Einstein equations for (h, v)-Berwald-Moor
relativistic models
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Abstract. The paper determines basic relations between the metric
canonically induced by the Berwald-Moor Finsler structure, the normal-
ized flag Generalized Lagrange metric and the Pavlov poly-scalar product.
Then, in the framework of vector bundles endowed with (h,v)—metrics,
the extended Einstein equations are obtained for both the associated
Generalized Lagrange and the Euclidean-Berwald-Moor models.
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1 Introduction

Let M be a 4-dimensional differential manifold of class C*°, (T'M, 7, M) its tangent
bundle and (%, y?) local coordinates in TM. Let F : TM — R, F = F(y) be a
locally Minkowski Finsler function ([8], [7]). Then we consider the induced fundamen-
tal metric tensor field

.1 PP
(1.1) 55 = 5500y

where we denote
oF 0*F PF

* T dyioyioyE

oy 1T gy T et

(1.2) F =

For M = R* and the Finsler function specialized to
(1.3) Fy) = VIy'v?y?yll, o' #0,i =14,

which is a particular case of the Shimada Finsler metric ([14, 15, 5, 4, 6])

F(l’,y) = {/ai1i2...’in (I)y“y” .. 'yinv
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where a;,, 4, is a (0,n) tensor field on M, D.G. Pavlov has studied the
”4-pseudoscalar product” ([11]) related to the Berwald-Moor metric (1.3),

(1.4) (X,Y,Z,T) = Gijm XY ZFT',
where .

1 'L
(1.5) Gijr = L= F*

41 Oyt dyi dykayl’
In the folowing, we consider (1.4) and (1.5) for an arbitrary Finsler function F' = F'(y).
Starting from here, we will construct a generalized Lagrange space based on the tensor
field (1.4).

First, we notice that the tensor field (1.5) satisfies the following conditions:

1. Gyj is totally symmetric w.r.t. the indices ¢, 7, k,I;

2. Gijro =G o LK is 1-h in y;

- Gijko = Gijrly = IW 1s 1-homogeneous 1n y,
1 9°F*

3. Gijoo = Gijry*y' = 120570y is 2-homogeneous in y;

4

, 10F
4. Giooo = Gimyy™y' = = is 3-homogeneous in y;

4 9y’
5. Gooogo = Gijklyiyjykyl = F* is 4-homogeneous,

where the null index denotes the transvection with the directional argument y.
The properties from above are direct consequences of the 1—homogeneity of F'. The
following relations are stragihtforward

L; = 4F3Fi

,Cl'j = 4(3F2.F1FJ +F3Fw)

Eijk :4[6,;’_'}7;5‘]F‘]c +3F2 S(Fszk) +F3F¢jk]
ik

Lijii = A6FF;FyF, + F3Fij5 + 6FS' (Fy F Fy)+

+3F? Lﬁcz(Fiijl) +iﬁd(EFz‘jk) ,

where the lower index of F' represents partial derivative with respect to the
corresponding directional variable, and we denoted by S cyclic summation about
the indices involved, and by S’ distinct pairwise summation of 6 terms about the four
indices. We define the pseudo-scalar product

1
<X7Y>y = ﬁ(Xaxlhy)v va € X(M)7

where y = yl% is the Liouville vector field ([7]) and the vector fields X,Y are

considered at some point z € M.
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It is obvious that { , ) , is bilinear in the two arguments and (e.g., for the Berwald-
Moor metric) it satisfies the axioms of a pseudo-scalar product. We locally have

1 . Gii00 <in
(X,Y), = ﬁGijle’YJykyl = 71?2 Xy,
and hence the coefficients of this pseudo-scalar product can be expressed as

G 00 1 9?F* 1
1. = 2H00 . _ “FF, + FF;.
(1.6) 95 = Tp2 T Tap2ggigy 30 0T

Then g;; is a 2-covariant non-degenerate 0-homogeneous tensor field (called further
normalized flag metric), which defines a generalized Lagrange space (M, g).

We note that though the associated to g Cartan tensor field

171 1 1 2
Cijk = = [*(Fsz'j + FFiji) + Fir Fy + Fiijj| = || sFFir+ S FiFjr | — s FuFy
213 2 3 ijk 3

satisfies Co;r, = Cior, = Cij0 = 0, it is still non-symmetric in its three indices. Hence
the metric g;; is not a Finsler fundamental tensor field, but a proper Generalized
Lagrange metric. We remark that since F'is 0—homogeneous in y, it follows by using
the Euler relations that Fjy’ = F and Fijyj = 0. Then the absolute energy attached
to g;; is F2, since

1

(1.7) E=giu'y = (SFF;+ EF; ) y'y) = F2.
3

Then the Lagrange metric associated to g via its energy is

1 e 1 PR
20yi0yl  20yioyl Yig»

(1.8)

and then (M, € = F?) is a Lagrange space.
From the homogeneity of F' it also follows that

10¢& ,
2 9C g
(1.9) 50y gii Yy’

Consequently, we have

Theorem 1. a) (M, g) is a generalized Lagrange space with reqular metric. The
Finslerian metric g;; provided by the energy &€ = F? is related to the normalized flag
metric g via:

. 2
9" ij = ij + gFFij~

b) The families of metrics Xy : §Gij = gij + A\AFF;5, A € R and X, © §;; = pgij
+(1 - u)g;"j, it € R have the same energy € = F? and include the metrics g* and g,
whence in particular . o

E=F>=giy'y = g;y'y.
Proof. a) The relations (1.9) and (1.8) provide the first claim, while (1.1) and (1.6),
the second. Using an argument similar to (1.7), b) follows. O
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For the case when F' is the Berwald-Moor metric, the matrices attached to g and
to its dual have the particular form:

_ 2a 1 1 1
0 cd bd bc bed cd db cb
1 cd 0 ad ac 1 2 71d _% (Tla ca
=T | bd ad 0 aw |01 i 1 _2 1
bC ac ab 0 db da dab ba

1 1 1 2d

cb ca ba ~ abe

where we denoted (a,b,c,d) = (y',y% y> 9*). Then one can easily check that
det[g] = —3(abed)?/(12F?)* < 0 for abed # 0. As well, the signature of [g] is
+,—,—,—), as clearly show its Maple 9.5 - derived eigenvalues, which are the roots

RootOf(_Z* + (—a? b —a? x 2 — 2« d? —b? v d® — a® x d* — 0%« P) x _Z%+
(2% xdxbxa—2%a’xdxcxb—2xbPxdxcrxa—2xcxd>xbxa)* _Z—
—3xc? xd® *xa® % b?).

The above construction in (1.5) can be generalized to an n-dimensional manifold
M, as the ”poly-pseudo-scalar product”

(X1, X,y Xp) = Gy i, X0 X0
with 1 gopm
" ol Oyh... 0yt

This relates to the generalized Lagrange geometry by defining the pseudo-scalar prod-
uct

1
<X7Y> = m(xayvyaay% X7Y6X(M)7

having the local components
1 1 O?Fm
= ——Gjjo.0= — ——.
Fr—2 n(n — 1)F"=2 0yt oy

Gij

2 Links between ¢, ¢* and G.

We shall first establish the relation between the generalized Lagrange metric g and
the Finsler one g*. For this purpose, we use a property of regular generalized Lagrange
metrics ([7]):

* Ogir k
Taking into account that £ = F2, we can write ¢ in the more convenient form
1 0%
2.2 = =
(2:2) 95 = T3¢ Oytdyd

Using (1.2), (1.6) and g*;0 = F'F}, g*oo = F?, where g;o = gijyj etc., one easily infers
the relation
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1 N g’fo . g*fo
(2.3) gij:3(gij+2 i . 701
Yoo

We shall now express G;jr; in terms of g*. By a straightforward computation, we
obtain
(2.4) NGijr =2 ‘%l Eijin& + 2(5@'5}4 + &kl + Silgjk) +2E&j1,

ij

where the low indices of & mean derivation with the corresponding components of y.
If in the above equality we replace

€ =900: € =290, &5 =295, Eijk =295, =255

we obtain the components of the 4-scalar product in the alternative form

1 * * PR k% * % PR
Gijr = 30 Qiﬁcl(Qgij,kglO) + 2973951 + 951951 + 9797k) + 900955 k1| -

Let us denote, for X, Y, Z,T € X(M), g%y = g;;X'Y7, and Gxyzr = GijuX'YI ZFT".
Consequently, the basic multiple transvections of the 4- scalar product involved in the
conformal properties of the Berwald-Moor space ([12]) are

(X, X,Y,Y)=Gxxyy = 5 2X7X5"Y’Y Ixx,y9vot
+2(g% x9vy +2(9%v)?) + GGo9% x.vy )
and we have as well
(X, X, X, V)+ (X, VYY) =Gxxxv + Gxvyyy =
=4 [2(9§(X,X93kf0 + 9vv.y9x0) T 6(9%y x9%0 + v x.y9yo)+

+69%y (9% x + 9vy) + 909k x xv + gj(y,yy)] .

3 The Berwald-Moor case

For the sake of simplicity, we restrict ourselves to the case when y'y?y3y* > 0. For
F as in (1.3), we obtain Gy, = 1/4!, i.e., the 4-linear form defined in (1.5) on the
space-time

1
(XY, 2,T) = XY R 20T e 151
where €;,,i4i, 18 1 for iy,42, 3,4 different in pairs, and 0 else.

In the following, we maintain the convention to denote by i1, i, 3,74 the distinct
values from 1 to 4 (i; # ix for j # k). The absolute energy of M is then

E = Vylyrydyd,

and the generalized Lagrange metric tensor given by (1.6) g;;, which we call
normalized flag Berwald-Moor metric, takes the form
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: yey'
(31) Gii = 07 1= 1747 Givie = WJ 11 7& 2.
The inverse matrix g* has the components
L. —8 yl 2 ) . 4E 4yi1yi2 ) .
gzz _ %, i=1,4; 91112 — yizyi4 = : i1 # ia.
Yty £
For the associated Finsler metric, we have: gf, = ,and gf = ————
) 8 8(y?)
It is worthy to notice that, for i; # iz, we have ¢;,;, = gg;‘m. Let
; L (Ogjn | Ogkn  Ogj
Crip = g O — = i ho_ 995k )
hjk Gih jk 2 (ayk + ayj ayh

Then, for distinct i1, 42,13, we get

1 89;21'1 89;31'1 ag;;is 1/1 1 L
Cirigia = 3 ( ayis oy oy ) 3 g8 T g8inia = 5luii |

= 1&;. i, In the same way, it follows that

and hence Cj iy, = 5

1
Cirivie =0="Cijizirs Cigiviy = §Ei1i1i27 Civiyiy = 0.

We obtain now the coefficients Cijk = gihC’hjk in terms of the energy & as:

2
3€

1
1213

(72(yi1 )25i1i2i3 + yilyi4£’£2i3i4)

i1

9 o
C iy = aa WY Eigis Y Y Eiinia)

(3.2) 345
Z%ziz = g(_Z(y“)Qgiliziz + y“ylsgiziﬂé + y“yugizizu)
Cllllil - g(yhylzgizilil + y“y“g’isilil + y“y“ i4i1i1)'

4 Einstein equations for Berwald-Moore type
(h,v)—models

The considerations within the current section apply to any locally Minkowski Finsler
function, including the Berwald-Moor fundamental function as a particular case. Due
to the fact that F' is locally Minkovski, it follows that the coefficients NV ij of the
Kern nonlinear connection ([7]) vanish. As well, the canonical linear d—connection
CT(N) = {L;k, C;k} for the Generalized Lagrange space (M, g) described by

i L in 59jh Ogkn 5gjk
ij—§g <§xk Y sw S )
(4.1) 1 ) d )
i _ T _ih 9jh 9kh  OGjk
T =y (3yk "oy 3yh>’
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has all its horizontal coefficients Lijk zero and the components of its torsion

vanish, except hT(%7 %) = Cijkw. The coefficients of its curvature tensor are

([7]) R;- kh = Pji kn = 0, and
(42) Sgcd = a'[dcgc] + Cg[dcgc]7

where 5’d is the partial w.r.t. yd and we denoted Tlivg] = Tioj — Tj..iv
In general, the Einstein equations for a (h,v)-metric (h,g) on TM have the form

(18]
Rij — 5(R+ S)hy; =T}

1 _ M 2 _ M
Py =Th" Foj=T"

Sab — %(R + S)gab = T;{ﬂ

where R;;, p! Pfj and S, are the Ricci d—tensors attached to the canonic connection,

79
R, S are the scalars of curvature and TZI]{ , Tz]j\/l1 , Tijj\@ and Tz‘]/ are the energy-momentum
d-tensor fields. Then, for the locally Minkovski model (M, g), given by the particular

case when the (h,v)—metric (h,g) has h = g = g(y), the following holds true:

Theorem 2. The Einstein mized tensors of the Generalized Lagrange model at-
tached to the locally Minkowski model (M,g) identically vanish, and the Einstein
equations are

> bj
— 1 _ 7TV
Eop = Sap — §Sgab - Taba

where the vertical Finstein tensor has the specific form

1 H M M.
_16g, =TH, 0=TM o=1M
(4.3) { 27 3

™SS 1 rs
(4.4) Eap = stt6;(5a5b - 59 Gab),

with SY, given by (4.2) and C{., by (4.1), and where g"* is the dual of gap.

In the case when the (h, v)—metric has its horizontal part Euclidean, of coefficients
hij, i,j = 1,n, then the canonic linear d—connection CT'(N) = {Lj.k,, Ly, Ci,, Ci}
has the first three sets of coefficients zero and all its torsion components vanish; the
same holds true for the curvature, except the set S,%; given in (4.2). In this case we

have

Theorem 3. The Einstein equations for the (h,v) FEinstein-locally Minkowski
metric (hij, gi;(y)) write
bj

(4.5) { —3Shi; = Tjf, 0=T", 0=T3"
Eub = Sab — 3S9a =T,
with (4.2) and (4.4) satisfied.
We note that in the case when g is of Berwald-Moor type (3.1), the equations (4.3)
and (4.5) have the vertical coefficients Cy, involved in (4.4)-(4.2) specialized by (3.2).

Acknowledgement. The present work was partially supported by Grant CNCSIS
A1478.



FEinstein equations 27

References

[1] D. Bao, S.-S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry,
Springer-Verlag, 2000.

[2] S.Kobayashi, K.Nomizu, Foundations of Differential Geometry I, II, Interscience
Publishers, New York, 1963, 1969.

[3] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces,
Kaisheisha Press, Kyoto, 1986.

[4] M. Matsumoto, K. Okubo, Theory of Finsler spaces with m—th root metric:
connections and main scalars, Tensor N.S.; 56 (1995), 9-104.

[5] M. Matsumoto, S. Numata, On Finsler spaces with a cubic metric, Tensor N.S.,
33 (1979), 153-162.

[6] M. Matsumoto, H. Shimada, On Finsler spaces with 1—form metric, Tensor N.S.,
32 (1978), 161-169.

[7] R. Miron, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer
Acad. Publishers, 1994.

[8] R. Miron, M.Anastasiei, Vector Bundles. Lagrange Spaces. Applications to
Relativity, Geometry Balkan Press, 1996.

[9] Gh. Munteanu, V. Balan, Lectures of Relativity Theory (Romanian), Bren Eds.,
Bucharest, 2000.

[10] D.G. Pavlov, Chronometry of the three-dimensional time, Hypercomplex
Numbers in Geometry and Physics, Ed. ?Mozet”, Russia, 1, 1 (2004), 19-30.

[11] D.G. Pavlov, Four-dimensional time, Hypercomplex Numbers in Geometry and
Physics, Ed. "Mozet”, Russia, 1, 1 (2004), 31-39.

[12] D.G. Pavlov, Generalization of scalar product azioms, Hypercomplex Numbers
in Geometry and Physics, Ed. "Mozet”, Russia, 1, 1 (2004), 5-18.

[13] H. Rund, The Geometry of Finsler Spaces, Springer, Berlin 1959.

[14] H. Shimada, On Finsler spaces with the metric L = {/ai i, ., (x)yyi ... yin,
Tensor N.S., 33 (1979), 365-372.

[15] H. Shimada, On Finsler spaces with 1—form metric II. Berwald-Moor’s metric
L= {/yty?...y", Tensor N.S., 32 (1978), 375-278.

Authors’ addresses:

Vladimir Balan

Faculty of Applied Sciences, Department Mathematics I,
University Politehnica of Bucharest, Splaiul Independentei 313,
RO-060042, Bucharest, Romania

email: vbalan@mathem.pub.ro

Nicoleta Brinzei

Department of Mathematics, University ” Transilvania” of Bragov,
Str. Iuliu Maniu nr. 50, RO-500091, Brasov, Romania.

email: nico.brinzei@rdslink.ro



