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Abstract. Let (M,g) be a Finsler manifold, TM its tangent bundle and
g̃ a Riemannian metric on TM derived from g. Then every complete lift
conformal vector field on M is homothetic.
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Introduction.

Let (M, g) be an n-dimensional Riemannian manifold and φ a transformation on M .
Then φ is called a conformal transformation, if it preserves the angles. Let V be a
vector field on M and {ϕt} be the local one-parameter group of local transformations
on M generated by V . Then V is called a conformal vector field on M if each ϕt is
a local conformal transformation of M . It is well known that V is a conformal vector
field on M if and only if there is a scalar function ρ on M such that £V g =2ρg where
£

V
denotes Lie derivation with respect to the vector field V . Specially V is called

homothetic if ρ is constant and it is called an isometry or Killing vector field when ρ
vanishes.

There are some lift metrics on TM = ∪
x∈M

TxM as follows: complete lift metric
or g2, diagonal lift metric or g1 + g3, lift metric g2 + g3 and lift metric g1 + g2, where
g1 := gijdxi⊗dxj , g2 := 2gijdxi⊗δyj and g3 := gijδy

i⊗δyj are all bilinear differential
forms defined globally on TM .

In the study of Finsler geometry the complete lift vector fields have a great sig-
nificance. More precisely let V be a vector field on the Finsler manifold (M, g(x, y))
and Xc be the complete lift of V . Then V is called a conformal vector field of Finsler
manifold (M, g) if there is a scalar function1 Ω on TM which satisfies £

Xc g = 2Ωg.
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1By a simple calculation and vertical partial derivative using commutative property of Lie deriv-
ative one can show that Ω is a function of x alone [1].
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For the complete lift vector fields the following results are well known:

Theorem A. [9]:Let (M, g) be a Riemannian manifold, X a vector field on M and
XC complete lifts of X to TM . If we consider TM with metric g2 then XC is a
conformal vector field on TM if and only if X is homothetic on M .

Theorem B. [10]:Let (M, g) be a Riemannian manifold. If we consider TM with
metric g1 + g3 then XC is a conformal vector field on TM if and only if X is homo-
thetic.

In a recent work we introduced a new Riemannian and pseudo-Riemannian lift
metrics on TM , g̃ = ag1 + bg2 + cg3 where a, b and c are certain constant real
numbers. That is a combination of diagonal lift, and complete lift metrics, which is in
some senses more general than those who are used previously. We have replaced the
cited lift metrics in Theorems A and B by g̃. More precisely, we have proved Theorem
C in [3] as follows.

Theorem C. Let M be an n-dimensional Riemannian manifold and let TM be its
tangent bundle with metric g̃. Then every complete lift conformal vector field on TM
is homothetic.

In the present work we replace the Riemannian metric on M by a Finsler metric
endowed with a Cartan connection and prove the following theorem.

Theorem 1: Let (M,g) be a C∞ connected Finsler manifold, TM its tangent bundle
and g̃ the Riemannian (or Pseudo-Riemannian) metric on TM derived from g. Then
every complete lift conformal vector field on TM is homothetic.

1 Preliminaries.

Let M be a real n-dimensional manifold of class C∞. We denote by TM → M the
bundle of tangent vectors and by π : TM0 → M the fiber bundle of non-zero tan-
gent vectors. A Finsler structure on M is a function F : TM → [0,∞), with the
following properties: (I) F is differentiable (C∞) on TM0; (II) F is positively homo-
geneous of degree one in y, i.e. F (x, λy) = λF (x, y),∀λ > 0, where we denote an
element of TM by (x, y). (III) The Hessian matrix of F 2 is positive definite on TM0;
(gij) :=

(
1
2

[
∂2

∂yi∂yj F 2
])

. A Finsler manifold is a pair of a differentiable manifold M

and a Finsler structure F on M . The tensor field g = (gij) is called the Fundamental
Finsler tensor or Finsler metric tensor. Here, we denote a Finsler manifold by (M, g).

Let VvTM = kerπv
∗ be the set of the vectors tangent to the fiber through v ∈ TM0.

Then a vertical vector bundle on M is defined by V TM :=
⋃

v∈T M0
VvTM . A non-

linear connection or a horizontal distribution on TM0 is a complementary distribution
HTM for V TM on TTM0. Therefore we have the decomposition

TTM0 = V TM ⊕HTM.(1.1.1)
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HTM is a vector bundle completely determined by the non-linear differentiable
functions N j

i (x, y) on TM , called coefficients of the non-linear connection. Let HTM
be a non- linear connection on TM and ∇ a linear connection on V TM , then the pair
(HTM,∇) is called a Finsler connection on the manifold M .
Using the local coordinates (xi, yi) on TM we have the local field of frames { ∂

∂xi
, ∂

∂yi
}

on TTM . It is well known that we can choose a local field of frames { δ
δxi

, ∂
∂yi
} adapted

to the above decomposition i.e. δ
δxi

∈ Γ(HTM) and ∂
∂yi

∈ Γ(V TM) set of vector fields
on HTM and V TM , where

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
,(1.1.2)

and where we use the Einstein summation convention.
Here, in this paper, all manifolds are supposed to be connected.

Let (M, g(x, y)) be a Finsler manifold then a Finsler connection is called a metric
Finsler connection if g is parallel with respect to ∇. According to the Miron ter-
minology this means that g is both horizontally and vertically metric. The Cartan
connection is a metric Finsler connection for which the Deflection , horizontal and
vertical torsion tensor fields vanishes.

Let (M, g(x, y)) be a Finsler manifold with metric Finsler connection the Curvature
tensors of M are defined by

R(X, Y )Z = {[∇X ,∇Y ]−∇[X,Y ]}Z,

where X, Y, Z ∈ X (TM)
They are called accordingly to the choice of X and Y in HTM or V TM horizontal
or vertical curvature tensors of Finsler manifold.

Let M be a Finsler manifold and ∇ a Finsler connection on M , then we have [6]

R h
k ji = δiF

h
k j − δjF

h
k i + F m

k jF
h

m i − F m
k iF

h
m j + C h

k mR m
j i,

Rh
ij = δjN

h
i − δiN

h
j , where we have put ∂i = ∂

∂xi , ∂̇i = ∂
∂yi , δi = ∂i −Nm

i ∂̇m.

If ∇ is a Cartan connection then Nh
i = ymF h

m i.

Proposition 1. [5] Let M be an n-dimensional Finsler space with a Cartan connec-
tion, then we have the following equations

(1) F h
i j =

1
2
ghm(δigmj + δjgim − δmgij).

(2) Cijk =
1
2
∂̇kgij where Cijk = C m

i kgjm.

(3) ymCmij = 0.

(4) Rh
ij = ymR h

m ij .

The Cartan horizontal and vertical covariant derivative of a tensor field of type
(12) are given locally as follows:
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∇jT
h

k i := T h
k i|j = δjT

h
k i + F h

m jT
m

k i − F m
k jT

h
m i − F m

i jT
h

k m.(1.1.3)

∇j̄T
h

k i := T h
k i|j = ∂̇jT

h
k i + C h

m jT
m

k i − C m
k jT

h
m i − C m

i jT
h

k m.

2 Lift metrics and conformal vector fields.

2.1 Complete lift vector fields and Lie derivative.

Let V = vi ∂
∂xi be a vector field on M . Then V induces an infinitesimal point trans-

formation on M . This is naturally extended to a point transformation of the tangent
bundle TM which is called extended point transformation. Let V be a vector field on
M and {Φt} the local one parameter groups of M generated by V . Let Φ̃t be the
extended point transformation of Φt and {Φ̃t} be the local one-parameter groups of
TM . If Xc is a vector field on TM induced by {Φ̃t} it is called the complete lift
vector field of V .
It can be shown that the extended point transformation is a transformation induced
by the complete lift vector field of V , Xc = viδi + yj∇jv

i∂̇i with respect to the de-
composition (1.1.1).

Let M be an n-dimensional manifold, V a vector field on M and {φt} a 1-parameter
local group of local transformations of M generated by V . Take any tensor field S on
M , and denote by φt

∗(S) the pulled back of S by φt. Then the Lie derivation of S
with respect to V is a tensor field £

V
S on M defined by:

£V S =
∂

∂t
φt
∗(S)|t=0 = lim

t−→0

φt
∗(S)− (S)

t
,

on the domain of φt. The mapping £
V

which map S to £
V
(S) is called the Lie deriva-

tion with respect to V .

In Finsler geometry the Lie derivative of an arbitrary tensor, T k
ij is given locally

by [Yan1]:

£
V
T k

i = va∇aT k
i + va∇avb∇bT

k
i − T a

i ∇avk + T k
a ∇iv

a,

or equivalently,

£
V
T j

i = va∂aT j
i + ya∂avb∂̇bT

j
i − T a

i ∂avj + T j
a ∂iv

a.(2.2.1)

So we have

£V yi = va∂ayi + yb∂bv
j ∂̇jy

i − ya∂avi = yb∂bv
i − ya∂avi = 0,(2.2.2)
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£
V
gij = va∂agij + ya∂avb∂̇bgij + gaj∂iv

a + gia∂jv
a.(2.2.3)

We have also this interchanging formula between Cartan covariant derivatives and
Lie derivatives.

∇k£V
gij −£

V
∇kgij = gaj£V

F a
ik + gai£V

F a
jk.(2.2.4)

2.2 A lift metric on tangent bundle.

Let (M, g) be a Finsler manifold. In this section we define a new Riemannian or
Pseudo-Riemannian metric on TM derived from the Finsler metric. This metric is in
some senses more general than the other lift metrics defined previously on TM . By
mean of the dual basis {dxi, δyi} analogously to the Riemannian geometry the tensors;
g1 := gijdxi⊗dxj g2 := 2gijdxi⊗δyj g3 := gijδy

i⊗δyj are all quadratic differential
tensors defined globally on TM , see [9]. Now let’s consider the Finsler metric tensor
g with the components gij(x, y) defined on TM . The tensor field g̃ = αg1 +βg2 + γg3

on TM , where the coefficient α, β, γ are real numbers, has the components
(

αg βg
βg γg

)

with respect to the dual basis of TM . From the linear algebra we have detg̃ = (αγ −
β2)ndetg2. Therefore g̃ is nonsingular if αγ − β2 6= 0 and it is positive definite if α, γ
are positive and αγ − β2 > 0. Indeed g̃ define respectively a Pseudo-Riemannian or a
Riemannian lift metric on T (M).

Definition 1. Let (M, g) be a Finsler manifold. Consider tensor field g̃ = αg1 +
βg2 + γg3 on TM , where the coefficient α, β, γ are real numbers. If αγ − β2 6= 0 then
g̃ is non-singular and it can be regarded as a Pseudo-Riemannian metric on TM . If α
and γ are positive such that αγ − β2 > 0 then g̃ is positive definite and consequently
can be regarded as a Riemannian metric on TM .
g̃ is called the lift metric of g on TM .

2.3 Conformal vector fields.

Let (TM, G(x, y)) be a Riemannian ( or pseudo-Riemannian) manifold. A vector field
X̃ ∈ X (TM) on TM is called a conformal vector field on TM if there is a scalar
function Ω on TM such that

£
X̃

G = 2ΩG.

If Ω is constant then the vector field X̃ is called homothetic and if Ω is zero then its
called an isometric or a Killing vector field .
Now let we consider (TM, g̃(x, y)) with the complete lift vector field Xc of an arbitrary
vector field V on M . Then by above definition we call Xc a conformal vector field on
TM if

£
Xc g̃ = 2Ωg̃.
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3 Main results

Analogous to the Riemannian geometry [7], by straight forward calculation we have
the following lemmas in Finsler geometry.

Lemma 1. : Let (M, g) be a Finsler manifold with Cartan connection, then we have;
(1) [Xi, Xj ] = Rh

ijXh,

(2) [Xi, Xj ] = ∂̇jN
h
iXh,

(3) [Xi, Xj ] = 0.

where we put Xi = δi and Xi = ∂̇i for simplicity.

Let’s denote by £
Xc the lie derivative with respect to the complete lift vector field

Xc. Then we obtain the following lemma :

Lemma 2. : Let (M, g) be a Finsler manifold with Cartan connection, then we have;
(1)£

Xc Xi = −∂iv
hXh −£

V
Nh

iXh,
(2)£

Xc Xi = −∂iv
hXh,

(3)£
Xc dxh = ∂mvhdxm,

(4)£
Xc δyh = £

V
Nh

mdxm + ∂mvhδym.

Proof. (1) £
Xc Xi = [Xc, Xi]

= [vhXh + ymvh
|mXh , Xi]

= vh[Xh, Xi]−Xi(vh)Xh + ymvh
|m[Xh, Xi]−Xi(ymvh

|m)Xh

= −∂iv
hXh −£

V
Nh

iXh.
Thus we get (1). We can prove (2) by the same way as the proof of (1). Next we prove
(3). Since (dxh, δyh) is the dual basis of (Xh, Xh), if we put

£
Xc dxh = αh

mdxm + βh
mδym.

Then we have

0 = £
Xc (dxh(Xi)) = (£

Xc dxh)Xi + dxh(£
Xc Xi) = αh

i − ∂iv
h,

and
0 = £

Xc (dxh(Xi)) = (£
Xc dxh)Xi + dxh(£

Xc Xi) = βh
i .

Thus we get (3). By the same way as the proof of (3), we can prove (4).

Lemma 3. : Let (M, g) be a Finsler manifold with Cartan connection, then we have;
(1)£

Xc (gijdxidxj) = (£
V
gij)dxidxj ,

(2)£
Xc (gijdxiδyj) = gmi(£V

Nm
j )dxidxj + (£

V
gij)dxiδyj ,

(3)£
Xc (gijdxiδyj) = 2(gmi£V

Nm
j )dxiδyj + (£

V
gij)δyiδyj .

Proof. By mean of above lemma, we get
£

Xc (gijdxidxj) = Xc(gij)dxidxj + 2gij(£Xc dxi)dxj

= (vhXh + ymvh
|mXh)(gij)dxidxj + 2gij(∂mvidxm)dxj

= (£V gij)dxidxj .
Thus we have (1). (2) and (3) are easily proof by the same way as the proof of (1).
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Theorem 1. Let (M,g) be a C∞ connected Finsler manifold, TM its tangent bundle
and g̃ the Riemannian (or Pseudo-Riemannian) metric on TM derived from g. Then
every complete lift conformal vector field on TM is homothetic.

Proof. Let V be a vector field on M, Xc the complete lift vector field of V which is
conformal and g̃ be a Pseudo-Riemannian metric on TM derived from g. We have by
definition £

Xc g̃ = 2Ωg̃. The Lie derivative of g̃ gives

£
Xc g̃ = α(£

V
gij)dxidxj + 2β(£

V
gij)dxiδyj + 2βgai(£V

Na
j )dxidxj

+γ(£
V
gij)δyiδyj + 2γgaj(£V

Na
i )dxiδyj .

(3 .1)

So we have

£
Xc g̃ = [α£

V
gij + 2βgai£V

Na
j ]dxidxj

+[2β£
V
gij + 2γgaj£V

Na
i ]dxiδyj

+γ(£
V
gij)δyiδyj

= 2Ωg̃.

Comparing with the definition of g̃, we find;

α£V gij + β(gai£V Na
j + gaj£V Na

i ) = 2αΩgij .(3 .2)
β£V gij + γgaj£V Na

i = 2βΩgij .(3 .3)
γ£V gij = 2γΩgij .(3 .4)

I) If γ 6= 0 then from (3.4) we have

£V gij = 2Ωgij ,

and from (3.3) we have
£

V
Na

i = 0.

Using this and Nh
i = ymFh

m i we get

0 = £V Nh
i = £V (ymF h

m i) = ym£V Fh
m i.(3 .5)

Where the last equality holds from equation (2.2.2).
II) If γ = 0 since αγ − β2 6= 0 we have β 6= 0 so from (3.3) we have

£
V
gij = 2Ωgij ,

and from (3.2) we have
gai£V

Na
j + gaj£V

Na
i = 0.

Using this and equation (2.2.2) and Na
i = ykF a

k i, we have

yk(gai£V
F a

k j + gaj£V
F a

k i) = 0.(3 .6)

In each case I) and II) we have
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£
V
gij = 2Ωgij ,(3 .7)

or from equation (1.6)

vm∂mgij + gmj∂iv
m + gim∂jv

m + ya∂avm ˙∂mgij = 2Ωgij .

Applying ∂̇k to the both side of the above equation, we find;

2vm∂mCijk + 2Cmjk∂iv
m + 2Cimk∂jv

m + 2∂kvmCijm + 2ya∂avm∂̇kCijm.

= 2gij ∂̇kΩ + 4ΩCijk.

By using yiCijk = 0, we obtain ∂̇kΩ = 0. Therefore Ω is a function of x alone.
From (2.2.4) we have

yk(∇k£V
gij −£

V
∇kgij) = yk(gai£V

F a
jk + gaj£V

F a
ik).

By using (3.5),(3.6) and (3.7) in each case I) and II) we find that

yk∇kΩ = 0.

Since Ω is a function of x alone, we obtain ∂iΩ = 0. This together with connectedness
of M , shows that Ω is constant.
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