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Abstract

It is known that the jet fibre bundle of order one J1 (T, M) is a basic object
in the study of classical and quantum field theories. In order to develop the
subsequent multi-time Lagrangian theory of physical fields on J1 (T, M) , we
need to generalize the main geometrical objects used in the classical rheonomic
Lagrangian theory. In this direction, Section 1 presents the main properties of the
differentiable structure of the jet fibre bundle of order one J1 (T, M). Section 2
studies an important collection of geometrical objects on J1 (T, M) as d-tensors,
temporal and spatial sprays and h-traceless maps induced by these sprays, which
naturally generalize analogous objects on the natural house R×TM of the multi-
time Lagrangian field theory. Section 3 studies the nonlinear connections Γ on
J1 (T, M) , and discusses their relation with the temporal and spatial sprays.
Section 4 opens the problem of prolongation of vector fields from T ×M to 1-jet
space J1 (T, M) , using adapted bases.
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1 The jet fibre bundle J1 (T,M)

Let us consider the smooth manifolds T and M of dimension p, respectively n, co-
ordinated by (tα)α=1.p , respectively

(
xi

)
i=1.n

. We remark that, throughout this pa-
per, the set {1, 2, .., p} is indexed by α, β, γ, ..., and the set {1, 2, ..., n} is indexed by
i, j, k, ....

Now, let (t0, x0) be an arbitrary point of the product manifold T ×M. We denote
C∞ (T,M) the set of all smooth maps between T and M and define the equivalence
relation
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f ∼(t0,x0) g ⇔ f (t0) = g (t0) = x0, dft0 = dgt0(1.1.1)

on C∞ (T, M). For every f, g ∈ C∞ (T,M), the relation f v(t0,x0) g can be expressed
locally by

xi
(
tβ0

)
= yi

(
tβ0

)
= xi

0,

∂xi

∂tα

(
tβ0

)
=

∂yi

∂tα

(
tβ0

)
,

(1.1.2)

where tβ (t0) = tβ0 , xi (x0) = xi
0, xi = xi ◦ f and yi = xi ◦ g. The equivalence class of

a smooth map f ∈ C∞ (T, M) is denoted by

[f ](t0,x0)
=

{
g ∈ C∞ (T,M) | g v(t0,x0) f

}
.

If the quotient J1
(t0,x0)

(T, M) = C∞ (T,M)�∼(t0,x0) is the factorization by the equiv-
alence relation ” ∼(t0,x0) ”, we build the total spaces of 1-jet set, taking

J1 (T, M) =
⋃

(t0,x0)∈T×M

J1
(t0,x0)

(T,M) .(1.1.3)

in order to organize the total space of 1-jets J1 (T, M) as a vector bundle over
the base space T × M, we start with a smooth map f ∈ C∞ (T, M) , x = f(t),(
t1, ..., tp

) −→ (
x1

(
t1, ..., tp

)
, ..., xn

(
t1, ..., tp

))
, and expand the maps xi using Taylor

formula around the point
(
t10, ..., t

p
0

) ∈ Rp. We obtain

xi
(
t1, ..., tp

)
= xi

0 + (tα − tα0 )
∂xi

∂tα
(
t10, ..., t

p
0

)
+O (2) , ‖t− t0‖ < ε.

Automatically the linear affine approximation f̃ ∈ C∞ (T, M) , x̃ = f̃(t),

x̃i
(
t1, ..., tp

)
= xi

0 + (tα − tα0 )
∂xi

∂tα
(
t10, ..., t

p
0

)
, ‖t− t0‖ < ε,

satisfies f̃ ∼(t0,x0) f , that is, it is a convenient representative of equivalence class
[f ](t0,x0)

.

Let π : J1 (T, M) → T × M be the projection π
(
[f ](t0,x0)

)
= (t0, f (t0)) . It is

obvious that the map π is well defined and surjective. Using this projection, for every
local chart U× V ⊂ T×M on the product manifold T×M, we can define the bijection

ΦU×V : π−1 (U × V ) → U × V × Rnp,
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seting ΦU×V

(
[f ](t0,x0)

)
=

(
t0, x0,

∂xi

∂tα

(
tβ0

))
, x0 = f (t0) .

In conclusion, the 1-jet set J1 (T,M) can be endowed with a differentiable struc-
ture of dimension p + n + pn, such that the maps ΦU×V to be diffeomorphisms. We
emphasize that the local coordinates on J1 (T,M) are

(
tα, xi, xi

α

)
, where

tα
(
[f ](t0,x0)

)
= tα (t0) ,

xi
(
[f ](t0,x0)

)
= xi (x0) ,

xi
α

(
[f ](t0,x0)

)
=

∂xi

∂tα

(
tβ0

)
.

(1.1.4)

In the above coordinates on J1 (T, M) , the projection π : J1 (T,M) → T ×M has
the local expression π

(
tα, xi, xi

α

)
=

(
tα, xi

)
. Moreover, the differential π∗ of the map

π is locally determined by the Jacobi matrix

(
δαβ 0 0
0 δij 0

)
∈ Mp+n,p+n+pn.

It follows that π∗ is a surjection (rank π∗ = p + n) and therefore the projection π is
a submersion. Consequently, the 1-jet total space J1 (T,M) becomes a vector bundle
over the base space T ×M , having the fibre type Rpn.

Using (1.1.4), by a simple direct calculation, we obtain

Proposition 1.1. 1) The coordinate transformations
(
tα, xi, xi

0

) ←→ (
t̃α, x̃i, x̃i

α

)
of

the 1-jet vector bundle E = J1 (T, M) are given by

t̃α = t̃α
(
tβ

)
,

x̃i = x̃i
(
xj

)
,

x̃i
α =

∂x̃i

∂xj

∂tβ

∂t̃α
xi

β ,

(1.1.5)

where det
(
∂t̃α/∂tβ

) 6= 0 and det
(
∂x̃i/∂xj

) 6= 0. Consequently E is always an ori-
entable manifold.

2) The canonical bases
{

∂

∂tα
,

∂

∂xi
,

∂

∂xi
α

}
,

{
∂

∂t̃α
,

∂

∂x̃i
,

∂

∂x̃i
α

}
of the vector fields

on E are related by
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∂

∂tα
=

∂t̃β

∂tα
∂

∂t̃β
+

∂x̃j
β

∂tα
∂

∂x̃j
β

∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
+

∂x̃j
β

∂xi

∂

∂x̃j
β

∂

∂xi
α

=
∂x̃j

∂xi

∂tα

∂t̃β
∂

∂x̃j
β

,

(1.1.6)

3) The canonical bases
{
dtα, dxi, dxi

α

}
,

{
dt̃α, dx̃i, dx̃i

α

}
of the 1-forms on E are re-

lated by





dtα =
∂tα

∂t̃β
dt̃β

dxi =
∂xi

∂x̃j
dx̃j

dxi
α =

∂xi
α

∂t̃β
dt̃β +

∂xi
α

∂x̃j
dx̃j +

∂xi

∂x̃j

∂t̃β

∂tα
dx̃j

β .

(1.1.7)

Some physical aspects. At the end of this Section, we discuss certain physical
aspects of the jet vector bundle of order one that we consider very eloquent for the
subsequent theory.

Thus, from physical point of view, we regard the space T as a ”temporal” manifold
or a ”multi-time” while the manifold M is regarded as a ”spatial” one. In mechanics
terms, the vector bundle J1 (T, M) is regarded as a bundle of configurations, and its
elements [f ] are regarded as classes of ”parametrized sheets”.

In order to motivate the terminology used, we study more deeply the jet vector
bundle of order one, in the particular case T = R (i.e., the usual time axis represented
by the set of real numbers). Let us suppose that J1 (R,M) ≡ R× TM is coordinated
by

(
t, xi, yi

)
. The gauge group of the bundle

π : J1 (R, M) → R×M,
(
t, xi, yi

) → (
t, xi

)
,(1.1.8)

is given by

t̃ = t̃ (t) ,

x̃i = x̃i
(
xj

)
,

ỹi =
∂x̃i

∂xj

dt

dt̃
yj .

(1.1.9)

We remark that the form of this gauge group stands out by the relativistic char-
acter of the time t. For that reason, we consider that the jet fibre bundle of order
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one J1 (R,M) is the natural bundle of configurations of the relativistic rheonomic
Lagrangian mechanics [10].

Comparatively, in the classical rheonomic Lagrangian mechanics [5], the bundle
of configuration is the fibre bundle

π : R× TM → M,
(
t, xi, yi

) → (
xi

)
,(1.1.10)

whose geometrical invariance group is

t̃ = t,

x̃i = x̃i
(
xj

)
,

ỹi =
∂x̃i

∂xj
yj .

(1.1.11)

Obviously, the structure of the gauge group (1.1.11) emphasizes the absolute char-
acter of the time t from the classical rheonomic Lagrangian mechanics. At the same
time, we point out that the gauge group (1.1.11) is a subgroup of (1.1.9). In other
words, the gauge group of the jet bundle of order one, from the relativistic rheonomic
Lagrangian mechanics is more general than that used in the classical rheonomic La-
grangian mechanics which ignores the temporal reparametrizations.

Finally, we invite the reader to compare both the classical and relativistic rheo-
nomic Lagrangian mechanics developed in [5] and [10].

2 d-Tensors. Multi-time sprays. h-traceless maps

It is well known the importance of the tensors in development of a geometry on a
fibre bundle. In the study of the 1-jet fibre bundle, a central role is played by the
distinguished tensors or, briefly, d-tensors.

Definition 2.1. A geometrical object D =
(
D

αi(j)(ν)...
γk(β)(t)...

)
, on the 1-jet vector bundle

E, whose local components verify the following rules of transformation

D
αi(j)(ν)...
γk(β)(l)... = D̃

δp(m)(η)...
εr(µ)(s)...

∂tα

∂t̃δ
∂xi

∂x̃p

∂xj

∂x̃m

∂t̃µ

∂tβ
∂t̃ε

∂tγ
∂x̃r

∂xk

∂x̃s

∂xl

∂tν

∂t̃η
...,(2.2.1)

is called a d-tensor field.

The utilization of parentheses for certain indices of the local components D
αi(j)(ν)...
γk(β)(l)...

will be motivated at the end of Section 3 of this paper, before the introduction of a
nonlinear connection Γ on E together with its adapted bases of vector and covector
fields.
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A d-tensor field D on E = J1 (T, M) can be viewed like an object defined on
T ×M which depends on partial derivatives (partial velocities) xi

α.

Example 2.2. i) If L : E → R is a multi-time Lagrangian function with partial
derivates of order one, then the local components

G
(α)(β)
(i)(j) =

1
2

∂2L

∂xi
α∂xj

β

(2.2.2)

represent a d-tensor field on E. We point out that taking T = R and L a regular time-
dependent Lagrangian, then the d-tensor field G

(α)(β)
(i)(j)

(
t, xi, yj

)
is a natural general-

ization of that so-called metrical d-tensor field gij

(
t, xi, yj

)
of a classical rheonomic

Lagrange space RLn =
(
M, L

(
t, xi, yj

))
[5].

ii) The geometrical object C =
(
C

(i)
(α)

)
, where C

(i)
(α) = xi

α, represent a d-tensor field
on E. This is called the canonical Liouville d-tensor on the 1-jet vector bundle E.
We emphasize that this d-tensor field naturally generalizes the Liouville d-vector field

C = yi ∂

∂yi
used in [5].

iii) Let hαβ be a semi-Riemannian metric on the temporal manifold T , i.e., it

has the signature (p1, p2), p1 + p2 = p. The geometrical object L =
(
L

(i)
(α)βγ

)
, where

L
(i)
(α)βγ = hβγxi

α, is a d-tensor field which is called the Liouville d-tensor associated
to the metric h.

iv) Using the preceding metric h, we construct the d-tensor J =
(
J

(i)
(α)βj

)
, where

J
(i)
(α)βj = hαβδi

j . This d-tensor is called the h-normalization d-tensor of the jet bun-
dle E. Note that the h-normalization d-tensor of J1 (T, M) is a natural generalization
of the tangent structure J from the Lagrange geometry [5].

It is obvious that any d-tensor on E is a tensor on E. The converse is not true.
As examples, we will build two tensors wich are not d-tensors. We refer to notions
of temporal and spatial sprays wich allow the generalization of the notion of time-
dependent spray used in [5], [14].

Definition 2.3. A global tensor H, expressed locally by

H = δβ
αdtα ⊗ ∂

∂tβ
− 2H

(j)
(β)αdtα ⊗ ∂

∂xj
β

,(2.2.3)

is called a temporal spray on E.

Taking into account that a temporal spray is a global tensor on E, by a direct
calculation, we deduce
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Proposition 2.4. i) The components H
(j)
(β)α of the temporal spray H transform by

the rules

2H̃
(k)
(µ)γ = 2H

(j)
(β)α

∂tα

∂t̃γ
∂x̃k

∂xj

∂tβ

∂t̃µ
− ∂tα

∂t̃γ
∂x̃k

µ

∂tα
.(2.2.4)

ii) Conversely, to give a temporal spray on E is equivalent to give a set of local
functions H =

(
H

(j)
(β)α

)
which transform by the formulas (2.2.4).

iii) The global tensor

H = Hβ
αdtα ⊗ ∂

∂tβ
− 2H

(j)
(β)αdtα ⊗ ∂

∂xj
β

is a temporal spray iff J
(j)
(β)αiH

α
γ = J

(j)
(β)γi, where J is the normalization d-tensor of

the fibre bundle E associated to an arbitrary semi-Riemannian metric h on T .

The previous proposition allows us to offer the following important example of
temporal spray. The importance of this kind of temporal spray is determined by its
using in the description of the classical harmonic maps between two Riemannian
manifolds [3].

Example 2.5. Using the transformation rules of the Christoffel symbols Hα
βγ at-

tached to a semi-Riemannian metric hαβ on T , we deduce that the components
2H

(j)
(β)α = −Hγ

αβxj
γ represent a temporal spray on E. This is called the canonical

temporal spray associated to the metric h.

Definition 2.6. A global tensor G, locally defined by

G = xi
αdtα ⊗ ∂

∂xi
− 2G

(j)
(β)αdtα ⊗ ∂

∂xj
β

,(2.2.5)

is called a spatial spray on E.

As in the case of the temporal spray, we can prove without difficulties the following
statement.

Proposition 2.7. The components G
(j)
(β)α of the spatial spray G transform by the

rules

2G̃
(k)
(µ)γ = 2G

(j)
(β)α

∂tα

∂t̃γ
∂x̃k

∂xj

∂tβ

∂t̃µ
− ∂xi

∂x̃j

∂x̃k
µ

∂xi
x̃j

γ .(2.2.6)

ii) To give a spatial spray is equivalent to give a set of local functions G =
(
G

(j)
(β)α

)

which change by the law (2.2.6).

iii) A global tensor on E, defined locally by
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G = Gi
αdtα ⊗ ∂

∂xi
− 2G

(j)
(β)αdtα ⊗ ∂

∂xj
β

,

is a spatial spray iff J
(j)
(β)αiG

i
γ = L

(j)
(β)αγ , where J (resp. L) is the normalization (resp.

Liouville) d-tensor associated to an arbitrary semi-Riemannian metric h.

Example 2.8. If γi
jk are the Christoffel symbols of the semi-Riemannian metric

ϕij on the spatial manifold M, the local coefficients 2G
(j)
(β)α = γj

klx
k
αxl

β define a spatial
spray which is called the canonical spatial spray associated to the metric ϕ. We
point out that this kind of spatial spray is also used in the description of the classical
harmonic maps between two Riemannian manifolds [3].

Definition 2.9. A pair (H,G) which consists of a temporal spray and a spatial one,
is called a multi-time spray on E.

To characterize the multi-time sprays on E and to underline again the importance
of the canonical temporal and spatial sprays attached to the metrics h and ϕ, we
prove the following theorem.

Theorem 2.10. Let (T, h), (M, ϕ) be semi-Riemannian manifolds and let H =(
H

(i)
(α)β

)
(resp. G =

(
G

(i)
(α)β

)
) be an arbitrary temporal (resp. spatial) spray on

E. In these conditions, we have

H
(i)
(α)β = −1

2
Hγ

αβxi
γ + D

(i)
(α)β ,

G
(i)
(α)β =

1
2
γi

jkxj
αxk

β + F
(i)
(α)β ,

(2.2.7)

where D
(i)
(α)β , F

(i)
(α)β are certain d-tensors on E.

Proof. The theorem comes from the following true statements:

i) An affine combination of temporal (spatial) sprays is a temporal (spatial) spray;

ii) The product between a scalar and a temporal (spatial) spray is a temporal
(spatial) spray;

iii) The difference between two temporal (spatial) sprays is a d-tensor.

In order to generalize the notion of path of a spray from Lagrangian geometry, we
fix hαβ a semi-Riemannian metric on the temporal manifold T. In this context, we
give the following definition.

Definition 2.11. A geometrical object H =
(
Hk

) (
resp. G =

(
Gk

))
is called a tem-

poral (resp. spatial) h−spray if the local components modify by the rules

2H̃k = 2Hj ∂xk

∂x̃j
− h̃γµ ∂tα

∂t̃γ
∂x̃k

µ

∂tα
,(2.2.8)

respectively

2G̃k = 2Gj ∂x̃k

∂xj
− h̃γµ ∂xi

∂x̃j

∂x̃k
µ

∂xi
x̃j

γ .(2.2.9)
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Example 2.12. Starting with H =
(
H

(i)
(α)β

)
(resp. G =

(
G

(i)
(α)β

)
) like a temporal

(resp. spatial) spray, the entity H =
(
Hi

)
(resp. G =

(
Gi

)
), where Hi = hαβH

(i)
(α)β(

resp.Gi = hαβG
(i)
(α)β

)
, represents a temporal (resp. spatial) h−spray which will be

called the h−trace of the temporal (resp. spatial) spray H (resp. G). Particularly,
the components Hk = −hαβHγ

αβxk
γ (resp. Gk = hαβγk

ijx
i
αxj

β) represent the canonical
temporal (resp. spatial) h−spray attached to the metric h (resp. ϕ).

The previous example show that the h−trace of a temporal or a spatial spray
represents a temporal or a spatial h−spray. Conversely, we prove the following result.

Theorem 2.13. If dim T = 1, any temporal (spatial) h−spray is the h−trace of a
unique temporal (spatial) spray.

Proof. Let G =
(
Gk

)
be a spatial h−spray. We denote G

(k)
(1)1 = h11G

k. Obviously,

the relation Gk = h11G
(k)
(1)1 is true. In these conditions, using the transformation rules

(2.2.9), we deduce

2G̃
(k)
(1)1 = 2G

(j)
(1)1

(
dt̃

dt

)2

− dt

dt̃

dyk

dt.

This means that G =
(
G

(k)
(1)1

)
is a spatial spray. The uniqueness is clear.

By analogy, we treat the case of the temporal h−sprays, taking Hk = h11H
(k)
(1)1,

where H
(k)
(1)1 = h11H

k.

Remark 2.14. The previous theorem shows that, in the case dim T = 1, there is a
1-1 corespondence between sprays and h−sprays while, for dim T > 2, this statement
is not true.

In the sequel, let us fixe a temporal spray H =
(
H

(i)
(α)β

)
and a spatial spray

G =
(
G

(i)
(α)β

)
on E. The following notions show that the 1-jet fibre bundle is the

natural house for important objects with geometrical and physical meaning.

Definition 2.15. A solution f ∈ C∞ (T,M) of the PDEs system of order two

xi
αβ + G

(i)
(α)β + G

(i)
(β)α + H

(i)
(α)β + H

(i)
(β)α = 0(2.2.10)

where the map f is locally expressed by (tα) → (
xi (tα)

)
and xi

αβ =
∂2xi

∂tα∂tβ
, is called

an affine map of the multi-time spray (H, G) .

A reason which offers the naturalness of the notion of an affine map of a multi-
time spray on E, is that, in the particular case T = R, the equations of the affine
maps generalize the equations of the paths of a single-time spray from the rheonomic
Lagrangian geometry [5].
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Example 2.16. Considering the canonical multi-time spray




H
(i)
(α)β = −1

2
Hγ

αβxi
γ

G
(i)
(α)β =

1
2
γi

jkxj
αxk

β ,

(2.2.11)

the equations of the affine maps of this spray reduce to

xi
αβ −Hγ

αβxi
γ + γi

jkxj
αxk

β = 0,(2.2.12)

that is, the equations whose solutions are exactly the maps f ∈ C∞ (T,M) which carry
the geodesics of (T, hαβ) into the geodesics of the space (M,ϕij) .

Taking h = (hαβ (t)) a temporal semi-Riemannian metric and doing a contraction
by hαβ in (2.2.10) we can introduce the next concept.

Definition 2.17. A map f ∈ C∞ (T, M) is called a h-traceless map of the multi-
time spray (H, G), with respect to semi-Riemannian metric h, if f is a solution
of the PDEs system of order two

hαβ
{

xi
αβ + 2G

(i)
(α)β + 2H

(i)
(α)β

}
= 0.(2.2.13)

Example 2.18. In case of Riemannian manifolds (T, h), (M, ϕ) and the canonical
multi-time spray of preceding example, we recover the classical notion of harmonic
map [3].

It is obvious that the affine map of a multi-time spray (H,G) is a h-traceless map
of the same spray with respect to any semi-Riemannian metric hαβ on the temporal
space T.

In the particular case (T, h) = (R, δ) the notions of h-traceless map and affine
map identify. Consequently, both notions naturally generalize that so-called a path of
a time-dependent spray, used in [5].

Let us denote S
(i)
(α)β = G

(i)
(α)β + H

(i)
(α)β +

1
2
Hi

αβxi
γ and Si = hαβS

(i)
(α)β . Obviously,

we deduce that S =
(
Si

)
is a spatial h−spray. In this context, we obtain without

difficulties the following result.

Theorem 2.19. The equations of the h-traceless maps of the multi-time spray (G,H) ,
with respect to the semi-Riemannian metric h, can be rewritten in the form

Œhxi + 2Si = 0,(2.2.14)

where Œhxi = hαβ
(
xi

αβ −Hγ
αβxi

γ

)
is an ultrahyperbolic differential operator.

This theorem plays a central role in the development of the generalized metrical
multi-time Lagrange theory of physical fields since the Euler-Lagrange equations of
a multi-time dependent Lagrangian L = L

√
|h|, where L : J1 (T, M) → R is a
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Kronecker h-regular Lagrange function, can be written in the form (2.14). In this sense,
the PDEs equations (2.14) are Euler-Lagrange prolongations of the PDEs equations
(2.10) . Hence, the extremals of L can be regarded as ultra-harmonic maps, offering
them a profound geometrical and physical character. For more details, see also [7],
[9].

In a furthercoming paper, we shall use the same theorem to offer a proper geomet-
rical interpretaton of solutions of PDEs, in metrical multi-time Lagrangian geometry
terms (see [11]). In this fashion, we will offer a final answer to the Udrişte-Neagu open
problem [8], [17] , whose essential physical aspects are presented in [15], [16].

3 Nonlinear connections

The form of the coordinate transformations on E = J1 (T, M) determines compli-
cated rules of transformation of the local components of diverse geometrical objects
of this space. To avoid such complications we introduce a suitable nonlinear connec-
tion which is coherent to adapted bases. These bases have the quality to simplify the
transformation rules of the components of the geometrical objects taken in study.

With a view to doing this, we take u ∈ E and consider the differential map
π∗,u : TuE → T(t,x) (T ×M) of the canonical projection π : E → T×M, π (u) = (t, x) .
At the same time, let us consider the vector subspace Vu = Kerπ∗,u ⊂ TuE. Because
the map π∗,u is a surjection, we have dimR Vu = pn, ∀u ∈ E. Moreover, a basis in Vu

is determined by
{

∂

∂xi
α

}
. In conclusion, the map

V : u ∈ E → Vu ∈ TuE(3.3.1)

is a differential distribution wich is called the vertical distribution of the 1-jet fibre
bundle E.

Definition 3.1. A nonlinear connection on E is a differential distribution

H : u ∈ E → Hu ⊂ TuE(3.3.2)

which verifies the relation

TuE = Hu ⊕ Vu, ∀u ∈ E.(3.3.3)

The distribution H is called the horizontal distribution on E.

Remark 3.2. i) The above definition implies that dimR Hu = p + n, ∀u ∈ E.

ii) The vector fields set X (E) can be decompose in the following direct sum
X (E) = Γ (H) ⊕ Γ (V) , where Γ (H) ( resp. Γ (V)) is the set of the sections on H
(resp.V) .

Now, supposing that there is a nonlinear connection H on E, we have the isomor-
phism
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π∗,u |Hu
: Hu → Tπ(u) (T ×M) ,(3.3.4)

which allows us to prove the following

Theorem 3.3. i) There exist the unique horizontal vector fields
δ

δtα
,

δ

δxi
∈ Γ (H) ,

linearly independent, having the properties

π∗

(
δ

δtα

)
=

∂

∂tα
, π∗

(
δ

δxi

)
=

∂

∂xi
.(3.3.5)

ii) The vector fields
δ

δtα
and

δ

δxi
can be uniquely written in the form





δ

δtα
=

∂

∂tα
−M

(j)
(β)α

∂

∂xj
β

δ

δxi
=

∂

∂xi
−N

(j)
(β)i

∂

∂xj
β

.

.(3.3.6)

iii) The components M
(j)
(β)α and N

(j)
(β)i modify by the rules





M̃
(j)
(β)µ

∂t̃µ

∂tα
= M

(k)
(γ)α

∂x̃j

∂xk

∂tγ

∂t̃β
− ∂x̃j

β

∂tα

Ñ
(j)
(β)k

∂x̃k

∂xi
= N

(k)
(γ)i

∂x̃j

∂xk

∂tγ

∂t̃β
− ∂x̃j

β

∂xi
.

(3.3.7)

iv) To give a nonlinear connection H on E is equivalent to give a set of local functions
Γ =

(
M

(j)
(β)α, N

(j)
(β)i

)
which transform by (3.3.7).

Example 3.4. Studying the transformation rules of the local components

M
(j)
(β)α = −Hγ

αβxj
γ ,

N
(j)
(β)i = γj

ikxk
β,

(3.3.8)

we conclude that Γ0 =
(
M

(j)
(β)α, N

(j)
(β)i

)
represents a nonlinear connection on E,

which is called the canonical nonlinear connection attached to the semi-
Riemannian metrics hαβ and ϕij .

Let us consider the 1-forms δxi
α = dxi

α +M
(i)
(α)βdtβ +N

(i)
(α)jdxj . One easily deduces

that the set of 1-forms
{
dtα, dxi, δxi

α

}
is a basis in the set of 1-forms.

Definition 3.5. The basis of vector fields
{

δ

δtα
,

δ

δxi
,

∂

∂xi
α

}
⊂ X (E) and its dual

basis of 1-forms
{
dtα, dxi, δxi

α

} ⊂ X ∗ (E) are called the adapted bases on E, de-
termined by the nonlinear connection Γ.
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The big advantage of the adapted bases is that the transformation laws of their
elements are simple and natural ones.

Proposition 3.6. The transformation laws of the elements of the adapted bases
attached to the nonlinear connection Γ are

δ

δtα
=

∂t̃β

∂tα
δ

δt̃β
,

δ

δxi
=

∂x̃j

∂xi

δ

δx̃j
,

∂

∂xi
α

=
∂x̃j

∂xi

∂tα

∂t̃β
∂

∂x̃j
β

,

(3.3.9)

dtα =
∂tα

∂t̃β
dt̃β ,

dxi =
∂xi

∂x̃j
dx̃j ,

δxi
α =

∂xi

∂x̃j

∂t̃β

∂tα
δx̃j

β .

(3.3.10)

The simple transformation rules (3.9) and (3.10) determine us to describe the
objects with geometrical and physical meaning from the subsequent generalized met-
rical multi-time Lagrange theory of physical fields [7], [9], in adapted components. In
a such prospect, we emphasize that, using adpted bases of nonlinear connection Γ,

a d-tensor D =
(
D

αi(j)(µ)...
γk(β)(l)...

)
on E can be regarded as a global geometrical object,

locally defined by

D = D
αi(j)(µ)...
γk(β)(l)...

δ

δtα
⊗ δ

δxi
⊗ ∂

∂xj
β

⊗ dtγ ⊗ dxk ⊗ δxl
µ ⊗ ....(3.3.11)

The utilization of certain indices between parenthesis in the description of the local
components of d-tensor D is suitable for contractions. To illustrate this fact,we con-
sider, for example, the local components of the metrical d-tensor (2.2). These define
the geometrical object

G = G
(α)(β)
(i)(j) δxi

α ⊗ δxj
β(3.3.12)

On the other hand, considering the local components of the h-normalization d-tensor
J

(i)
(α)βj , we obtain the representative object

J = J
(i)
(α)βj

δ

δxi
α

⊗ dtβ ⊗ dxj .(3.3.13)
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Finally, let us study the relation between multi-time sprays and nonlinear connec-
tions. In this context, the components M

(j)
(β)α (resp. N

(j)
(β)i) of the nonlinear connection

Γ are called the temporal (resp. spatial ) nonlinear connection. In this terminology,
using the transformation formulas (2.2.4), (2.2.6) and (3.3.7) we can easily prove the
following statements.

Theorem 3.7. i) If M
(i)
(α)β are the components of a temporal nonlinear connection,

then the components

H
(i)
(α)β =

1
2
M

(i)
(α)β(3.3.14)

represent a temporal spray.

ii) Conversely, if H
(i)
(α)β are the components of a temporal spray, then

M
(i)
(α)β = 2H

(i)
(α)β(3.3.15)

are the components of a temporal nonlinear connection.

Theorem 3.8. i) If G
(i)
(α)β are the components of a spatial spray and Gi = hαβG

(i)
(α)β

represent the h−trace of this spray, then the components

N
(i)
(α)j =

∂Gi

∂xj
γ

hγα(3.3.16)

represent a spatial nonlinear connection.

ii) Conversely, the spatial nonlinear connection N
(i)
(α)j induces the spatial spray

2G
(i)
(α)β = N

(i)
(α)jx

j
β .(3.3.17)

The previous theorems allow us to conclude that a multi-time spray (H, G) induces
naturaly a nonlinear connection Γ on E, which is called the canonical nonlinear
connection associated to the multi-time dependent spray (H, G). We point
out that the canonical nonlinear connection Γ attached to the multi-time dependent
spray (H,G) is a natural generalization of the canonical nonlinear connection N in-
duced by a time-dependent spray G from the classical rheonomic Lagrangian geometry
[5].

4 Jet prolongation of vector fields

A general vector field X∗ on J1 (T, M) can be written under the form

X∗ = Xα ∂

∂tα
+ Xi ∂

∂xi
+ X

(i)
(α)

∂

∂xi
α

,
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where the componets Xα, Xi, X
(i)
(α) are functions of

(
tα, xi, xi

α

)
.

The prolongation of a vector field X on T ×M to a vector field on the 1-jet bundle
J1 (T,M) was solved by Olver [12] in the following sense.

Definition 4.1. Let X be a vector field on T × M with corresponding (local) one-
parameter group exp(εX). The 1-th prolongation of X, denoted by pr(1)X, will
be a vector field on the 1-jet space J1 (T, M) , and is defined to be the infinitesimal
generator of the corresponding prolonged one-parameter group pr(1) [exp (εX)] , i.e.

[
pr(1)X

] (
tα, xi, xi

α

)
=

d

dε

∣∣∣∣
ε=0

pr(1) [exp (εX)]
(
tα, xi, xi

α

)
.

In order to write the components of the prolongation, Olver used the α-th total
derivative Dα of an arbitrary function f

(
tα, xi

)
on T ×M, which is defined by the

relation

Dαf =
∂f

∂tα
+

∂f

∂xi
xi

α

.

Thus, starting with X = Xα (t, x)
∂

∂tα
+Xi (t, x)

∂

∂ xi
like a vector field on T×M,

Olver introduced the 1-th prolongation of X as the vector field

pr(1)X = X + X
(i
(α)

(
tβ , xi, xi

β

) ∂

∂xi
α

,

where

X
(i)
(α) = DαXi − (

DαXβ
)
xi

β =
∂Xi

∂tα
+

∂Xi

∂xj
xj

α −
(

∂Xβ

∂tα
+

∂Xβ

∂xj
xj

α

)
xi

β .

If we assume that is given a nonlinear connection Γ =
(
M

(i)
(α)β , N

(i)
(α)j

)
on

J1 (T,M) , then the α-th total derivative used by Olver can be written as

Dαf =
δf

δtα
+

δf

δxi
xi

α,

and, consequently, Dαf represent the local components of a distinguished 1-form on
J1 (T ×M) , wich is expressed by Df = (Dαf) dtα. Now, let there be given a vector
field X on T×M . From a geometrical point of view, we can define a 1-jet prolongation
of X as the horizontal lift XH of X. This is defined by

XH = Xα δ

δtα
+ Xi δ

δxi
= X −

(
M

(j)
(β)αXα + N

(j)
(β)iX

i
) ∂

∂xj
β

.
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Open problem

Study the prolongations of vectors, 1-forms, tensors, G-structures from the basis
manifold T ×M to the manifold J1 (T, M) .
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[11] M. Neagu, C. Udrişte, From PDEs Systems and Metrics to Geometric Multi-time
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