− E′′(f) =
∫

M

h(f∗Jei, ϕf∗ei) ∗ 1,(3.3)

where {ei, Jei} is a local Hermitian frame field.
Since

ω(ei, ej) = h(Jei, ej) = 0,

ω(Jei, Jej) = −h(ei, Jej) = 0,

ω(ei, Jej) = h(Jei, Jej) = δij ,

then
〈 f∗Ω, ω〉 = f∗Ω(ei, ej)ω(ei, ej) + f∗Ω(ei, Jej)ω(ei, Jej)+

+f∗Ω(Jei, Jej)ω(Jei, Jej) = Ω(f∗ei, f∗Jej) = h(ϕf∗ei, f∗Jei).

Substituting it into (3.3), one obtains

K(f) =
∫

M

〈f∗Ω, ω〉 ∗ 1.

Proposition 3.1. K(f) is a homotopy invariant.

Proof. Let ft : M × [0, 1] → N be a family of one - parameter maps. Then d
dtf

∗
t Ω

is an exact form, i.e. there exist θt = f∗t i(ft∗ ∂
∂t )Ω, where i(X)Ω denote the interior

product of the vector X with the 2-form Ω, such that d
dtf

∗
t Ω = dθt, (see[9]).

It follows that

d

dt
K(ft) =

d

dt

∫

M

〈 f∗t Ω, ω〉 ∗ 1 =
∫

M

〈 d

dt
f∗t Ω, ω〉 ∗ 1 =

=
∫

M

〈dθt, ω〉 ∗ 1 =
∫

M

〈θt, δω〉 ∗ 1 =

=
∫

M

〈θt,− ∗ d ∗ ω〉 ∗ 1 = −
∫

M

〈θt, ∗d(ω)n−1〉 ∗ 1 = 0.

Theorem 3.2. Let M be an almost Kähler manifold, and let N be a metric framed
ϕ-manifold with the fundamental 2-form Ω satisfying dΩ = 0. If M is compact, then
any ±(J, ϕ)-holomorphic map is a harmonic map with the minimum energy in its
homotopy class.
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Proof. It is sufficient to consider the +(J, ϕ)-holomorphic case.
Let f be a +(J, ϕ)-holomorphic map. Then E′′(f) = 0. Let ft : M × [0, 1] → N ,

and f0 = f .
Then

E(f0) = E′(f0) + E′′(f0) = E′(f0)− E′′(f0) = K(f0) = K(ft) ≤ E(ft).

Corollary 3.3. Let M and N be as above, f0 : M → N a +(J, ϕ)-holomorphic map,
and f1 : M → N a −(J, ϕ)-holomorphic map. Then f0 and f1 can not be homotopic
unless they are constant maps.

Proof. If f0 is homotopic to f , then

E(f0) = E′(f0) + E′′(f0) = E′(f0)− E′′(f0) = K(f0) =

= K(f1) = E′(f1)− E′′(f1) = −E′(f1)− E′′(f1) = −E(f1).

Thus E(f0) = E(f1) = 0.

4 Stability of (J, ϕ)-holomorphic maps between a
Kähler manifold and a cosymplectic manifold

Theorem 4.1. Let (M, g, J) be a compact Kähler manifold with dim M = 2m, and
let (N, ϕ, ξ, η, h) be a cosymplectic manifold. Let f : M → N be a (J, ϕ)-holomorphic
map. Then

∫

M

h(JfV, V ) ∗ 1 =
1
2

∫

M

h(DV, DV ) ∗ 1 +
∫

M

tr(η ⊗ η)(∇̃V, ∇̃V ) ∗ 1,

where V ∈ Γ(f−1TN), and Jf is the Jacobi operator of f defined by

JfV = −
m∑

i=1

(∇̃ei∇̃ei − ∇̃∇ei
ei)V −

m∑

i=1

RN (V, f∗ei)f∗ei, V ∈ Γ(f−1TN),

where RN denote the curvature tensor on N . For each V ∈ Γ(f−1TN), DV is an
element of Γ(f−1TN ⊗ T ∗M) defined by

DV (X) = ∇̃JXV − ϕ∇̃XV,X ∈ χ(M),

and (η ⊗ η)(∇̃V, ∇̃V ) is defined by

(η ⊗ η)(∇̃V, ∇̃V )(X, Y ) = (η ⊗ η)(∇̃XV, ∇̃Y V ),

where X, Y ∈ χ(M). Then

1) f is weakly stable, that is, each eigenvalue of Jf is nonnegative.

2) kerJf = {V ∈ Γ(f−1TN), DV = 0}.
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Proof. We have, for an orthonormal basis {e1, ..., em, Je1, ..., Jem} in M

h(DV, DV ) =
m∑

i=1

{h(DV (ei), DV (ei)) + h(DV (Jei), DV (Jei))} =

=
m∑

i=1

{h(∇̃JeiV − ϕ∇̃eiV, ∇̃JeiV − ϕ∇̃eiV )+

+h(−∇̃ei
V − ϕ∇̃Jei

V,−∇̃ei
V − ϕ∇̃Jei

V ).

Since h(ϕX, ϕY ) = h(X,Y )− η(X)η(Y ) we have

h(DV, DV ) + η(∇̃ei
V )η(∇̃ei

V ) + η(∇̃Jei
V )η(∇̃Jei

V ) =

= 2
m∑

i=1

{h(∇̃eiV, ∇̃eiV )− 2h(ϕ∇̃eiV, ∇̃JeiV ) + h(∇̃JeiV, ∇̃JeiV )}.

Thus
∫

M

[h(JfV, V )− 1
2
h(DV, DV )− tr(η ⊗ η)(∇̃V, ∇̃V )] ∗ 1 =(4.1)

=
∫

M

m∑

i=1

{−h(RN (V, f∗ei)f∗ei, V )− h(RN (V, f∗Jei)f∗Jei, V )+

+2h(ϕ∇̃eiV, ∇̃JeiV )} ∗ 1,

since
∫

M

h(JfV, V ) ∗ 1 =
∫

M

m∑

i=1

{h(∇̃eiV, ∇̃eiV ) + h(∇̃JeiV, ∇̃JeiV )−

−h(RN (V, f∗ei)f∗ei, V )− h(RN (V, f∗Jei)f∗Jei, V )} ∗ 1, (see[8]).

Next, we shall prove that

A = RN (V, f∗ei)f∗ei + RN (V, f∗Jei)f∗Jei = ϕRN (f∗ei, f∗Jei)V.(4.2)

Since (N,ϕ, ξ, η, h) is a cosymplectic manifold we have ∇Nϕ = 0, that is ∇N
XϕY =

ϕ∇N
XY , for any X,Y ∈ χ(N), (see[1]).
From this and from (J, ϕ)-holomorphicity of f we have

A = −ϕRN (V, f∗ei)f∗Jei + ϕRN (V, f∗Jei)f∗ei =

= ϕRN (f∗ei, V )f∗Jei + ϕRN (V, f∗Jei)f∗ei = ϕRN (f∗ei, f∗Jei)V,

where we used the formulas, for X,Y, Z ∈ χ(N)

RN (X,Y )Z + RN (Y, X)Z = 0,

RN (X, Y )Z + RN (Y,Z)X + RN (Z, X)Y = 0.
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From (4.1) and (4.2) we have
∫

M

[h(JfV, V )− 1
2
h(DV, DV )− tr(η ⊗ η)(∇̃V, ∇̃V )] ∗ 1 =(4.3)

=
∫

M

m∑

i=1

{−h(ϕRN (f∗ei, f∗Jei)V, V ) + 2h(ϕ∇̃ei
V, ∇̃Jei

V )} ∗ 1.

To complete the proof, it is sufficient to show the second integral in (4.3) vanishes.
To do this we show

∫

M

m∑

i=1

−h(ϕRN (f∗ei, f∗Jei)V, V ) ∗ 1 =(4.4)

=
∫

M

m∑

i=1

{h(∇̃ei
V, ∇̃Jei

ϕV )− h(∇̃Jei
V, ∇̃ei

ϕV )} ∗ 1.

Then the integral in (4.3) coincides with

∫

M

m∑

i=1

{h(∇̃eiV, ∇̃JeiϕV )− h(∇̃JeiV, ∇̃eiϕV ) + 2h(ϕ∇̃eiV, ∇̃JeiV )} ∗ 1

which vanishes because ∇̃XϕV = ϕ∇̃XV since (N, ϕ, ξ, η, h) is cosymplectic and
h(ϕX, Y ) = −h(X, ϕY ).

Equation (4.4) can be derived as follows, since [ei, Jei] = ∇M
ei

Jei − ∇M
Jei

ei, one
obtains

−h(ϕRN (f∗ei, f∗Jei)V, V ) = h(ϕRN (f∗ei, f∗Jei)V, ϕV ) =(4.5)

= h(∇̃ei
∇̃JeiV − ∇̃Jei

∇̃eiV − ∇̃[ei,Jei]V, ϕV ) =

= ei(h(∇̃JeiV, ϕV ))− h(∇̃JeiV, ∇̃eiϕV )−
−Jei(h(∇̃eiV, ϕV )) + h(∇̃eiV, ∇̃JeiϕV )− h(∇̃∇ei

JeiV, ϕV ) + h(∇̃∇Jei
eiV, ϕV ),

since ∇̃ and h are compatible.
We define a smooth function s on M by

s =
m∑

i=1

{ei(h(∇̃JeiV, ϕV ))− Jei(h(∇̃eiV, ϕV ))−(4.6)

−h(∇̃∇ei
JeiV, ϕV ) + h(∇̃∇Jei

eiV, ϕV )}.
Let X be a vector field on M defined by g(X, Y ) = h(∇̃JY V, ϕV ), for any Y ∈

χ(M).
Then we have

divX =
m∑

i=1

{g(ei,∇M
ei

X) + g(Jei,∇M
Jei

X)} =
m∑

i=1

{ei(g(ei, X))− g(∇M
ei

ei, X)+
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+Jei(g(Jei, X))− g(∇M
Jei

Jei, X)} =
m∑

i=1

{ei(h(∇̃JeiV, ϕV ))−

−Jei(h(∇̃ei
V, ϕV ))− h(∇̃∇ei

Jei
V, ϕV ) + h(∇̃∇Jei

ei
V, ϕV )} = s.

Thus
∫

M

s ∗ 1 = 0.(4.7)

From (4.5),(4.6) and (4.7) we have

∫

M

m∑

i=1

−h(ϕRN (f∗ei, f∗Jei)V, V ) ∗ 1 =
∫

M

m∑

i=1

{h(∇̃eiV, ∇̃JeiϕV )−

h(∇̃Jei
V, ∇̃ei

ϕV )} ∗ 1.

Then, one obtains
∫

M

[h(JfV, V )− 1
2
h(DV, DV )− tr(η ⊗ η)(∇̃V, ∇̃V )] ∗ 1 =

=
∫

M

m∑

i=1

{h(∇̃eiV, ∇̃JeiϕV )− h(∇̃JeiV, ∇̃eiϕV ) + 2h(ϕ∇̃eiV, ∇̃JeiV )} ∗ 1 = 0.

Just as above, using Lemma 1.4, we can prove the following

Theorem 4.2. Let (M, g, J) be a compact Kähler manifold with dim M = 2m, and
let (N, ϕ, ξi, ηi, h), where i = 1, ..., n, be a C-manifold. Let f : M → N be a (J, ϕ)-
holomorphic map. Then

∫

M

h(JfV, V ) ∗ 1 =
1
2

∫

M

h(DV, DV ) ∗ 1+

+
∫

M

n∑

i=1

tr(ηi ⊗ ηi)(∇̃V, ∇̃V ) ∗ 1,

where V ∈ Γ(f)−1TN , Jf is the Jacobi operator of f , and DV is defined as in
Theorem 4.1. Then

1) f is weakly stable, that is, each eigenvalue of Jf is nonnegative.
2) kerJf = {V ∈ Γ(f−1TN), DV = 0}.
Let (M, g, J) be a 2n-dimensional Kähler manifold with local coordinates {x1, ..., x2n}

and let t be the coordinate on R. Then on M × R set η = dt and ξ = ∂
∂t . We define

the metric G on M × R by

G((X, a
∂

∂t
), (Y, b

∂

∂t
)) = g(X, Y ) + (η ⊗ η)((X, a

∂

∂t
), (Y, b

∂

∂t
))

for any X, Y ∈ χ(M) and a, b : M ×R→ R. In local coordinates G has the expression

G = gijdxidxj + dtdt
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where gij are the components of g.
On M ×R we define the tensor field ϕ of type (1,1) by ϕξ = 0 and ϕ(X, 0) = JX

for X ∈ χ(M). Then (ϕ, ξ, η,G) is an almost contact metric structure on M ×R. Let
Ω be the fundamental 2-form on (M ×R, ϕ, ξ, η, G) defined by Ω(X̃, Ỹ ) = G(X̃, ϕỸ )
for any X̃, Ỹ ∈ χ(M × R).

By a straightforward computation one obtains dΩ = 0 and dη = 0.
Since (M, g, J) is a Kähler manifold we have NJ = 0, where NJ is the Nijenhuis

tensor of J .
Let Nϕ be the Nijenhuis tensor of ϕ. Then one obtains Nϕ((X, 0), (Y, 0)) =

NJ(X, Y ) and Nϕ((X, 0), (0, ∂
∂t )) = 0 for any X,Y ∈ χ(M). Then Nϕ = 0 and since

dΩ = 0 and dη = 0 one obtains that (M × R, ϕ, ξ, η, G) is a cosymplectic manifold.
Let i : M ↪→ M×R be the inclusion map. By the definition of ϕ we have i∗J = ϕi∗

and then i is a (J, ϕ)-holomorphic map and, from Theorem 3.2, a harmonic map.
If we denote with ∇ and ∇′ the Levi-Civita connections of M and M ×R respec-

tively, we have

∇′ ∂
∂xj

∂

∂xi
= Γ′kij

∂

∂xk
+ Γ′0ij

∂

∂t
,

∇′∂
∂t

∂

∂xi
= Γ′ki0

∂

∂xk
+ Γ′0i0

∂

∂t
,

∇′∂
∂t

∂

∂t
= Γ′k00

∂

∂xk
+ Γ′000

∂

∂t
,

where Γ′kij , Γ′0ij , Γ′ki0, Γ′k00, Γ′000 are the Christoffel symbols of ∇′.
One obtains

Γ′kij = Γk
ij , Γ′0ij = Γ′k00 = Γ′ki0 = Γ′000 = 0,

where Γk
ij are the Christoffel symbols of ∇. Hence for a vector field V ′ = (V, f ∂

∂t ) ∈
Γ(i−1T (M × R)), where V ∈ χ(M) and f : M → R is a smooth function, we have

DV (X) = ∇̃JXV ′ − ϕ∇̃XV ′ =

= ∇′i∗JX(V, f
∂

∂t
)− ϕ∇′i∗X(V, f

∂

∂t
) =

= ∇JXV − J∇XV + JX(f)
∂

∂t

for any X ∈ χ(M), since (M, g, J) is a Kähler manifold and (M × R, ϕ, ξ, η,G) is a
cosymplectic manifold.

Then DV = 0 if and only if V is a holomorphic vector field, (see[8]), and f is a
constant. Thus, using Theorem 4.1, we have

Proposition 4.3. If (M, g, J) is a Kähler manifold and (M × R, ϕ, ξ, η,G) is the
cosymplectic manifold obtained as above then the inclusion map i : M ↪→ M × R is
weakly stable. Moreover Ker(Ji) = {V ′ = (V, a ∂

∂t ) ∈ Γ(i−1T (M × R)), where V is a
holomorphic vector field on M and a ∈ R is a constant}.
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