On the Chern-type problem in Kähler geometry

Yong-Soo Pyo and Kyoung-Hwa Shin

Abstract

The purpose of this paper is to investigate the Chern-type problem on Kähler geometry. That is, we study some properties concerning the distribution of the value of the squared norm of the second fundamental form on a complex submanifold of a complex projective space.

Mathematics Subject Classification: 53C50, 53C55.
Key words: Kähler manifold, Chern-type problem, second fundamental form, holomorphic sectional curvature, totally real bisectional curvature, totally geodesic.

1 Introduction

The theory of Kähler submanifolds is one of fruitful fields in Riemannian geometry and we have many studies $[1],[2],[7],[8]$ and $[10]$ etc. One of them is the complex geometric version of Chern's problem concerning the distribution of the value of the squared norm h_{2} of the second fundamental form on M. In his paper [11], Tanno tackled this problem and verified the following theorem.

Theorem A. Let $M=M^{n}$ be an n-dimensional compact Kähler submanifold of an $(n+p)$-dimensional Kähler manifold $M^{\prime}=M^{n+p}(c)$ of constant holomorphic sectional curvature $c(>0)$. Then M is totally geodesic, $h_{2}=c(n+2) / 6$ or $h_{2}(x)>$ $c(n+2) / 6$ at a point x in M.

In this paper, we assert the following theorem.
Theorem. Let $M=M^{n}$ be an $n(\geq 3)$-dimensional complete complex submanifold of an $(n+p)$-dimensional Kähler manifold $M^{\prime}=M^{n+p}(c)$ of constant holomorphic sectional curvature $c(>0)$. If the squared norm h_{2} of the second fundamental form on M satisfies

$$
h_{2}<\frac{c}{12\left(n^{2}-1\right)}\left(n^{2}-4\right)
$$

then M is totally geodesic.

[^0]
2 Kähler manifolds

This section is concerned with reviewing basic formulas on Kähler manifolds. Let M be a complex $n(\geq 2)$-dimensional Kähler manifold equipped with Kähler metric tensor g and almost complex structure J. We can choose a local field

$$
\left\{E_{\alpha}\right\}=\left\{E_{j}, E_{j^{*}}\right\}=\left\{E_{1}, \cdots, E_{n}, E_{1^{*}}, \cdots, E_{n^{*}}\right\}
$$

of orthonormal frames on a neighborhood of M, where $E_{j^{*}}=J E_{j}$ and $j^{*}=n+j$. Here and in the sequel, the Latin small indices i, j, \cdots run from 1 to n and the small Greek indices α, β, \cdots run from 1 to $2 n=n^{*}$. We set

$$
U_{j}=\frac{1}{\sqrt{2}}\left(E_{j}-i E_{j^{*}}\right), \quad \bar{U}_{j}=\frac{1}{\sqrt{2}}\left(E_{j}+i E_{j^{*}}\right)
$$

where i denotes the imaginary unit. Then $\left\{U_{j}\right\}$ constitutes a local field of unitary frames on the neighborhood of M. With respect to the Kähler metric, we have

$$
g\left(U_{j}, \bar{U}_{k}\right)=\delta_{j k}
$$

Now let $\left\{\omega_{j}\right\}$ be the canonical form with respect to the local field $\left\{U_{j}\right\}$ of unitary frames on the neighborhood of M. Then $\left\{\omega_{j}\right\}=\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ consists of complex valued 1-forms of type $(1,0)$ on M such that $\omega_{j}\left(U_{k}\right)=\delta_{j k}$ and $\omega_{1}, \cdots, \omega_{n}, \bar{\omega}_{1}, \cdots, \bar{\omega}_{n}$ are linearly independent. The Kähler metric g of M can be expressed as

$$
g=2 \sum_{j} \omega_{j} \otimes \bar{\omega}_{j} .
$$

Associated with the frame field $\left\{U_{j}\right\}$, there exist complex-valued 1-forms $\omega_{j k}$, which are usually called complex connection forms on M such that they satisfy the structure equations of M

$$
\begin{aligned}
& d \omega_{i}+\sum_{k} \omega_{i k} \wedge \omega_{k}=0, \quad \omega_{i j}+\bar{\omega}_{j i}=0, \\
& d \omega_{i j}+\sum_{k} \omega_{i k} \wedge \omega_{k j}=\Omega_{i j}, \\
& \Omega_{i j}=\sum_{k} K_{\bar{i} j k \bar{l}} \omega_{k} \wedge \bar{\omega}_{l},
\end{aligned}
$$

where $\Omega_{i j}$ (resp. $K_{\bar{i} j k \bar{l}}$) the curvature form (resp. the components of the Riemannian curvature tensor R) of M. ¿From the structure equations, the components of the curvature tensor satisfy

$$
\begin{aligned}
K_{\bar{i} j k \bar{l}} & =\bar{K}_{\bar{j} i l \bar{k}} \\
K_{\bar{i} j k \bar{l}} & =K_{\bar{i} k j \bar{l}}=K_{\bar{l} j k \bar{i}}=K_{\bar{l} k j \bar{i}}
\end{aligned}
$$

For a local field $\left\{E_{\alpha}\right\}=\left\{E_{j}, E_{j^{*}}\right\}=\left\{E_{1}, \cdots, E_{n}, E_{1^{*}}, \cdots, E_{n^{*}}\right\}$ of orthonormal frame on a neighborhood of M, we denote by $R_{\alpha \beta \gamma \delta}$ the components of the Riemannian curvature tensor R. Then we have

On the Chern-type problem in Kähler geometry

$$
K_{\bar{i} j k \bar{l}}=-\left\{\left(R_{i j k l}+R_{i^{*} j k^{*} l}\right)+i\left(R_{i^{*} j k l}-R_{i j k^{*} l}\right)\right\}
$$

Relative to the frame field chosen above, the Ricci tensor S of M can be expressed as follows:

$$
S=\sum_{i, j}\left(S_{i \bar{j}} \omega_{i} \otimes \bar{\omega}_{j}+S_{\bar{i} j} \bar{\omega}_{i} \otimes \omega_{j}\right)
$$

where $S_{i \bar{j}}=\sum_{k} K_{\bar{k} k i \bar{j}}=S_{\bar{j} i}=\bar{S}_{\bar{i} j}$. The scalar curvature r of M is also given by

$$
r=2 \sum_{j} S_{j \bar{j}}
$$

An n-dimensional Kähler manifold M is said to be Einstein, if the Ricci tensor S satisfies the condition

$$
S_{i \bar{j}}=\frac{r}{2 n} \delta_{i j}
$$

The components $K_{\bar{i} j k \bar{l} m}$ and $K_{\bar{i} j k \bar{l} \bar{m}}$ (resp. $S_{i \bar{j} k}$ and $S_{i \bar{j} \bar{k}}$) of the covariant derivative of the Riemannian curvature tensor R (resp. the Ricci tensor S) are given by

$$
\begin{aligned}
& \sum_{m}\left(K_{\bar{i} j k \bar{l} m} \omega_{m}+K_{\bar{i} j k \bar{l} \bar{m}} \bar{\omega}_{m}\right)=d K_{\bar{i} j k \bar{l}} \\
& \quad-\sum_{m}\left(K_{\bar{m} j k \bar{l}} \bar{\omega}_{m i}+K_{\bar{i} m k \bar{l}} \omega_{m j}+K_{\bar{i} j m \bar{l}} \omega_{m k}+K_{\bar{i} j k \bar{m}} \bar{\omega}_{m l}\right) \\
& \quad \sum_{k}\left(S_{i \bar{j} k} \omega_{k}+S_{i \bar{j} \bar{k}} \bar{\omega}_{k}\right)=d S_{i \bar{j}}-\sum_{k}\left(S_{k \bar{j}} \omega_{k i}+S_{i \bar{k}} \bar{\omega}_{k j}\right)
\end{aligned}
$$

The second Bianchi identity is given as follows :

$$
K_{\bar{i} j k \bar{l} m}=K_{\bar{i} j m \bar{l} k}
$$

And hence we have

$$
S_{i \bar{j} k}=S_{k \bar{j} i}=\sum_{m} K_{\bar{j} i k \bar{m} m}
$$

A Kähler manifold of constant holomorphic sectional curvature is called a complex space form. The components $K_{\bar{i} j k \bar{l}}$ of the Riemannian curvature tensor R of an n dimensional complex space form of constant holomorphic sectional curvature c is given by

$$
K_{\bar{i} j k \bar{l}}=\frac{c}{2}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}\right) .
$$

3 Complex submanifolds

This section is reviewed complex submanifolds of a Kähler manifold. First of all, the basic formulas for the theory of complex submanifolds are prepared.

Let $M^{\prime}=M^{n+p}$ be an $(n+p)$-dimensional Kähler manifold with Kähler structure $\left(g^{\prime}, J^{\prime}\right)$. Let M be an n-dimensional complex submanifold of M^{\prime} and g the induced Kähler metric tensor on M from g^{\prime}. We can choose a local field

$$
\left\{U_{A}\right\}=\left\{U_{i}, U_{x}\right\}=\left\{U_{1}, \cdots, U_{n+p}\right\}
$$

of unitary frames on a neighborhood of M^{\prime} in such a way that, restricted to M, U_{1}, \cdots, U_{n} are tangent to M and the others are normal to M. Here and in the sequel, the following convention on the range of indices is used throughout this paper, unless otherwise stated :

$$
\begin{aligned}
& A, B, \cdots=1, \cdots, n, n+1, \cdots, n+p \\
& i, j, \cdots=1, \cdots, n \\
& x, y, \cdots=n+1, \cdots, n+p
\end{aligned}
$$

With respect to the frame field, let $\left\{\omega_{A}\right\}=\left\{\omega_{i}, \omega_{x}\right\}$ be its dual frame fields. Then the Kähler metric tensor g^{\prime} of M^{\prime} is given by

$$
g^{\prime}=2 \sum_{A} \omega_{A} \otimes \bar{\omega}_{A}
$$

The canonical forms ω_{A}, the connection forms $\omega_{A B}$ of the ambient space M^{\prime} satisfy the structure equations

$$
\begin{align*}
& d \omega_{A}+\sum_{C} \varepsilon_{C} \omega_{A C} \wedge \omega_{C}=0, \quad \omega_{A B}+\bar{\omega}_{B A}=0 \\
& d \omega_{A B}+\sum_{C} \omega_{A C} \wedge \omega_{C B}=\Omega_{A B}^{\prime} \tag{3.1}\\
& \Omega_{A B}^{\prime}=\sum_{C, D} K_{\bar{A} B C \bar{D}}^{\prime} \omega_{C} \wedge \bar{\omega}_{D}
\end{align*}
$$

where $\Omega_{A B}^{\prime}$ (resp. $K_{\bar{A} B C \bar{D}}^{\prime}$) denotes the curvature form (resp. the components of the Riemannian curvature tensor R^{\prime}) of M^{\prime}. Restricting these forms to the submanifold M, we have

$$
\begin{equation*}
\omega_{x}=0 \tag{3.2}
\end{equation*}
$$

and the induced Kähler metric tensor g of M is given by

$$
g=2 \sum_{j} \omega_{j} \otimes \bar{\omega}_{j}
$$

Then $\left\{U_{j}\right\}$ is a local unitary frame field with respect to the induced metric and $\left\{\omega_{j}\right\}$ is a local dual frame filed due to $\left\{U_{j}\right\}$, which consists of complex-valued 1-forms of type $(1,0)$ on M. Moreover, $\omega_{1}, \cdots, \omega_{n}, \bar{\omega}_{1}, \cdots, \bar{\omega}_{n}$ are linearly independent, and $\left\{\omega_{j}\right\}$ is the canonical forms on M. It follows from (3.2) and Cartan's lemma that the exterior derivatives of (3.2) give rise to

$$
\begin{equation*}
\omega_{x i}=\sum_{j} h_{i j}^{x} \omega_{j}, \quad h_{i j}^{x}=h_{j i}^{x} \tag{3.3}
\end{equation*}
$$

The quadratic form

$$
\alpha=\sum_{i, j, x} h_{i j}^{x} \omega_{i} \otimes \omega_{j} \otimes U_{x}
$$

with values in the normal bundle on M in M^{\prime} is called the second fundamental form on the submanifold M. ¿From the structure equations for M^{\prime}, it follows that the structure equations for M are similarly given by

$$
\begin{align*}
& d \omega_{i}+\sum_{k} \omega_{i k} \wedge \omega_{k}=0, \quad \omega_{i j}+\bar{\omega}_{j i}=0, \\
& d \omega_{i j}+\sum_{k} \omega_{i k} \wedge \omega_{k}=\Omega_{i j}, \tag{3.4}\\
& \Omega_{i j}=\sum_{k, l} K_{\bar{i} j k l} \omega_{k} \wedge \bar{\omega}_{l} .
\end{align*}
$$

For the Riemannian curvature tensors R and R^{\prime} of M and M^{\prime}, respectively, it follows from (3.1), (3.3) and (3.4) that

$$
\begin{equation*}
K_{\bar{i} j k \bar{l}}=K_{\bar{i} j k \bar{l}}^{\prime}-\sum_{x} h_{j k}^{x} \bar{h}_{i l}^{x} . \tag{3.5}
\end{equation*}
$$

The components $S_{i \bar{j}}$ of the Ricci tensor S and the scalar curvature r on M are given by

$$
\begin{align*}
& S_{i \bar{j}}=\sum_{k} K_{\bar{k} k i \bar{j}}^{\prime}-h_{i \bar{j}}^{2} \tag{3.6}\\
& r=2\left(\sum_{j, k} K_{\bar{k} k j \bar{j}}^{\prime}-h_{2}\right), \tag{3.7}
\end{align*}
$$

where $h_{i \bar{j}}{ }^{2}={h_{\bar{j} i}^{-}}^{2}=\sum_{m, x} h_{i m}^{x} \bar{h}_{m j}^{x}$ and $h_{2}=\sum_{j} h_{j \bar{j}}{ }^{2}$.
Now the components $h_{i j k}^{x}$ and $h_{i j \bar{k}}^{x}$ of the covariant derivative of the second fundamental form on M are given by

$$
\begin{aligned}
& \sum_{k}\left(h_{i j k}^{x} \omega_{k}+h_{i j \bar{k}}^{x} \bar{\omega}_{k}\right) \\
& \quad=d h_{i j}^{x}-\sum_{k}\left(h_{j k}^{x} \omega_{k i}+h_{i k}^{x} \omega_{k j}\right)+\sum_{y} h_{i j}^{y} \omega_{x y}
\end{aligned}
$$

Then, substituting $d h_{i j}^{x}$ in this definition into the exterior derivative

$$
d \omega_{x i}=\sum_{j}\left(d h_{i j}^{x} \wedge \omega_{j}+h_{i j}^{x} d \omega_{j}\right)
$$

of (3.3) and using (3.1) $\sim(3.4)$ and (3.6), we have

$$
h_{i j k}^{x}=h_{i k j}^{x}, \quad h_{i j \bar{k}}^{x}=-K_{\bar{x} i j \bar{k}}^{\prime}
$$

In particular, let the ambient space $M^{\prime}=M^{n+p}(c)$ be an $(n+p)$-dimensional complex space form of constant holomorphic sectional curvature c. Then, by (3.5) \sim (3.7), we get

$$
\begin{equation*}
K_{\bar{i} j k \bar{l}}=\frac{c}{2}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}\right)-\sum_{x} h_{j k}^{x} \bar{h}_{i l}^{x} \tag{3.8}
\end{equation*}
$$

$$
\begin{align*}
S_{i \bar{j}} & =\frac{c}{2}(n+1) \delta_{i j}-h_{i \bar{j}}^{2} \tag{3.9}\\
r & =c n(n+1)-2 h_{2} \tag{3.10}
\end{align*}
$$

Finally, let $M^{\prime}=M^{n+p}$ be an $(n+p)$-dimensional Kähler manifold and let M be an n-dimensional complex submanifold of M^{\prime}. Then the Laplacian Δh_{2} of the squared norm h_{2} of the second fundamental form α on M is given by Aiyama, Kwon and Nakagawa [1] as follows :

$$
\begin{equation*}
\Delta h_{2}=2\|\nabla \alpha\|_{2}+c(n+2) h_{2}-4 h_{4}-2 \operatorname{Tr} A^{2} \tag{3.11}
\end{equation*}
$$

where $h_{4}=\sum_{i, j} h_{i \bar{j}}^{2} h_{j \bar{i}}^{2}$ and A is a Hermitian matrix of order p with entry $A_{y}^{x}=$ $\sum_{i, j} h_{i j}^{x} \bar{h}_{i j}^{y}$.

4 Proof of Theorem

First, we are concerned with the totally real bisectional curvature of a Kähler manifold. Let (M, g) be an n-dimensional Kähler manifold with almost complex structure J. In their paper [3], Bishop and Goldberg introduced the notion for totally real bisectional curvature $B(X, Y)$ on a Kähler manifold.

A plane section P in the tangent space $T_{p} M$ at any point p in M is said to be totally real or anti-holomorphic if P is orthogonal to $J P$. For an orthonormal basis $\{X, Y\}$ of the totally real plane section P, any vectors $X, J X, Y$ and $J Y$ are mutually orthogonal. It implies that for orthogonal vectors X and Y in P, it is totally real if and only if two holomorphic plane sections spanned by $X, J X$ and $Y, J Y$ are orthogonal. Houh [5] showed that an $n(\geq 3)$-dimensional Kähler manifold has constant totally real bisectional curvature c if and only if it has constant holomorphic sectional curvature $2 c$. On the other hand, Goldberg and Kobayashi [4] introduced the notion of holomorphic bisectional curvature $H(X, Y)$ which is determined by two holomorphic planes $\operatorname{Span}\{X, J X\}$ and $\operatorname{Span}\{Y, J Y\}$, and asserted that the complex projective space $C P^{n}(c)$ is the only compact Kähler manifold with positive holomorphic bisectional curvature and constant scalar curvature. If we compare the notion of $B(X, Y)$ with the holomorphic bisectional curvature $H(X, Y)$ and the holomorphic sectional curvature $H(X)$, then the holomorphic bisectional curvature $H(X, Y)$ turns out to be totally real bisectional curvature $B(X, Y)$ (resp. holomorphic sectional curvature $H(X)$), when two holomorphic planes $\operatorname{Span}\{X, J X\}$ and $\operatorname{Span}\{Y, J Y\}$ are orthogonal to each other (resp. coincides with each other). From this, it follows that the positiveness of $B(X, Y)$ is weaker than the positiveness of $H(X, Y)$, because $H(X, Y)>0$ implies that both of $B(X, Y)$ and $H(X)$ are positive but we do know whether or not $B(X, Y)>0$ implies $H(X, Y)>0$.

Definition 4.1. For a totally real plane section P spanned by orthonormal vectors X and Y, the totally real bisectional curvature $B(X, Y)$ is defined by

$$
\begin{equation*}
B(X, Y)=g(R(X, J X) J Y, Y) \tag{4.12}
\end{equation*}
$$

Then, using the first Bianchi identity to (4.12) and the fundamental properties of the Riemannian curvature tensor of Kähler manifolds, we get

$$
\begin{align*}
B(X, Y) & =g(R(X, Y) Y, X)+g(R(X, J Y) J Y, X) \\
& =K(X, Y)+K(X, J Y) \tag{4.13}
\end{align*}
$$

where $K(X, Y)$ is the sectional curvature of the plane spanned by X and Y.
In the rest of this section, we suppose that X and Y are orthonormal vectors in a non-degenerate totally real plane section. If we put

$$
X^{\prime}=\frac{1}{\sqrt{2}}(X+Y), \quad Y^{\prime}=\frac{1}{\sqrt{2}}(X-Y)
$$

then it is easily seen that

$$
g\left(X^{\prime}, X^{\prime}\right)=g\left(Y^{\prime}, Y^{\prime}\right)=1, \quad g\left(X^{\prime}, Y^{\prime}\right)=0
$$

Thus we get

$$
\begin{aligned}
B\left(X^{\prime}, Y^{\prime}\right) & =g\left(R\left(X^{\prime}, J X^{\prime}\right) J Y^{\prime}, Y^{\prime}\right) \\
& =\frac{1}{4}\{H(X)+H(Y)+2 B(X, Y)-4 K(X, J Y)\}
\end{aligned}
$$

where $H(X)=K(X, J X)$ means the holomorphic sectional curvature of the holomorphic plane spanned by X and $J X$. Hence we have

$$
\begin{equation*}
4 B\left(X^{\prime}, Y^{\prime}\right)-2 B(X, Y)=H(X)+H(Y)-4 K(X, J Y) \tag{4.14}
\end{equation*}
$$

If we put

$$
X^{\prime \prime}=\frac{1}{\sqrt{2}}(X+J Y), \quad Y^{\prime \prime}=\frac{1}{\sqrt{2}}(J X+Y)
$$

then we get

$$
g\left(X^{\prime \prime}, X^{\prime \prime}\right)=g\left(Y^{\prime \prime}, Y^{\prime \prime}\right)=1, \quad g\left(X^{\prime \prime}, Y^{\prime \prime}\right)=0
$$

Using the similar method as in (4.14), we have

$$
\begin{equation*}
4 B\left(X^{\prime \prime}, Y^{\prime \prime}\right)-2 B(X, Y)=H(X)+H(Y)-4 K(X, Y) \tag{4.15}
\end{equation*}
$$

Summing up (4.14) and (4.15) and taking account of (4.13), we obtain

$$
\begin{equation*}
2 B\left(X^{\prime}, Y^{\prime}\right)+2 B\left(X^{\prime \prime}, Y^{\prime \prime}\right)=H(X)+H(Y) \tag{4.16}
\end{equation*}
$$

Now we calculate here the totally real bisectional curvatures of a Kähler manifold. Let $M=M^{n}$ be an $n(\geq 3)$-dimensional complex submanifold of an $(n+p)$-dimensional Kähler manifold $M^{\prime}=M^{n+p}(c)$ of constant holomorphic sectional curvature c. Assume that the totally real bisectional curvatures on M is bounded from below (resp. above) by a constant a (resp. b), and let $a(M)$ and $b(M)$ be the infimum and the supremum of the set $B(M)$ of the totally real bisectional curvatures on M, respectively. By definition, we see

$$
a \leq a(M)(\text { resp. } b \geq b(M))
$$

¿From (4.16), we have

$$
\begin{equation*}
H(X)+H(Y) \geq 4 a(\text { resp. } \leq 4 b) \tag{4.17}
\end{equation*}
$$

For an orthonormal frame field $\left\{E_{1}, \cdots, E_{n}\right\}$ on a neighborhood of M, the holomorphic sectional curvature $H\left(E_{j}\right)$ of the holomorphic plane spanned by E_{j} can be expressed as

$$
H\left(E_{j}\right)=g\left(R\left(E_{j}, J E_{j}\right) J E_{j}, E_{j}\right)=R_{j j^{*} j^{*} j}=K_{\bar{j} j j \bar{j}}
$$

On the other hand, it is easily seen that the plane sections $\operatorname{Span}\left\{E_{j}, J E_{j}\right\}$, and $\operatorname{Span}\left\{E_{k}, J E_{k}\right\}, j \neq k$, are orthogonal and the totally real bisectional curvature $B\left(E_{j}, E_{k}\right)$ is given by

$$
B\left(E_{j}, E_{k}\right)=g\left(R\left(E_{j}, J E_{j}\right) J E_{k}, E_{k}\right)=K_{\bar{j} j k \bar{k}}, \quad j \neq k
$$

¿From the inequality (4.17) for $X=E_{j}$ and $Y=E_{k}$, we have

$$
\begin{equation*}
K_{\bar{j} j j \bar{j}}+K_{\bar{k} k k \bar{k}} \geq 4 a(\text { resp. } \leq 4 b), \quad j \neq k . \tag{4.18}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\sum_{j<k}\left(K_{\bar{j} j j \bar{j}}+K_{\bar{k} k k \bar{k}}\right) \geq 2 a n(n-1)(\text { resp. } \leq 2 b n(n-1)) \tag{4.19}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\sum_{j} K_{\bar{j} j j \bar{j}} \geq 2 a n(\text { resp. } \leq 2 b n) \tag{4.20}
\end{equation*}
$$

where the equality holds if and only if

$$
K_{\bar{j} j j \bar{j}}=2 a(\text { resp. }=2 b)
$$

for any index j.
Since the scalar curvature r is given by

$$
r=2 \sum_{j, k} K_{\bar{j} j k \bar{k}}=2\left(\sum_{j} K_{\bar{j} j j \bar{j}}+\sum_{j \neq k} K_{\bar{j} j k \bar{k}}\right),
$$

we have by (4.19)

$$
r \geq 2 \sum_{j} K_{\bar{j} j j \bar{j}}+2 a n(n-1)\left(\text { resp. } \leq 2 \sum_{j} K_{\bar{j} j j \bar{j}}+2 b n(n-1)\right)
$$

from which it follows that

$$
\begin{equation*}
\sum_{j} K_{\bar{j} j j \bar{j}} \leq \frac{r}{2}-\operatorname{an}(n-1)\left(\text { resp. } \geq \frac{r}{2}-b n(n-1)\right) \tag{4.21}
\end{equation*}
$$

where the equality holds if and only if

$$
K_{\bar{j} j k \bar{k}}=a(\text { resp. }=b)
$$

for any distinct indices j and k. In this case, M is locally congruent to $M^{n}(a)\left(\right.$ resp. $\left.M^{n}(b)\right)$ due to Houh [5]. Also (4.18) gives us

$$
\sum_{k(\neq j)}\left(K_{\bar{j} j j \bar{j}}+K_{\bar{k} k k \bar{k}}\right) \geq 4 a(n-1)(\text { resp. } \leq 4 b(n-1))
$$

for each j, so that

$$
(n-2) K_{\bar{j} j j \bar{j}}+\sum_{k} K_{\bar{k} k k \bar{k}} \geq 4 a(n-1)(\text { resp. } \leq 4 b(n-1)) .
$$

¿From this inequality together with (4.21), it follows that

$$
\begin{align*}
(n-2) K_{\bar{j} j j \bar{j}} & \geq a(n-1)(n+4)-\frac{r}{2} \tag{4.22}\\
(\text { resp. } & \left.\leq b(n-1)(n+4)-\frac{r}{2}\right)
\end{align*}
$$

for any index j, so that the holomorphic sectional curvature $K_{\bar{j} j j \bar{j}}$ is bounded from below (resp. above) for $n \geq 3$. Moreover, the equality holds for some index j if and only if M is locally congruent to $M^{n}(2 a)\left(\right.$ resp. $\left.M^{n}(2 b)\right)$.

Since the Ricci curvature $S_{j \bar{j}}$ is given by

$$
S_{j \bar{j}}=K_{\bar{j} j j \bar{j}}+\sum_{j(\neq k)} K_{\bar{j} j k \bar{k}},
$$

we have by the assumption

$$
S_{j \bar{j}} \geq K_{\bar{j} j j \bar{j}}+a(n-1)\left(\text { resp. } \leq K_{\bar{j} j j \bar{j}}+b(n-1)\right),
$$

and hence by (4.22), we have

$$
\begin{align*}
S_{j \bar{j}} & \geq \frac{1}{2(n-2)}\{4 a(n-1)(n+1)-r\} \tag{4.23}\\
(\text { resp. } & \left.\leq \frac{1}{2(n-2)}\{4 b(n-1)(n+1)-r\}\right) .
\end{align*}
$$

On the other hand, using (4.23), we get

$$
\begin{aligned}
r & \geq 2 S_{j \bar{j}}+\frac{1}{n-2}(n-1)\{4 a(n-1)(n+1)-r\} \\
(\text { resp. } & \left.\leq 2 S_{j \bar{j}}+\frac{1}{n-2}(n-1)\{4 b(n-1)(n+1)-r\}\right),
\end{aligned}
$$

and hence we have

$$
\begin{align*}
S_{j \bar{j}} & \leq \frac{1}{2(n-2)}\left\{(2 n-3) r-4 a(n-1)^{2}(n+1)\right\} \tag{4.24}\\
(\text { resp. } & \left.\geq \frac{1}{2(n-2)}\left\{(2 n-3) r-4 b(n-1)^{2}(n+1)\right\}\right) .
\end{align*}
$$

In connection with Theorem A, we can verify the following theorem
Theorem 4.1. Let $M=M^{n}$ be an $n(\geq 3)$-dimensional complete complex submanifold of an $(n+p)$-dimensional Kähler manifold $M^{\prime}=M^{n+p}(c)$ of constant holomorphic sectional curvature $c(>0)$. If the squared norm h_{2} of the second fundamental form on M satisfies

$$
h_{2}<\frac{c}{12 n\left(n^{2}-1\right)}\left(n^{2}-4\right),
$$

then M is totally geodesic.
Proof. Since two matrices $H=\left(h_{j \bar{k}}^{2}\right)$ and $A=\left(A_{y}^{x}\right)$ are both positive Hermitian ones, the eigenvalues λ_{j} of H and the eigenvalues λ_{x} of A are non-negative real valued functions on M. Thus it is easily seen that

$$
\begin{align*}
& \sum_{j} \lambda_{j}=\operatorname{Tr} H=h_{2}, \quad \sum_{x} \lambda_{x}=\operatorname{Tr} A=h_{2} \\
& {h_{2}}^{2} \geq h_{4}=\sum_{j}{\lambda_{j}}^{2} \geq \frac{1}{n}{h_{2}}^{2} \tag{4.25}\\
& {h_{2}}^{2} \geq \operatorname{Tr} A^{2}=\sum_{x} \lambda_{x}^{2} \geq \frac{1}{p}{h_{2}}^{2}
\end{align*}
$$

where the second equality in the second relationship holds if and only if all eigenvalues of the matrix H are equal, and the second equality in the last relationship holds if and only if all eigenvalues of the matrix A are equal. It means that each equality holds if and only if the rank of matrices H and A are at most one. By (3.11), we have

$$
\Delta h_{2} \geq c(n+2) h_{2}-4 h_{4}-2 \operatorname{Tr} A^{2}
$$

where the equality holds if and only if the second fundamental form α on M is parallel. Together the above inequality with the properties about eigenvalues (4.25), it follows that

$$
\Delta h_{2} \geq c(n+2) h_{2}-6 h_{2}^{2}
$$

where the equality holds if and only if the second fundamental form on M is parallel and the rank of the matrices H and A are at most one. A non-negative function f is defined by h_{2}. Then the above inequality is reduced to

$$
\begin{equation*}
\Delta f \geq-6 f^{2}+c(n+2) f \tag{4.26}
\end{equation*}
$$

where the equality holds if and only if the second fundamental form on M is parallel and the rank of the matrices H and A are at most one. By (4.21), we have

$$
\sum_{j} K_{\bar{j} j j \bar{j}} \leq \frac{r}{2}-n(n-1) a(M)
$$

Hence we have by (4.20) and (3.10)

$$
2 n a(M) \leq \frac{1}{2}\left\{c n(n+1)-2 h_{2}\right\}-n(n-1) a(M)
$$

This yields that

$$
\begin{equation*}
f=\sum_{j} \lambda_{j}=h_{2} \leq \frac{1}{2}\{c-2 a(M)\} n(n+1), \quad \lambda_{j} \geq 0 \tag{4.27}
\end{equation*}
$$

where the first equality holds if and only if $K_{\bar{j} j j \bar{j}}=2 a(M)$ and $K_{\bar{j} j k \bar{k}}=a(M)$ for any indices $j \neq k$. This means that $a(M)$ is bounded from above by definition, which implies that each eigenvalue λ_{j} is bounded. Since the Ricci curvature $S_{j \bar{j}}$ of M is given by (3.9) as

$$
S_{j \bar{j}}=\frac{c}{2}(n+1)-\lambda_{j},
$$

it is also bounded. So, we can apply the generalized maximum principle due to Omori [9] and Yau [12] to the bounded function f, and we see that for any sequence $\left\{\varepsilon_{m}\right\}$ of positive numbers which converges to 0 as m tends to infinity, there exists a point sequence $\left\{p_{m}\right\}$ such that

$$
\left\|\nabla f\left(p_{m}\right)\right\|<\varepsilon_{m}, \quad \Delta f\left(p_{m}\right)<\varepsilon_{m}, \quad \sup f-\varepsilon_{m}<f\left(p_{m}\right)
$$

Thus, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \Delta f\left(p_{m}\right) \leq \lim _{m \rightarrow \infty} \varepsilon_{m}=0, \quad \lim _{m \rightarrow \infty} f\left(p_{m}\right)=\sup f \tag{4.28}
\end{equation*}
$$

By (4.26) and (4.28), we see

$$
\sup f\left\{\sup f-\frac{c}{6}(n+2)\right\} \geq 0
$$

which means that

$$
\sup f=0 \quad \text { or } \quad \sup f \geq \frac{c}{6}(n+2)
$$

If $\sup f=0$, then f vanishes identically on M because f is non-negative. Then M is totally geodesic.

Suppose that M is not totally geodesic. So, f satisfies

$$
\sup f \geq \frac{c}{6}(n+2) .
$$

On the other hand, we have by (4.27)

$$
\sup f \leq \frac{1}{2}\{c-2 a(M)\} n(n+1)
$$

Thus, we see that

$$
a(M) \leq \frac{c}{6 n(n+1)}\left(3 n^{2}+2 n-2\right) .
$$

We denote the right hand side of the above inequality by a_{2}, which is the constant depending only on the dimension n of M and the constant holomorphic sectional curvature c of the ambient space. Then, it is seen that the infimum $a(M)$ of the totally real bisectional curvatures of M satisfies $a(M) \leq a_{2}$ for the constant

$$
a_{2}=\frac{c}{6 n(n+1)}\left(3 n^{2}+2 n-2\right) .
$$

By (3.10), (4.22) and (4.24), we see

$$
K_{\bar{j} j k \bar{k}} \geq \frac{1}{n-2}\left\{c n\left(n^{2}-1\right)-2(n-1) h_{2}-\left(2 n^{3}-3 n+2\right) b(M)\right\}
$$

for any distinct indices j and k. By the definition of $a(M)$, we get

$$
a(M) \geq \frac{1}{n-2}\left\{c n\left(n^{2}-1\right)-2(n-1) h_{2}-\left(2 n^{3}-3 n+2\right) b(M)\right\}
$$

On the other hand, by (3.8), it is seen that

$$
K_{\bar{j} j k \bar{k}}=\frac{c}{2}-\sum_{x} h_{j k}^{x} \bar{h}_{j k}^{x} \leq \frac{c}{2}
$$

for any distinct indices j and k, and hence it turns out to be $b(M) \leq c / 2$, where the equality holds if and only if $h_{j k}^{x}=0$ for any distinct indices j and k. Hence we have

$$
h_{2} \geq \frac{1}{4(n-1)}\{c-2 a(M)\}(n-2) .
$$

Since $a(M) \leq a_{2}$, we get

$$
h_{2} \geq \frac{c}{12 n\left(n^{2}-1\right)}\left(n^{2}-4\right) .
$$

It completes the proof.

Remark 4.1. In Theorem 4.1, we shall remark M is not necessarily compact. Furthermore, on one hand, the theorem means that the zero point in the value distribution of h_{2} is discrete. but on the other, Theorem A has no information about it.

Acknowledgment. This paper has been partially supported by the Pukyong National University Research Grant (2004).

References

[1] R. Aiyama, J.-H. Kwon and H. Nakagawa, Complex submanifolds of an indefinite complex space form, J. Ramanujan Math. Soc. 1 (1987), 43-67.
[2] M. Barros and A. Romero, Indefinite Kähler manifolds, Math. Ann. 261 (1982), 55-62.
[3] R. L. Bishop and S. I. Goldberg, Some implications of the generalized GaussBonnet theorem, Trans. Amer. Math. Soc. 112 (1964), 508-535.
[4] S. 1. Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Differential Geom. 1 (1967), 225-233.
[5] B. S. Houh, On totally real bisectional curvatures, Proc. Amer. Math. Soc. 56 (1976), 261-263.
[6] S. Kobayashi and K. Nomizu, Foundation of differential geometry, I and II, Interscience Publishers, 1963 and 1969.
[7] K. Ogiue, Positively curved complex submanifolds immersed in a complex projective space, I and II, J. Differential Geom. 7 (1972), 603-606 and Hokkaido Math. J. 1 (1972), 16-20.
[8] K. Ogiue, Differential geometry of Kaehler manifolds, Advances in Math. 13 (1974), 73-114.
[9] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.
[10] A. Ros, Kaehler submanifolds in the complex projective space, Lecture notes in Math. 1209, Springer Berlin, 1986, 259-274.
[11] S. Tanno, Compact complex submanifolds immersed in complex projective spaces, J. Differential Geom. 8 (1973), 629-641.
[12] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math. 28 (1975), 201-228.

Yong-Soo Pyo
Division of Mathematical Sciences
Pukyong National University
Pusan 608-737, Korea
E-mail: yspyo@pknu.ac.kr
Kyoung-Hwa Shin
Division of Mathematical Sciences
Pukyong National University
Pusan 608-737, Korea
E-mail: skh8655@hanmail.net

[^0]: Balkan Journal of Geometry and Its Applications, Vol.10, No.2, 2005, pp. 93-105.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2005.

