Natural tensor fields of type (0,2) on the tangent
and cotangent bundles of a Fedosov manifold

José Araujo and Guillermo Keilhauer

Abstract. To any (0,2)-tensor field on the tangent and cotangent bundles
of a Fedosov manifold, we associate a global matrix function ‘mutatis
mutandis’ as in the semi-Riemannian case. Based on this fact, natural
(0,2)-tensor fields on these bundles are defined and characterized.
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1 Introduction

Let M be a manifold of dimension 2n, w € Q?(M) a non-degenerate closed 2—form
on M and V a free of torsion linear connection compatible with w; i.e., Xw(Y,Z) =
w(VxY,Z) +w(Y,VxZ) for any vector fields on M, XY, Z € X(M).

The triple (M,w, V) is called a Fedosov manifold. For a detailed study of these
manifolds we refer to [3]. Fedosov manifolds constitute a natural generalization of
Kahler manifolds. In fact, let <,> be a semi-Riemannian metric on M with Levi-
Civita connection V and J an almost complex structure on M which satisfies
< J(X),J(Y) >=< XY > and J(VxY) = VxJY for any X,Y € X(M); ie.,
(M, <,>,J) is a Kahler manifold.

By defining w(X,Y) =< J(X),Y >, it follows that (M,w, V) is a Fedosov mani-
fold.

In contrast, there are Fedosov manifolds which do not admit Ké&hler structure
([2)-

In [1], we lifted to suitable bundles (0,2)-tensor fields defined on tangent and
cotangent bundles over manifolds endowed with semi-Riemannian metrics so as to
look at them as global matrix functions. These matrix representations allowed us
to define and classify natural (0,2)-tensor fields with respect to semi-Riemannian
metrics. The main result that lets us characterize these tensor fields is Theorem 2.1 of
[1]. In this paper, the main result is Theorem 2.1. We apply this result to characterize
natural (0,2)-tensor fields on tangent (Proposition 3.1) and cotangent (Proposition
4.1) bundles over Fedosov manifolds.

Throughout, all geometric objects are assumed to be differentiable, i.e. C'*°.
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2 The main result

For any integer n > 1, let S = (s;;) € R?"*2?" be the matrix

0 | I
5= (=)

where I,, € R™*" is the unit matrix. Hence,
—1 ifi—j=n
8i5 = 1 ifj—i=n
0 otherwise
Let G = S,(2n) be the real symplectic group ; i.e., a € G if and only if a.S.a* = S.
Theorem 2.1. Let A : R?* — R2"X2" be g differentiable map which satisfies
A(z) = a.A(z.a).a'
for any a € G and x € R?™. Then, there exist a, 3 € R such that
A(x) = a.S + B.(x.9)".(z.9)
where y'y = (y;;) € R*"*®" is the matriz defined by vi; = vi-y;, if y = (Y1,.--,Y2n)-
We will prove this theorem using the following two results

Proposition 2.2. If z,y € R?" are non-zero vectors, there exists a € G such that
Yy = z.0.

Proof. Let eq,..., ez, € R?™ be the canonical basis. We need only to check the case
when x = e;.

It is well known (see [4]) that there exists a symplectic basis vy, ..., v, of R?";
ie.,
(2.2.1) 0 SV = 54 , 1<4,5<2n

such that v; = y.
Let us define a € GL(2n,R) by e;.a = v; if 1 < @ < 2n, hence from (2.2.1) it
follows that a € G. O

Proposition 2.3. Let G; be the stabilizer of ey in G; i.e., G = {a € G/e1.a = e1}.
The centralizer Z of Gi in R?™"*?" s the set

Z ={a.lo, + B.€ .61/, B € R}
Proof. Let 0 € Z. Hence, for any a € G; we have
(2.2.2) a.c =o.a

Let D C GL(2n,R) be the set of diagonal matrices d = (d;;) such that d1; = 1 and
d(n+i)(n+i) = di_il for 1 <7< n.
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Let S be the set of matrices a € R2**?" such that

_(I,]0
“= s | I,
where s € R™*™ is s symmetric matrix.
Clearly D C G; and S C G;. Writing o € Z in the block form

(515)

g =

04 | O3

where o; € R"*™ 1 < i < 4, condition (2.2.2) applied to any a € S implies that
o9 = 0 and o1 = 03 = a.I, for some a € R.

Now, condition (2.2.2) applied to any a € D implies that o4 = (a,;) satisfies
a;; =0 if (i,7) # (1,1). Writing 8 = a1, one gets

(2.2.3) o =a.ly + B.e, e

Conversely, if o is of the form (2.2.3), it is clear that o € Z if and only if e!,, ,.e; € Z.
Let a € Gy, then

aceh.e1 = a(er.9)".e1 =a.Sele; = —a.Sel.eq
= —S(aYlel.e; = —S(er.a7 )t

= —Selei =€l e1=¢l 1.0
[
Proof of Theorem 2.1. Let A : R?® — R2"%2n he a differentiable function satisfying
(2.2.4) A(z) = a.A(z.a).a

for any a € G and z € R?",
Let 2 € R?" be a non zero vector. According to Proposition 2.2, there exists b € G
such that x.b = eq; hence,

(2.2.5) A(z) = b.A(er).bt

Equality (2.2.4) applied to any a € G; implies that A(e;) = a.A(e1).a’. Since a.S.a® =
S, it follows that a' = S~1.a71.S; and consequently

(2.2.6) Aler).S7 a=a.Ae).57!

Equality (2.2.6) shows that A(e;).S~! € Z; hence, by Proposition 2.3, there exist
a, 3 € R such that A(e;).S7! = a.lo, + ﬁ.eftﬂ.el; or, equivalently

(2.2.7) Aler) = a.S + B.€ly,1.€1.5
Since €1.5 = e,41, from (2.2.5) and (2.2.6) one gets

A(x) = b(a.S+pB.el1.€1.9).b" =ab.Sb + B.bel .50
a.S + B.b(e1.S) .e1.b71.b.5.b

a.S + [.b.St.el.e; b8

.S+ Bler.b=t.S) e b8
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Since x.b = ey, it follows that
(2.2.8) A(z) = a.8 + B.(z.8)".(x.9)

Continuity of A implies that (2.2.8) holds for any z € R?".

3 Natural (0,2)-tensor fields on tangent bundles

Let (M,w,V) be a Fedosov manifold of dimension 2n and 7 : TM — M be the
tangent bundle over M.
If £L(M) denotes the frame bundle over M, let

S(M) ={(p,w1,...,u2n) € LIM)/w(p)(ui, uj) = S5}
be the symplectic frame2bundle over M and ¢ : N = S(M) x R?>® — TM the map
defined by ¥ (p,u, &) = Zﬁlu, where (p,u) = (p,u1,...,us,) and & = (£4,... &%),
The family of maps R, izzlif — N, a € G, given by

R(l(p7u7£) = (p7 uavé"(at)il)

where
1 1
2n 2n ay - Qg
_ i i _
ua = g aj i, ..., g Ay, U , a= : :
i=1 =1 2n 2n
ay e QAaop

define the action of G on N. Clearly ¥ o R, = 1.

Let K : TTM — TM be the connection map induced by V and for any p € M
and any v € My, let m, : (M), — M, be the differential map of 7 at v, and
K, : (T'M), — M), the restriction of K to (I'M),.

Since the linear map m., x K, : (M), — M, x M, defined by m,, x K,(b) =
(7 (b), K,) is an isomorphism that maps isomorphically the horizontal subspace H,
(= kernel of K,) onto M, x (0,) and the vertical subspace V,, (= kernel of 7,) onto
(0p) x M,, where 0, denotes the zero vector, we define —as in [1]- the differentiable
mappings e;, eapt; : N — TTM for 1 < ¢ < 2n by

ei(p,u,f) = (W*U X Kv)il(uivop) and 62n+i(p>u7§) = (W*v X Kv)il(opaui)
where v = ¥(p, u, §).
Since (T'M), = H, ® V,,, any vector field X on T'M may be written in the form
X = X"+ XV, where
Xh(v) = (T4 X Kv)_l(ﬂ'*v(X(U)%Op) o X(v) = (T X Kv)_l(ovav(X<v)))

if v € M,. Hence, the mappings e;, ea,4; let us view X as the function VX =
(x',...,2*) : N — R*" where 2* : N — R are determined —for v = v¥(p,u, £)- by
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x’(p,u@) = W(p)(’fr*v(X(v))?U’n 2)
(3.3.1) a"Vi(pu,§) = w(p)(ww(X(@)),Uz)+
and
22" (pu ) = wp)(Ko(X(v)), Unyi)
(3.3.2) T (pu, &) = —w(p) (K, (X (v)), u1)+

for1<i<n.
(From (3.3.1) and (3.3.2) one gets that

(3.3.3) VX 0 R, = VX . <(“21 (atgl>

for any a € G.
As in [1], for any (0,2)—tensor field G on T'M we define the differentiable function

A A
\V/ 1 2 . 4dnx4n
G:<l4 13).N—>R

as follows: if (p,u,&) € N and v = ¥(p,u,&), let YG(p,u,&) be the matrix of the
bilinear form G, : (TM), x (T'M), — R induced by G on (T'M), with respect to
the basis {e1(p,u,§), ..., ean(p,u, &)}. Hence, for any pair of vector fields X, Y on TM
one gets

(3.3.4) G(X,Y)otp = VX NG.(W)!

Equalities (3.3.3) and (3.3.4) imply that each 4; : N — R2"*2" gatisfies the following
G—invariance property

(3.3.5) AjoR,=d"A;.a (1=1,2,3,4)

We shall call G the matrix of G with respect to (w, V). Hence, we get a one
to one correspondence ““G «— T” between (0,2)—tensor fields on TM and differ-
31 ff) : N — R**4n where each A; satisfies (3.3.5).

4 Az
The differentiability of G —for T' given— follows from (3.3.4) and the fact that ¥ is a
submersion.

Just as we did in [1], we define G’ to be natural with respect to (w, V) if ‘G only
depends on &.

entiable functions T = (

Proposition 3.1. Let G be a (0,2)—tensor field on TM and G = (il iz) the
4 Az

matriz of G with respect to (w,V). Then G is natural with respect to (w,V) if there
exist real numbers a;, 3; € R (i =1,2,3,4) such that

Ai(pyu, &) = ;.8 + Bi.(£.5)1.(€.9)

or, equivalently, if for any vector fields X,Y on TM, the following equalities are
satisfied
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GX"YM)(v) = o1 . w(p)(Tw(X(v)), m0w(Y (v)))

01 w(p)(v, T (X (v))) - w(p) (v, T (Y (0)))
GX"Y")(v) = o2 w(p)(Tw(X(v)), Ku(Y(v)))

+02 - w(p)(v, T (X (v))) - w(p)(v, Ku(Y(v)))
GXVY")(v) = o . w(p)(Eu(X(v)), (Y (v)))

01 - w(p)(v, Ky(X(v)) - w(p)(v, 7 (Y (0)))
GX",Y")(v) = a3 . w(p)(Ky(X(v)), Ku(Y(v)))

+03 - w(p)(v, Ko(X(v))) - w(p)(v, Ku(Y (v)))

Proof. According to (3.3.5), if G is natural, each matrix function A4; can be viewed
as a function B : R*™ — R?"*2" which satisfies B(¢.(a™1)Y) = a'.B(€).a for any
€ € R?" and any a € G; or, equivalently, B(¢) = (a=1).B(£.(a71)!).a™ L.

Since b € G implies that b' € G, it follows that B(¢) = aB(£.a)a® for any a € G.
Consequently, by Theorem 2.1, there exist o, 5; € R (i = 1,2,3,4) such that

Ai(p,u,§) = ai.S + B;(€.9)", (£.9)

The expression of G applied to vector fields is now a consequence of (3.3.1), (3.3.2)
and (3.3.4). O

4 Natural (0,2)—tensor fields on cotangent bundles

For any p € M, let M7 be the dual space of M, and let 7 : T*M — M be the
cotangent bundle of M.

For any (p,u) € S(M), we denote with (p,u*) the dual basis and S*(M) the
bundle consisting of all those ordered dual basis. Set N' = S*(M) x R*" and let
Y : N — T*M be the map defined by

2n
w(pa U'*a g) = Z glul
=1

if u* = {ut,...,u?"} and € = (&1,..., ).
The family of maps R, : N — N , a € G | given by

Ra(p,u”,§) = (p, (ua)", §.a)

defines the action of G on N. Clearly, ¢ o R, = . Let K* : T(T*M) — T*M be
the dual connection map. We'll recall that for any p € M and any co-vector w € M,
the restriction K, : (T*M), — M, of K* to (T*M), is a surjective linear map
characterized by the fact that for any 1—form 6 on M such that 6(p) = w and any
vector v € M)y, it satisfies K7 (6.p(v)) = V0 where 0,, : M,, — (T*M),, denotes
the differential map of 6 at p.

Since the linear map 7., x K, : (T*M),, — M), x M; defined by 7., X K, (b) =
(4w (b), K7 (b)) is an isomorphism that maps the horizontal subspace H,, (= kernel
of K) onto M, x (0,) and the vertical subspace V,, (= kernel of m,,), where 0,
denotes indistinctly the zero vector and the zero co-vector, we define —as in [1]- the
differentiable mappings e;, ean+; : N — T(T*M) for 1 < i < 2n by



Natural tensor fields 17

ei(pa U*>£) = (W*w X K;)_l(ui,op) and €2n+i(p7 U*v§> = (W*w X Kz)>_1(0pa uz)

where w — ¥(p, u*, §).
Since (T*M),, = H,, ®V,,, any vector field X on T* M may be written in the form
X = X"+ XV, where

X" (w) = (T X K) TH o (X (0)),05) , X¥(w) = (Mew x K35) 71 (0p, K (X (w)))

if w e M;;. Hence, the mappings e;, e, let us view X as the function VX =
(z,...,2%) : N — R*™, where 2* : N' — R are determined —for w = 9 (p, u*, &)~
by

ri(p,u* ) = U (M (X(w)))
(4.4.1) 22 tip ur ) = KX(X(0))(u)
for 1 <i < 2n.
(From (4.4.1), one gets that

(4.4.2) VX o R, = VX. <(“tgl 2)

for any a € G.
Asin [1], for any (0, 2)—tensor field G on T* M, we define the differentiable function

v~ (A1 Az . dnxdn
G_<A4 A N —R

as follows: if (p,u*,¢) € N and w = ¥(p,u*, ), let YG(p,u*,€) be the matrix of the
bilinear form G, : (T*M),, x (T*M),, — R induced by G on (T*M),, with respect

to the basis {e1(p,u*, &), ..., eqn(p,u*,&)}.
Hence, for any pair of vector fields X,Y on T*M one gets

(4.4.3) G(X,Y)oyp =X G.(W)!

Equalities (4.4.2) and (4.4.3) imply that each A; : N' — R?"*2" gatisfies the following
G—invariance property

AjoR, = dat.Ai.a

AsoR, = at.Ay.(a')?
(4.4.4) AsoR, = al.A3(a"t)

AjoR, = a '.Asa

We shall call ¥G' the matrix of G with respect to (w, V). Hence, we get a one to one
correspondence “¥G «— T" between (0,2)—tensor fields on T*M and differentiable

ﬁl ﬁ2> : N — RX4% where A; satisfies (4.4.4). The differentia-
4 As

bility of G —for T given— follows from (4.4.3) and the fact that ¢ is a submersion.
We define G to be natural with respect to (w, V) if G only depends on &.

functions T =
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Ay Az
matriz of G with respect to (w, V). Then, G is natural wigh respect to (w, V) if there
exist real numbers a;, 5; € R (i =1,2,3,4) such that

Proposition 4.1. Let G be a (0,2)—tensor field on T*M and G = <A1 A2> the

(4.4.5) Ay(p,u, &) = ar.5 + Bi.(6").€
(4.4.6) As(p,u*,€) = ag.dap + Pa.(€').(€.5)
(4.4.7) As(p,u*,€) = az.5 + f3.(€.9)".(£.5)
(4.4.8) Ay(p,u*, &) = agdon + B4.(€.5)" €

Proof. By setting B;(§) = Ai(p,u*,§), from (4.4.4) it follows that the functions B; :
R2" — RIX27 gatisfy

(4.4.9) Bi(&.a) = a'.Bi(&).a
(4.4.10) By(&.a) = a'.By(€).(a") !
(4.4.11) Bs(&.a) = a . Bs(€).(a™t)!
(4.4.12) By(&.a) = a t.By(¢).a

Since a™! = —S.a'.S if a € G, equalities (4.4.9) to (4.4.12) imply that the matrix
functions S.B;.S , S.Bs , B3 and B,4.S satisfy Theorem 2.1. This implies equalities
(4.4.5) to (4.4.8). O

Remark 4.1. Let 8 be the canonical 1—form on 7T M which is defined for any vector
field X on T*M an any co-vector w € T*M by
(4.4.13) O(X)(w) = w (T (X (w)))

On the other hand, for any p € M, let L, : M}, — M be the isomorphism induced
by w; i.e.,
L,(v)(u) = w(p)(v,u) for any v,u € M,

Hence, w induces a (2,0)—tensor field w* on M by defining
(4.4.14) W (p)(w, ) = w(p)(Ly, (), L, (7))

for any w,y € M.
In terms of 6, w and w*, one gets
Corollary 4.2. Let G be a (0,2)—tensor field on T*M. Then, G is natural if there

exist real numbers «;, B; € R such that for any vector fields X, Y on T*M, the fol-
lowing equalities hold

GX"YM(w) = m ~w(p)(7r*w(X(w)) T (Y (w)))
01 0(X)(w) . 0(Y)(w)
GX" YY) (w) = K o (Y (W) (T (X ()
00X)(w) - w(p)(w, K3(Y (w)))
G(X" Y (w) = 044-K$,(()§EW))(7TW( (w )))

) - @t (p)(w, K (X (w)))
GX"Y")(w) = az.w ()(KJZ( (), K3 (Y (w))
+05 - W (p)(w, K (X (w))) - w0 (p)(w, K5, (Y (w)))

if we M
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Remark 4.2. Let ¢ : TM — T*M be the diffeomorphism induced by w; i.e.,
d(v)(u) = w(p)(v,u) if v,u € M,.
Since the diagram

(M), Euo M,
¢*vl lLP
(M), — M

commutes, where w = ¢(v). From Proposition 3.1 and Corollary 4.2, it follows that
naturatily of (0,2)—tensor fields on T'M and T*M is preserved under the pull-back
of ¢.

Remark 4.3. Assume that (M, <,>,J) is a Semi-Riemannian Kéhler manifold. As we
pointed out in the Introduction, (M, w, J) is then a Fedosov manifold. ; From Proposi-
tion 3.1 and Proposition 3.1 of [1], it follows —after a straightforward computation—
that the only (0,2)—tensor field on T'M which is natural with respect to (M, <,>)

and (M,w) is the null tensor. Consequently, by Remark above, this is also true for
(0,2)—tensor fields on T* M.

References

[1] J. Araujo, G.G.R Keilhauer, Natural tensor fields of type (0,2) on the tangent and
cotangent bundles of a semi-Riemannian manifold, Acta Univ. Palacki. Olomuc.,
Fac. Rer. Nat., Mathematica 39 (2002), 7-16.

[2] R.L. Bryant, An Introduction to Lie Groups and Symplectic Geometry, in Geom-
etry and Quantum Field Theory (D.S. Freed and K.Uhlenbeck, Ens.), IAS / Park
City Mathematics Series, vol. 1, 7-181, Am. Math. Society, Institute for Advanced
Study, Providence, 1995.

[3] 1. Gelfand, V. Retakh, M. Shubin, Fedosov Manifolds, Advances in Mathematics
136 (1998), 104-140.

[4] H. Weyl, The Classical Groups, their Invariance and Representations, Princeton
Landmarks in Mathematics, 1997.

Authors’ addresses:

José Araujo

Departamento de Matematica, Facultad de Ciencias Exactas,

Campus Universitario, UNICEN, (7000) Tandil - Buenos Aires, Argentina.
email: araujo@exa.unicen.edu.ar

Guillermo Keilhauer

Departamento de Matemaética, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria,

Pabellén I, 1428 Buenos Aires, Argentina.

email: wkeilh@dm.uba.ar



