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Abstract. In this paper we show that every invariant Finsler metric on
Lie group G, induces an invariant Finsler metric on quotient group G/H
in the natural way, where H is a closed normal Lie subgroup of G.
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1 Introduction.

The study of invariant structures on homogeneous manifolds is an important problem
in geometry. K. Nomizu obtained many interesting properties of invariant Riemannian
metrics on homogeneous space G/H. He introduced reductive homogeneous spaces and
studied invariant Riemannian metrics and the existence and properties of invariant
affine connections on reductive homogeneous spaces (See [4] and [6]). Also some cur-
vature properties of invariant Riemannian metrics on Lie groups and homogeneous
spaces have studied by J. Milnor and H. Samelson (See [5] and [7]). So it is important
to study invariant Finsler metrics which are a generalization of invariant Riemannian
metrics.
Some properties of invariant Finsler metrics on reductive homogeneous manifolds are
studied in [2] and [3] by S. Deng and Z. Hou. The authors of these papers obtained a
necessary and sufficient condition for homogeneous manifolds to have invariant Finsler
metrics. Then they studied bi-invariant Finsler metrics on Lie groups and obtained a
necessary and sufficient condition for a Lie group to have bi-invariant Finsler metrics.
In this paper we show that every invariant Finsler metric on a Lie group G induces
an invariant Finsler metric on quotient group G/H in the natural way, where H is a
closed normal Lie subgroup of G.
Note. In this article we do not assume the quotient groups G/H are reductive.
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2 Preliminaries.

Definition 2.1. A Minkowski norm on Rn is a nonnegative function F : Rn →
[0,∞) which has the following properties:

(i) F is C∞ on Rn \ {0}.

(ii) F(λy) = λF(y) for all λ > 0 and y ∈ Rn

(iii) The n×n matrix (gij), where gij(y) := [
1
2
F2]yiyj (y), is positive-definite at all

y 6= 0.

Definition 2.2. Let M be an n−dimensional smooth manifold. Also let TM be
the tangent bundle of M . A function F : TM → [0,∞) is called a Finsler metric if it
has the following properties:

(i) F is C∞ on the slit tangent bundle TM \ 0.

(ii) For each x ∈ M , Fx := F |TxM is a Minkowski norm on TxM .

If the Minkowski norm satisfies F(−y) = F(y), then one has the absolutely homo-
geneity F (λy) = |λ|F (y), for any λ ∈ R. Every absolutely homogeneous Minkowski
norm is a norm in the sense of functional analysis.
Every Riemannian manifold (M, g) by defining

F (x, y) :=
√

gx(y, y) x ∈ M, y ∈ TxM

is a Finsler manifold (For more details about Finsler geometry see [1]).
We also use the following notations:

• Rg : G → G, right translation, Rg(h) = hg.

• Lg : G → G, left translation, Lg(h) = gh.

• ν : G → G, inversion, ν(g) = g−1.

• e ∈ G, the unit element.

We use F for Finsler metrics on Lie group G, F for Minkowski norms on a specific
tangent space TxM or a real vector space Rn and F for Finsler metrics on quotient
group G/H. Also if f : M → N is a smooth function between manifolds and x ∈ M ,
we denote by Txf : TxM → Tf(x)N the derivative of f at x. If f : M → N is a
local diffeomorphism then Txf is an isomorphism of vector spaces, yielding for each
vector field Y ∈ X (N) on N a vector field f∗Y ∈ X (M) defined by (f∗Y )(x) =
(Txf)−1Y (f(x)).
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3 Induced Invariant Finsler Metrics on
Quotient Groups.

Let G be a compact connected Lie group, H a closed subgroup of G, M = G/H the
homogeneous space which consists of left cosets of zH, z ∈ G, and p : G → M be
the natural projection of G onto M . The group G admits a bi-invariant Riemannian
metric. Now we can to obtain a Riemannian metric on M in the following way which
is invariant under the customary action of G on M :

Let x ∈ M , X ∈ TxM , z ∈ G and Z ∈ TzG, such that p(z) = x, Tzp(Z) = X
and let Z be orthogonal to the coset z.H (a submanifold of G) at z. Now we define
|X| := |Z| (see[7]).

But in Finsler geometry we have no orthogonality for tangent vectors so we can’t
to use the above way. In this article we try to replace the orthogonality condition,
by other conditions such that by define F(X) := F (Z), have a bi-invariant Finsler
metric on M .
From now G is an arbitrary finite dimensional Lie group (no necessarily compact or
connected).

For construct a left or right invariant Finsler metric on a Lie group G, it is sufficient
to have a Minkowski norm on TeG such as F0, then define

F : TG → [0,∞)
F (x, y) = F0(TxLx−1y) x ∈ G, y ∈ TxG

for left invariant Finsler metrics, and

F (x, y) = F0(TxRx−1y)

for right invariant Finsler metrics.

Lemma 3.1. Assume that G is any Lie group and H any closed subgroup, and
denote by g and h the Lie algebras of right invariant vector fields of G and H, re-
spectively. Let V be a vector subspace complementary to h in g, that is, g = V

⊕
h,

and M := G/H be the quotient manifold consists of left cosets zH, z ∈ G. Then
π : V → X (M) defined unambiguously by π(X)(p(z)) = Tzp(X(z)) is a linear func-
tion, where p : G → M := G/H is the natural projection.

Proof: Since π defined by Tp so π is linear. Let {X1, · · · , Xk, Xk+1, · · · ,
Xn} be a basis of Lie algebra of the Lie group G (consists of right invariant vector
fields) such that {X1, · · · , Xk} is a basis of the Lie algebra of closed Lie subgroup H.
So {Xk+1, · · · , Xn} is a basis of vector space V . We must show π is welldefined.
Assume that z1, z2 ∈ G and p(z1) = p(z2) = x, therefore z1H = z2H, so z−1

1 z2 ∈ H.
Also for h ∈ H we have p ◦Rh = p because for any g ∈ G

p ◦Rh(g) = p(gh) = ghH = gH = p(g).

So p ◦Rz−1
1 z2

= p.
Let f ∈ C∞(M,R) be a real valued differentiable function, then by attention to the
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fact that (for i = 1, · · · , n)Xi is right invariant we have

(π(Xi)(p(z2)))f = (Tz2p(Xi(z2)))f
= (Tz2p(Tz1Rz−1

1 z2
(Xi(z1))))f

= Xi(z1)(f ◦ p ◦Rz−1
1 z2

)

= Xi(z1)(f ◦ p)
= (Tz1p(Xi(z1)))f
= (π(Xi)(p(z1)))f.

So for any X ∈ V such that X =
∑n

i=k+1 λiXi we have

(π(X)(p(z2)))f = (π(X)(p(z1)))f

Therefore the definition of π is welldefined. 2

Lemma 3.2. Consider the assumptions of Lemma 3.1 and also suppose that H is
a closed normal Lie subgroup of G. Then

Tzp : V (z) → Tp(z)M

is an isomorphism, where V (z) =span{Xk+1(z), · · · , Xn(z)}.

Proof: For i = 1, · · · , k we have Xi(e) ∈ TeH, and also

Rz : H → Hz = zH

is a diffeomorphism, so Xi(z) = TeRzXi(e) ∈ TzzH. Therefore
Xi(z) ∈ ker(Tzp : TzG → Tp(z)M). But we know that Tzp : TzG/TzzH → Tp(z)M is
an isomorphism of vector spaces and TzG/TzzH ' V (z), so

Tzp : V (z) → Tp(z)M

is an isomorphism of vector spaces. 2

Theorem 3.3. Assume that G is any n−dimensional Lie group, H any closed
normal Lie subgroup, M = G/H the quotient group and p : G → M is the natural
projection. If F is a right invariant Finsler metric on G, then there is a Finsler met-
ric on M induced by F such that is invariant under the natural right action of G on M .

Proof: Suppose that g and h are the algebras of right invariant vector fields of
G and H, respectively, and {X1, · · · , Xk, Xk+1, · · · , Xn} is a basis of g such that
{X1, · · · , Xk} is a basis of h. Let V be a vector subspace complementary to h in g,
that is, g = V

⊕
h. Assume that x ∈ M and X ∈ TxM is a tangent vector at x. Let

z ∈ G and Z ∈ V (z) such that p(z) = x and Tzp(Z) = X. (By Lemma 3.2 for any
fixed z such that p(z) = x, there is a unique Z ∈ V (z) such that Tzp(Z) = X) In this
situation we define

F(X) := F (Z)
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At the first we show that this definition is welldefined.
For this, we must to show that the definition of F is independent of choice of z.

Assume z1, z2 ∈ G,Z1 ∈ V (z1), Z2 ∈ V (z2) and p(z1) = p(z2) = x,
Tz1p(Z1) = Tz2p(Z2) = X, Z1 =

∑n
i=k+1 λiXi(z1), Z2 =

∑n
i=k+1 µiXi(z2).

Now we can write

Tz1p(Tz2Rz−1
2 z1

(Z2)) = Tz1p(Tz2Rz−1
2 z1

(
n∑

i=k+1

µiXi(z2)))

= Tz1p(
n∑

i=k+1

µiTz2Rz−1
2 z1

(Xi(z2)))

= Tz1p(
n∑

i=k+1

µi(Xi(z1))

=
n∑

i=k+1

µiTz1p(Xi(z1))

=
n∑

i=k+1

µi(π(Xi)(p(z1)))

=
n∑

i=k+1

µi(π(Xi)(p(z2)))

=
n∑

i=k+1

µiTz2p(Xi(z2))

= Tz2p(
n∑

i=k+1

µi(Xi(z2)))

= Tz2p(Z2) = X

But since Tz1p : V (z1) → TxM is an isomorphism of vector spaces, we have
Tz2Rz−1

2 z1
(Z2) = Z1 (This also shows that for i = k + 1, · · ·n we have λi = µi).

So

F (Tz2Rz−1
2 z1

(Z2)) = F (Z1).(3.1)

But F is a right invariant Finsler metric on G, so for any g1, g2 ∈ G and Xg1 ∈ Tg1G
we have

F (Tg1Rg2(Xg1)) = F (Xg1),

therefore

F (Z2) = F (Tz2Rz−1
2 z1

(Z2)).(3.2)

By equations 3.1 and 3.2 we have F (Z1) = F (Z2).
It means the definition of F(X) is independent of choice of z, so F is welldefined.
F has all two conditions of Finsler metrics, because F = F ◦ (Tp|V )−1. Also F is
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right invariant under right action of G on M , because F is right invariant on G. 2

Remark 3.4. If we want to have a similar theorem as Theorem 3.3, for left in-
variant Finsler metrics, it suffices to replace the word “right” by “left” in Lemma 3.2
and Theorem 3.3, and to use the fact that zH = Hz by the normality of H.

Theorem 3.5. Assume that G is any n−dimensional Lie group, H any closed
normal Lie subgroup, M = G/H the quotient group and p : G → M is the natural
projection. If F is a bi-invariant Finsler metric on G, then there is a Finsler metric
on M induced by F such that is invariant under the natural right and left actions of
G on M .

Proof: Suppose that g, h, {X1, · · · , Xk, Xk+1, · · · , Xn} and V are the same ob-
jects in the proof of Theorem 3.3. Let z ∈ G and Z ∈ V (z) such that p(z) = x and
Tzp(Z) = X. We define F : TM → [0,∞) by F(X) := F (Z). By Remark 3.4, this
definition is welldefined and also left invariant.
Since {X1, · · · , Xk} is a basis of the Lie algebra consists of left invariant vector fields
of H, so {ν∗X1, · · · , ν∗Xk} is a basis of the Lie algebra consists of right invariant
vector fields of H and {ν∗X1, · · · , ν∗Xn} is a basis of the Lie algebra consists of right
invariant vector fields of G. Now by using Lemma 3.2 and Theorem 3.3 and the fact
that, zH = Hz for any z ∈ G, we have F is right invariant, therefore F is bi-invariant.
2

Corollary 3.6. Let G be any n−dimensional connected Lie group, H any con-
nected closed Lie subgroup and M := G/H the quotient manifold. Suppose that F is
a left invariant (right or bi-invariant) Finsler metric on G. If h is an ideal of g then
M admits a left invariant (right or bi-invariant) Finsler metric in the natural way.

Proof: Since G and H are connected Lie groups and h is an ideal of g, by Theorem
2.13.4 of [8], H is a closed normal Lie subgroup of G. So by attention to Theorems
3.3, 3.5 and Remark 3.4 the proof will be finished. 2

Corollary 3.7. Let G be any n−dimensional abelian Lie group and H a closed
subgroup of G. If F is a left invariant (right or bi-invariant) Finsler metric on G then
F induces a left invariant (right or bi-invariant) Finsler metric on M = G/H in the
natural way.

Our results are true in Riemann case, and also our method for construct invariant
Finsler metrics on quotient groups is compatible with method described in the first
part of section 3 about invariant Riemannian metrics.
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