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Abstract

The purpose of this paper is to investigate the Chern-type problem on Kähler
geometry. That is, we study some properties concerning the distribution of the
value of the squared norm of the second fundamental form on a complex sub-
manifold of a complex projective space.
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1 Introduction

The theory of Kähler submanifolds is one of fruitful fields in Riemannian geometry
and we have many studies [1], [2], [7], [8] and [10] etc. One of them is the complex
geometric version of Chern’s problem concerning the distribution of the value of the
squared norm h2 of the second fundamental form on M . In his paper [11], Tanno
tackled this problem and verified the following theorem.

Theorem A. Let M = Mn be an n-dimensional compact Kähler submanifold
of an (n + p)-dimensional Kähler manifold M ′ = Mn+p(c) of constant holomorphic
sectional curvature c(> 0). Then M is totally geodesic, h2 = c(n + 2)/6 or h2(x) >
c(n + 2)/6 at a point x in M .

In this paper, we assert the following theorem.

Theorem. Let M = Mn be an n(≥ 3)-dimensional complete complex submanifold
of an (n + p)-dimensional Kähler manifold M ′ = Mn+p(c) of constant holomorphic
sectional curvature c(> 0). If the squared norm h2 of the second fundamental form on
M satisfies

h2 <
c

12(n2 − 1)
(n2 − 4),

then M is totally geodesic.
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2 Kähler manifolds

This section is concerned with reviewing basic formulas on Kähler manifolds. Let
M be a complex n(≥ 2)-dimensional Kähler manifold equipped with Kähler metric
tensor g and almost complex structure J . We can choose a local field

{Eα} = {Ej , Ej∗} = {E1, · · · , En, E1∗ , · · · , En∗}
of orthonormal frames on a neighborhood of M , where Ej∗ = JEj and j∗ = n + j.
Here and in the sequel, the Latin small indices i, j, · · · run from 1 to n and the small
Greek indices α, β, · · · run from 1 to 2n = n∗. We set

Uj =
1√
2
(Ej − iEj∗), U j =

1√
2
(Ej + iEj∗),

where i denotes the imaginary unit. Then {Uj} constitutes a local field of unitary
frames on the neighborhood of M. With respect to the Kähler metric, we have

g(Uj , Uk) = δjk.

Now let {ωj} be the canonical form with respect to the local field {Uj} of unitary
frames on the neighborhood of M . Then {ωj} = {ω1, · · · , ωn} consists of complex
valued 1-forms of type (1,0) on M such that ωj(Uk) = δjk and ω1, · · · , ωn, ω̄1, · · · , ω̄n

are linearly independent. The Kähler metric g of M can be expressed as

g = 2
∑

j

ωj ⊗ ω̄j .

Associated with the frame field {Uj}, there exist complex-valued 1-forms ωjk, which
are usually called complex connection forms on M such that they satisfy the structure
equations of M

dωi +
∑

k

ωik ∧ ωk = 0, ωij + ω̄ji = 0,

dωij +
∑

k

ωik ∧ ωkj = Ωij ,

Ωij =
∑

k

Kījkl̄ ωk ∧ ω̄l,

where Ωij (resp. Kījkl̄) the curvature form (resp. the components of the Riemannian
curvature tensor R) of M . ¿From the structure equations, the components of the
curvature tensor satisfy

Kījkl̄ = K j̄ilk̄,

Kījkl̄ = Kīkjl̄ = Kl̄jkī = Kl̄kjī.

For a local field {Eα} = {Ej , Ej∗} = {E1, · · · , En, E1∗ , · · · , En∗} of orthonormal
frame on a neighborhood of M , we denote by Rαβγδ the components of the Rie-
mannian curvature tensor R. Then we have
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Kījkl̄ = −{(Rijkl + Ri∗jk∗l) + i(Ri∗jkl −Rijk∗l)}.

Relative to the frame field chosen above, the Ricci tensor S of M can be expressed as
follows :

S =
∑

i,j

(Sij̄ωi ⊗ ω̄j + Sījω̄i ⊗ ωj),

where Sij̄ =
∑

k Kk̄kij̄ = Sj̄i = S̄īj. The scalar curvature r of M is also given by

r = 2
∑

j

Sjj̄ .

An n-dimensional Kähler manifold M is said to be Einstein, if the Ricci tensor S
satisfies the condition

Sij̄ =
r

2n
δij .

The components Kījkl̄m and Kījkl̄m̄ (resp. Sij̄k and Sij̄k̄) of the covariant derivative
of the Riemannian curvature tensor R (resp. the Ricci tensor S) are given by

∑
m

(Kījkl̄mωm + Kījkl̄m̄ω̄m) = dKījkl̄

−
∑
m

(Km̄jkl̄ω̄mi + Kīmkl̄ωmj + Kījml̄ωmk + Kījkm̄ω̄ml),

∑

k

(Sij̄kωk + Sij̄k̄ω̄k) = dSij̄ −
∑

k

(Skj̄ωki + Sik̄ω̄kj).

The second Bianchi identity is given as follows :

Kījkl̄m = Kījml̄k.

And hence we have
Sij̄k = Skj̄i =

∑
m

Kj̄ikm̄m.

A Kähler manifold of constant holomorphic sectional curvature is called a complex
space form. The components Kījkl̄ of the Riemannian curvature tensor R of an n-
dimensional complex space form of constant holomorphic sectional curvature c is
given by

Kījkl̄ =
c

2
(δijδkl + δikδjl).

3 Complex submanifolds

This section is reviewed complex submanifolds of a Kähler manifold. First of all, the
basic formulas for the theory of complex submanifolds are prepared.

Let M ′ = Mn+p be an (n+p)-dimensional Kähler manifold with Kähler structure
(g′, J ′). Let M be an n-dimensional complex submanifold of M ′ and g the induced
Kähler metric tensor on M from g′. We can choose a local field
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{UA} = {Ui, Ux} = {U1, · · · , Un+p}

of unitary frames on a neighborhood of M ′ in such a way that, restricted to M,
U1, · · · , Un are tangent to M and the others are normal to M . Here and in the sequel,
the following convention on the range of indices is used throughout this paper, unless
otherwise stated :

A, B, · · · = 1, · · · , n, n + 1, · · · , n + p,

i, j, · · · = 1, · · · , n,

x, y, · · · = n + 1, · · · , n + p.

With respect to the frame field, let {ωA} = {ωi, ωx} be its dual frame fields. Then
the Kähler metric tensor g′ of M ′ is given by

g′ = 2
∑

A

ωA ⊗ ω̄A.

The canonical forms ωA, the connection forms ωAB of the ambient space M ′ satisfy
the structure equations

dωA +
∑

C

εCωAC ∧ ωC = 0, ωAB + ω̄BA = 0,

dωAB +
∑

C

ωAC ∧ ωCB = Ω′AB ,(3.1)

Ω′AB =
∑

C,D

K ′̄
ABCD̄ωC ∧ ω̄D,

where Ω′AB (resp. K ′̄
ABCD̄

) denotes the curvature form (resp. the components of the
Riemannian curvature tensor R′) of M ′. Restricting these forms to the submanifold
M , we have

ωx = 0,(3.2)

and the induced Kähler metric tensor g of M is given by

g = 2
∑

j

ωj ⊗ ω̄j .

Then {Uj} is a local unitary frame field with respect to the induced metric and {ωj} is
a local dual frame filed due to {Uj}, which consists of complex-valued 1-forms of type
(1,0) on M . Moreover, ω1, · · · , ωn, ω̄1, · · · , ω̄n are linearly independent, and {ωj} is
the canonical forms on M . It follows from (3.2) and Cartan’s lemma that the exterior
derivatives of (3.2) give rise to

ωxi =
∑

j

hx
ijωj , hx

ij = hx
ji.(3.3)

The quadratic form
α =

∑

i,j,x

hx
ijωi ⊗ ωj ⊗ Ux
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with values in the normal bundle on M in M ′ is called the second fundamental form
on the submanifold M . ¿From the structure equations for M ′, it follows that the
structure equations for M are similarly given by

dωi +
∑

k

ωik ∧ ωk = 0, ωij + ω̄ji = 0,

dωij +
∑

k

ωik ∧ ωk = Ωij ,(3.4)

Ωij =
∑

k,l

Kījkl̄ωk ∧ ω̄l.

For the Riemannian curvature tensors R and R′ of M and M ′, respectively, it
follows from (3.1), (3.3) and (3.4) that

Kījkl̄ = K ′̄
ijkl̄ −

∑
x

hx
jkh̄x

il.(3.5)

The components Sij̄ of the Ricci tensor S and the scalar curvature r on M are given
by

Sij̄ =
∑

k

K ′̄
kkij̄ − hij̄

2,(3.6)

r = 2
(∑

j,k

K ′̄
kkjj̄ − h2

)
,(3.7)

where hij̄
2 = hj̄i

2 =
∑

m,x hx
imh̄x

mj and h2 =
∑

j hjj̄
2.

Now the components hx
ijk and hx

ijk̄
of the covariant derivative of the second fun-

damental form on M are given by
∑

k

(hx
ijkωk + hx

ijk̄ω̄k)

= dhx
ij −

∑

k

(hx
jkωki + hx

ikωkj) +
∑

y

hy
ijωxy.

Then, substituting dhx
ij in this definition into the exterior derivative

dωxi =
∑

j

(dhx
ij ∧ ωj + hx

ijdωj)

of (3.3) and using (3.1) ∼ (3.4) and (3.6), we have

hx
ijk = hx

ikj , hx
ijk̄ = −K ′

x̄ijk̄.

In particular, let the ambient space M ′ = Mn+p(c) be an (n + p)-dimensional
complex space form of constant holomorphic sectional curvature c. Then, by (3.5) ∼
(3.7), we get

Kījkl̄ =
c

2
(δijδkl + δikδjl)−

∑
x

hx
jkh̄x

il,(3.8)
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Sij̄ =
c

2
(n + 1)δij − hij̄

2,(3.9)

r = cn(n + 1)− 2h2,(3.10)

Finally, let M ′ = Mn+p be an (n + p)-dimensional Kähler manifold and let M
be an n-dimensional complex submanifold of M ′. Then the Laplacian ∆h2 of the
squared norm h2 of the second fundamental form α on M is given by Aiyama, Kwon
and Nakagawa [1] as follows :

∆h2 = 2‖∇α‖2 + c(n + 2)h2 − 4h4 − 2Tr A2,(3.11)

where h4 =
∑

i,j hij̄
2hjī

2 and A is a Hermitian matrix of order p with entry Ax
y =∑

i,j hx
ij h̄

y
ij .

4 Proof of Theorem

First, we are concerned with the totally real bisectional curvature of a Kähler mani-
fold. Let (M, g) be an n-dimensional Kähler manifold with almost complex structure
J. In their paper [3], Bishop and Goldberg introduced the notion for totally real
bisectional curvature B(X, Y ) on a Kähler manifold.

A plane section P in the tangent space TpM at any point p in M is said to be
totally real or anti-holomorphic if P is orthogonal to JP. For an orthonormal basis
{X, Y } of the totally real plane section P, any vectors X,JX, Y and JY are mutually
orthogonal. It implies that for orthogonal vectors X and Y in P, it is totally real
if and only if two holomorphic plane sections spanned by X, JX and Y, JY are or-
thogonal. Houh [5] showed that an n(≥ 3)-dimensional Kähler manifold has constant
totally real bisectional curvature c if and only if it has constant holomorphic sectional
curvature 2c. On the other hand, Goldberg and Kobayashi [4] introduced the notion
of holomorphic bisectional curvature H(X,Y ) which is determined by two holomor-
phic planes Span{X,JX} and Span{Y, JY }, and asserted that the complex projective
space CPn(c) is the only compact Kähler manifold with positive holomorphic bisec-
tional curvature and constant scalar curvature. If we compare the notion of B(X, Y )
with the holomorphic bisectional curvature H(X, Y ) and the holomorphic sectional
curvature H(X), then the holomorphic bisectional curvature H(X, Y ) turns out to
be totally real bisectional curvature B(X,Y ) (resp. holomorphic sectional curvature
H(X)), when two holomorphic planes Span{X,JX} and Span{Y, JY } are orthogonal
to each other (resp. coincides with each other). From this, it follows that the positive-
ness of B(X,Y ) is weaker than the positiveness of H(X,Y ), because H(X,Y ) > 0
implies that both of B(X,Y ) and H(X) are positive but we do know whether or not
B(X, Y ) > 0 implies H(X, Y ) > 0.

Definition 4.1. For a totally real plane section P spanned by orthonormal vectors
X and Y , the totally real bisectional curvature B(X, Y ) is defined by

B(X,Y ) = g(R(X,JX)JY, Y ).(4.12)

Then, using the first Bianchi identity to (4.12) and the fundamental properties of the
Riemannian curvature tensor of Kähler manifolds, we get
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B(X,Y ) = g(R(X, Y )Y, X) + g(R(X, JY )JY,X)
= K(X, Y ) + K(X, JY ),(4.13)

where K(X, Y ) is the sectional curvature of the plane spanned by X and Y.

In the rest of this section, we suppose that X and Y are orthonormal vectors in a
non-degenerate totally real plane section. If we put

X ′ =
1√
2
(X + Y ), Y ′ =

1√
2
(X − Y ),

then it is easily seen that

g(X ′, X ′) = g(Y ′, Y ′) = 1, g(X ′, Y ′) = 0.

Thus we get

B(X ′, Y ′) = g(R(X ′, JX ′)JY ′, Y ′)

=
1
4
{H(X) + H(Y ) + 2B(X,Y )− 4K(X, JY )},

where H(X) = K(X,JX) means the holomorphic sectional curvature of the holo-
morphic plane spanned by X and JX. Hence we have

4B(X ′, Y ′)− 2B(X,Y ) = H(X) + H(Y )− 4K(X, JY ).(4.14)

If we put

X ′′ =
1√
2
(X + JY ), Y ′′ =

1√
2
(JX + Y ),

then we get
g(X ′′, X ′′) = g(Y ′′, Y ′′) = 1, g(X ′′, Y ′′) = 0.

Using the similar method as in (4.14), we have

4B(X ′′, Y ′′)− 2B(X, Y ) = H(X) + H(Y )− 4K(X, Y ).(4.15)

Summing up (4.14) and (4.15) and taking account of (4.13), we obtain

2B(X ′, Y ′) + 2B(X ′′, Y ′′) = H(X) + H(Y ).(4.16)

Now we calculate here the totally real bisectional curvatures of a Kähler manifold.
Let M = Mn be an n(≥ 3)-dimensional complex submanifold of an (n+p)-dimensional
Kähler manifold M ′ = Mn+p(c) of constant holomorphic sectional curvature c. As-
sume that the totally real bisectional curvatures on M is bounded from below (resp.
above) by a constant a (resp. b), and let a(M) and b(M) be the infimum and the supre-
mum of the set B(M) of the totally real bisectional curvatures on M, respectively.
By definition, we see

a ≤ a(M) (resp. b ≥ b(M)).

¿From (4.16), we have
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H(X) + H(Y ) ≥ 4a (resp. ≤ 4b).(4.17)

For an orthonormal frame field {E1, · · · , En} on a neighborhood of M , the holo-
morphic sectional curvature H(Ej) of the holomorphic plane spanned by Ej can be
expressed as

H(Ej) = g(R(Ej , JEj)JEj , Ej) = Rjj∗j∗j = Kj̄jjj̄ .

On the other hand, it is easily seen that the plane sections Span{Ej , JEj}, and
Span{Ek, JEk}, j 6= k, are orthogonal and the totally real bisectional curvature
B(Ej , Ek) is given by

B(Ej , Ek) = g(R(Ej , JEj)JEk, Ek) = Kj̄jkk̄, j 6= k.

¿From the inequality (4.17) for X = Ej and Y = Ek, we have

Kj̄jjj̄ + Kk̄kkk̄ ≥ 4a (resp. ≤ 4b), j 6= k.(4.18)

Thus we have
∑

j<k

(Kj̄jjj̄ + Kk̄kkk̄) ≥ 2an(n− 1) (resp. ≤ 2bn(n− 1)),(4.19)

which implies that ∑

j

Kj̄jjj̄ ≥ 2an (resp. ≤ 2bn),(4.20)

where the equality holds if and only if

Kj̄jjj̄ = 2a (resp. = 2b)

for any index j.

Since the scalar curvature r is given by

r = 2
∑

j,k

Kj̄jkk̄ = 2
(∑

j

Kj̄jjj̄ +
∑

j 6=k

Kj̄jkk̄

)
,

we have by (4.19)

r ≥ 2
∑

j

Kj̄jjj̄ + 2an(n− 1)
(
resp. ≤ 2

∑

j

Kj̄jjj̄ + 2bn(n− 1)
)
,

from which it follows that
∑

j

Kj̄jjj̄ ≤
r

2
− an(n− 1)

(
resp. ≥ r

2
− bn(n− 1)

)
,(4.21)

where the equality holds if and only if

Kj̄jkk̄ = a (resp. = b)
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for any distinct indices j and k. In this case, M is locally congruent to Mn(a) (resp. Mn(b))
due to Houh [5]. Also (4.18) gives us

∑

k(6=j)

(Kj̄jjj̄ + Kk̄kkk̄) ≥ 4a(n− 1) (resp. ≤ 4b(n− 1))

for each j, so that

(n− 2)Kj̄jjj̄ +
∑

k

Kk̄kkk̄ ≥ 4a(n− 1) (resp. ≤ 4b(n− 1)).

¿From this inequality together with (4.21), it follows that

(n− 2)Kj̄jjj̄ ≥ a(n− 1)(n + 4)− r

2
(4.22)

(
resp. ≤ b(n− 1)(n + 4)− r

2

)

for any index j, so that the holomorphic sectional curvature Kj̄jjj̄ is bounded from
below (resp. above) for n ≥ 3. Moreover, the equality holds for some index j if and
only if M is locally congruent to Mn(2a) (resp. Mn(2b)).

Since the Ricci curvature Sjj̄ is given by

Sjj̄ = Kj̄jjj̄ +
∑

j( 6=k)

Kj̄jkk̄,

we have by the assumption

Sjj̄ ≥ Kj̄jjj̄ + a(n− 1) (resp. ≤ Kj̄jjj̄ + b(n− 1)),

and hence by (4.22), we have

Sjj̄ ≥ 1
2(n− 2)

{4a(n− 1)(n + 1)− r}(4.23)

(
resp. ≤ 1

2(n− 2)
{4b(n− 1)(n + 1)− r}

)
.

On the other hand, using (4.23), we get

r ≥ 2Sjj̄ +
1

n− 2
(n− 1){4a(n− 1)(n + 1)− r}

(
resp. ≤ 2Sjj̄ +

1
n− 2

(n− 1){4b(n− 1)(n + 1)− r}
)
,

and hence we have

Sjj̄ ≤ 1
2(n− 2)

{(2n− 3)r − 4a(n− 1)2(n + 1)}(4.24)

(
resp. ≥ 1

2(n− 2)
{(2n− 3)r − 4b(n− 1)2(n + 1)}

)
.
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In connection with Theorem A, we can verify the following theorem

Theorem 4.1. Let M = Mn be an n(≥ 3)-dimensional complete complex sub-
manifold of an (n + p)-dimensional Kähler manifold M ′ = Mn+p(c) of constant holo-
morphic sectional curvature c(> 0). If the squared norm h2 of the second fundamental
form on M satisfies

h2 <
c

12n(n2 − 1)
(n2 − 4),

then M is totally geodesic.

Proof. Since two matrices H = (hjk̄
2) and A = (Ax

y) are both positive Hermitian
ones, the eigenvalues λj of H and the eigenvalues λx of A are non-negative real valued
functions on M . Thus it is easily seen that

∑

j

λj = Tr H = h2,
∑

x

λx = Tr A = h2,

h2
2 ≥ h4 =

∑

j

λj
2 ≥ 1

n
h2

2,(4.25)

h2
2 ≥ Tr A2 =

∑
x

λx
2 ≥ 1

p
h2

2,

where the second equality in the second relationship holds if and only if all eigenvalues
of the matrix H are equal, and the second equality in the last relationship holds if and
only if all eigenvalues of the matrix A are equal. It means that each equality holds if
and only if the rank of matrices H and A are at most one. By (3.11), we have

∆h2 ≥ c(n + 2)h2 − 4h4 − 2Tr A2,

where the equality holds if and only if the second fundamental form α on M is parallel.
Together the above inequality with the properties about eigenvalues (4.25), it follows
that

∆h2 ≥ c(n + 2)h2 − 6h2
2,

where the equality holds if and only if the second fundamental form on M is parallel
and the rank of the matrices H and A are at most one. A non-negative function f is
defined by h2. Then the above inequality is reduced to

∆f ≥ −6f2 + c(n + 2)f,(4.26)

where the equality holds if and only if the second fundamental form on M is parallel
and the rank of the matrices H and A are at most one. By (4.21), we have

∑

j

Kj̄jjj̄ ≤
r

2
− n(n− 1)a(M).

Hence we have by (4.20) and (3.10)

2na(M) ≤ 1
2
{cn(n + 1)− 2h2} − n(n− 1)a(M).

This yields that
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f =
∑

j

λj = h2 ≤ 1
2
{c− 2a(M)}n(n + 1), λj ≥ 0,(4.27)

where the first equality holds if and only if Kj̄jjj̄ = 2a(M) and Kj̄jkk̄ = a(M) for
any indices j 6= k. This means that a(M) is bounded from above by definition, which
implies that each eigenvalue λj is bounded. Since the Ricci curvature Sjj̄ of M is
given by (3.9) as

Sjj̄ =
c

2
(n + 1)− λj ,

it is also bounded. So, we can apply the generalized maximum principle due to Omori
[9] and Yau [12] to the bounded function f , and we see that for any sequence {εm}
of positive numbers which converges to 0 as m tends to infinity, there exists a point
sequence {pm} such that

‖∇f(pm)‖ < εm, ∆f(pm) < εm, sup f − εm < f(pm).

Thus, we have

lim
m→∞

∆f(pm) ≤ lim
m→∞

εm = 0, lim
m→∞

f(pm) = sup f.(4.28)

By (4.26) and (4.28), we see

sup f {sup f − c

6
(n + 2)} ≥ 0,

which means that
sup f = 0 or sup f ≥ c

6
(n + 2).

If sup f = 0, then f vanishes identically on M because f is non-negative. Then M is
totally geodesic.

Suppose that M is not totally geodesic. So, f satisfies

sup f ≥ c

6
(n + 2).

On the other hand, we have by (4.27)

sup f ≤ 1
2
{c− 2a(M)}n(n + 1).

Thus, we see that
a(M) ≤ c

6n(n + 1)
(3n2 + 2n− 2).

We denote the right hand side of the above inequality by a2, which is the constant
depending only on the dimension n of M and the constant holomorphic sectional
curvature c of the ambient space. Then, it is seen that the infimum a(M) of the
totally real bisectional curvatures of M satisfies a(M) ≤ a2 for the constant

a2 =
c

6n(n + 1)
(3n2 + 2n− 2).

By (3.10), (4.22) and (4.24), we see
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Kj̄jkk̄ ≥
1

n− 2
{cn(n2 − 1)− 2(n− 1)h2 − (2n3 − 3n + 2)b(M)}

for any distinct indices j and k. By the definition of a(M), we get

a(M) ≥ 1
n− 2

{cn(n2 − 1)− 2(n− 1)h2 − (2n3 − 3n + 2)b(M)}.

On the other hand, by (3.8), it is seen that

Kj̄jkk̄ =
c

2
−

∑
x

hx
jkh̄x

jk ≤
c

2

for any distinct indices j and k, and hence it turns out to be b(M) ≤ c/2, where the
equality holds if and only if hx

jk = 0 for any distinct indices j and k. Hence we have

h2 ≥ 1
4(n− 1)

{c− 2a(M)}(n− 2).

Since a(M) ≤ a2, we get

h2 ≥ c

12n(n2 − 1)
(n2 − 4).

It completes the proof.

Remark 4.1. In Theorem 4.1, we shall remark M is not necessarily compact.
Furthermore, on one hand, the theorem means that the zero point in the value dis-
tribution of h2 is discrete. but on the other, Theorem A has no information about
it.
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