Fields associated to Lagrangian dynamical systems

V. Obadeanu

Abstract. The general theory of uperfields gives us, in particular, fields
associated to classical Lagrangean systems. We get a unitary theory.
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I. Uperfields associated to Newtonian dynamical systems
1.1. The Lagrange form. The Lorentz conditions

Let us consider a Newtonian dynamical system described by:
(1.1) §'=F'(t,q.q), (m=1), (¢" =", o' = F'(t,q,v))
We associate to it the equivalent system of equations:
0" = dq' — vidt = 0,
(1.1) . o
Yt =dv' — F*'(t,q,v)dt =0
and the Lagrange-Gallissot 2-form:
(1.2) Qg = dv' Adq' + (Fidg' — v'dv') A dt.

The characteristics of the form Q¢ are the trajectories of the dynamical system (1.1).
In general, a 2-form:

. . . . 1 . 1 _ .
(1.27) Q= A;;dv* Ndg’ + (E;dg* — Pidv*) Adt+ §Bijdql ANdg? + iQijdvl A dv?,

with:

(1.3) det £0,
A Qi

have the characteristics given by:
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deqj — Ajid’l)j + Eidt = 0,

(1.4) _ ,
Aijdq] + Qijd’l}j - P,dt =0.

Proposition 1. The characteristics of the 2-form (1.2") are the trajectories of the
system (1.1) if and only if the Lorentz conditions:

Bijvj — AjiFj + E; =0,

(1.4") . _
Aijvj +Qiij 7P2 = O
hold.
It follows by (1.1) and (1.4).
The 2-forms (1.2") which satisfy the condition (1.3) and the Lorentz conditions
(1.4"), are called equivalent (they admit the same characteristics). There equivalent
class is a dynamical notion.

1.2. The behaviour of the coefficients of the form 2 on a change of local
chart on the base manifold M

On a change of local chart on M and respectively a change of vectorial chart on
TM defined by:

oq
LTL = qﬂ(qh)7 dql - a hdqh7
q
(1.5) o5 95 95
07 4 07y vt
= aqhv , dv* = —aqhdv +—aqhdq ,

the coefficients of the form €2 change by the rules:

o - B aqi ov' an 0 0
Bne —Arn En aq" 0g" 0 By —A; E; oGk
Ahk Qhk *Ph = 8Ui Aij Qij *Pi 6vj 81}j
_ 0 =5 0 9k Dok
—FE, Py 0 9v _Ej Pj 0 1 !
0 0 1 0 0 1

By this relation follows:

—  9q —  0¢ o’ — aq" O¢’
Py = thpu En = WEz - Wpi, Qpur = o7 78@’“62”’
— Oq* 0¢7 1 /9q¢* Ov?  O¢? Ov?
: Ak = S a4+ 5 5~ o Ao | Qis
(1.6) " agh ogh Y T 2 (aqh agc — agh gt )
= 040, (0D I, 1[0 O Q'
B= ogag i T <8qh o ogo7) " 2 \ograq o o)

1.3. The Maxwell’s principle.

We say that a 2-form (1.2") for which the condition (1.3) holds, satisfies the
Maxwell’s principle ([4]) if it is closed. By d©2 = 0, the Maxwell’s equations:
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OAw A OBy 9Au  0Au , 0Qy

0q’ oq’ o 7 vt owi + Oqh =9,
0Ay O, OP_ 0By  OF; OF _
(1.7) ot ovi | 9gi N
TR i D D el D D el
(4,3,h) (i,4,h)

follow.

The coefficients A;;, B;j, Qij, Ei, P;, which satisfy the condition (1.3), the Lorentz
conditions (1.4) and the Maxwell’s equations (1.7), are called coefficients of the uper-
field, the form € is called uperfield form.

Given a solution of the equations (1.7), any other system of functions is a solution
if and only if the difference between the two solutions is a first integral ([2]). For given
initial conditions, the solution of the equations (1.7) exists and it is unique ([2]).

II. Field theory
2.1. The canonical isomorphism

Given the dynamical system (1.1), we associate to it the Lagrange 2-form (1.2).
Let us consider the non-singular matrix A with its inverse A~

Bij —Aji QY AV
(2.1) A= ! N RV ).
Aij Qi —A% BY

By A-A~! =T we obtain the relations:

B;;Qi" + A A =6t B;;Ah 4+ Bh A =0,
A A"+ Qi Bh = 6f, AyQIt 4+ AMQj = 0,
which define the components of the inverse matrix.

We can now define a natural isomorphism, denoted by A, A : TR xTM) —
T*(R x TM), locally expressed by:

(2.1)

Bq',j —Aji Ei Xi Bz’j —Aji Ei Xj a;
A=(Ap)=| A Qi -P || Y |=| 45 Qy -P Yi |=| b
—Ej Pj 1 A —Ej Pj 1 A C

(a,b=1,2m + 1), where:
a; = Binj — Atij + EiZ, bi == Ainj + Qijyj — P)zZ7 Cc = —EZ'Xi + szl + Z.

Proposition 2. The necessary and sufficient condition so that the non-autonomous

semispray S = o + o aq + F’% to become, by the canonical isomorphism, dt,
(A(S) = dt), is that the Lorentz conditions to be satisfied.
Indeed, this follows by:
vt B, —-A; E; vJ Bijvi — A Fi + E;
A Fi = Ay Qy —P || F Al + Qi F7 — P, | =
1 -E; P 1 1 —Ejvl + PjF7 +1

_ o O
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2.2 The uperfield equations. The waves equation
1. The volume form
On R x T'M we build the following volume form:

n=+/| detA | dg* A--- Adg™ Advt A Ado™ Adt,
where the matrix A is defined by (2.1).

2. Differential operators

a) The Hodge-de Rham adjunction operator is defined, for any p-form « €
AP(R x TM), by associating to it a (n — p)-form xa € A" "P(R x TM), where n =
2m + 1, given by:

(*Oé)(Xh [SPN ,Xn_p)’l] =aA AXl VARERWA AXn_p.
Locally, this operator is expressed by:

1
—_ A1y,
(*a)ap+17'“van - p'nal-,--~7ap7ap+17~--»ana TR,

where q®»% = A®b ~--Aapbp04b1,-~,bp7
ponents of the p-form «.
b) The codifferentiation operator is given by:

(a;, b = 1,n), are the contravariant com-

§=(—1)Ps1ax.
¢) The Laplace d’Alembert operator is defined by:
O=dd+dd : a— DOa.

3. The propagation equation of the uperfield (the waves equation)
If Q is the (closed) Lagrange 2-form, the propagation equation of the uperfield is:

aQ = dofd.
Remarks. By the rules of transformations (1.6) of the components of the 2-form
2, follows that the functions @;; and P; give us the distinguished objects: P = P;dq"
1 . .
(a covector - the impulse form) and Q = iQijdql Adg’ (a 2-form). The functions P;

and E; are the components of a covector ¢ = E;dq" — P;dv® on TM (parameterized
by t); m = Q — P Adt is a 2-d-form on R x M.
We have the following special cases:

1 . ,
a. If m = 2p and det(Q;;) # 0, the 2-form Q = 5622-]-dqZ A dg’ has the property

that n = QP = /| det(Q;j) | dg* A --- A dg™ is a distinguished volume form on M,
parameterized by .

Qij —b

J

Qij —hi
det !
P 0

b. Ifm2p+1anddet< >7é0, the 2-form m = @ — P A dt has the

property that n; = 7P+! = dg' A- - -Adg™Adt is a distinguished

volume form on R x M.
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2.3 The transformations of the uperfield coefficients on a family of dif-
ferentiable changes of chart
Let us consider a change of chart on the manifold R x T'M, given by:

) » » 8q 8q
1 h 7 e
. q=qtq"), dg' = 9 ——dq" + 57 4
' g 0T n 0T 0T v’ v
Ve e YT o agh ot

The coefficients of the uperfield change by the rules:

gt

o’

- - = ~h —h % 0 %
By —Arn  En 9" 9q By —Ay E; og~ ot
A Qe —Prnl|=| o gi Aij Qi b ovl oI ol
-E, Py 0 oa B ~E;, P, 0 ogt ovk ot
R 0 0 1
ot ot

By these relations follows that the functions A;;, B;; and @;; change by the same
rules as given in (1.6) and the functions E; and P; change by the rules:

- 0¢ o¢’ ovd
Ph - &jh <P1 ot Az] ot QU) )
_ aqi o’ 8(] 8q1
2.3 Ey = . — —_P, “Lp,
(2.3) h o o7 +8 Ot i+
0v o og v\ vt ow
ogh ot  agh ot Y ogh ot U

II1. Fields associated to classical Lagrangean dynamical systems

Proposition 3. A necessary condition so that a second order dynamical system
to be Lagrangean is that the system is written in main form:

(31) Fk = Aki(t7 q, 'U),Uz + Bk(tvqa 'U) = 07 (’U = (J)

The system is non-degenerated if the property:

OF;
det ( 500
holds.

Such a system of equations, which is a model of the dynamics of a real system,
is not unique. We say that two systems I; = 0 and G; = 0 are equivalent if they
admit the same solutions. We consider the class of systems G; = F; D! = 0, where
D! = DI(t,q,v), det(D!) # 0, V(t,q,v) € R x TM.

Without loosing the generality, we can assume that the system we consider from
the above equivalence class, satisfies A;; = A;;.

>—det(A ) #£0



112 V. Obadeanu

The functions A;; are the components of a d-metric on M, they change, on a
change of local chart, by the rules:

" aqh gk

If (AY) is the inverse of the matrix (A4;;) and if we multiply (3.1) by AM, we
obtain the equations (1.1), where:

F'=—-A"p,.

The coefficients —B; = A;; F7 are the covariant components of the field of force
F', with respect to the metric given by A;;. We have:

Proposition 4. A dynamical system (3.1) is Lagrangean if and only if it is self-
adjoint ([3]).

The self-adjointness conditions are:

B 0Aiy  Ajk
det(Aij) # 0, Aij = Aji, 5= = 55,
0B, OB, o .0
(32) 5w o (at i 8qk> i
0B, 0B, _1(0 0\ (0B 0B,
dgi gt 2\ ot OqFk ovi ot )

Proposition 5. A dynamical system (1.1) is equivalent with a selfadjoint (La-
grangean) system if and only if the Lagrange 2-form (1.2') has the components Q;; = 0
([2])-

Indeed, in this case, the Maxwell’s equations (1.7) become the Helmholtz equations
(3.2).

Let us associate to the system (3.1) the Pfaff forms:

0 = dq* — vidt,
(3.1) .
wi = Al-jdvj + Bldt

The corresponding Lagrange 2-form is:

1 , ,
(3.3) Q=yY, NO"+ §Bij9l AN
where the coefficients B;; are, for the moment, arbitrary.
We have:
_ . _ _ 1 . .
(3.3) Q= A;;dv' Ndg’ + (Eidg" — Pdv*) Adt + §Bijdql ANdg.

The Lorentz conditions (1.4") become:

E; + Bij’l}j = —B;,

(3.4) .
Pi — Aijl}] =0.
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The characteristics of the above 2-form are the trajectories of the system (3.1).
By the Maxwell’s equations we obtain the coefficients B;;.

The first set of the relations (3.4) tells us that the field of force of components
—B; is a Lorentz field with respect to the coefficients of the field (E;, B;;), the field
of force being F* = A" (E}, + Bppv®).

The second set of the relations (3.4) tells us that the functions P; are the covariant
components of the field of velocities with respect to the d-metric A;;. We call them
impulse functions.

The field of force F' can be considered of mechanical (newtonian) nature as being
contravariant (spray), or as a Lorentz field of force, of electromagnetic nature as being
covariant.

We have the properties: det(4;;) # 0 and A;; = A;;. The Maxwell’s equations are:

8Aih o 6Ajh 0 8Bij 8A;”» 8Ahj

gvi o " ah T ag T ag O
0A;; OE; 0P, OBi;
(3.5) o T ou T gl =0 4~  Ogh -0
(4,3,h)
0B; 0E; OFE oP; 0P

at " og 0@ O v 0w
By the second Lorentz relation (3.4), the last Maxwell equation and the property
A;; = Aj; follows the first relation of (3.5). The forth and fifth relations of (3.5) can

be written as: rot E4+— = 0, div B = 0; they are the well-known Maxwell equations
for the electric field F; and the magnetic induction B;;.

The magnetic induction is connected to the metric by the second relation (3.5)
and the electric field is connected to the metric by the third relation (3.5) and the
second Lorentz condition.

We call the subset (E;, B;;) field.

The transformation rules (1.6) of the coefficients of field become:

_ 8qi — 8qi ot
Py, = 7P¢, by =-—=FE; - 7,Pia
" ogh "o "
— 9q* O¢’
3.6 App = == —A;,
( ) hk aqh &jk J

g, 0004, (OO 0v 0N
ogh ogk ogh ogc  og~ ogh )

Remarks. In this special case, the uperfield has two components:

1. A geometric component which contains a d-covector: the impulse P; and a
non-degenerated and symmetric two times covariant second order d-tensor: A;;. They
endow the configuration space with a Lagrangean structure.

2. A component of “field” (E;, B;;) which satisfies the classical electromagnetic
field equations.

3. The field (E;, B;;) and the metric A;; allow us to build a (classical) field theory,
where the Maxwell’s equations hold.
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4. Together, the coefficients F; and P; can be considered as a field of covectors on
TM: E;dq* — P;dv'. On the evolution, this Pfaff form lead us to a conservation law.

5. The field of force Fj;, considered as a semispray, let us to associate a nonlinear
connection to the structure of the space.

6. By the rules of transformations (3.6) of the coefficients of the form Q, on a
change of local chart on M (respectively on T'M), follows that by the uperfield’s
interpretation we obtain a unitary electro-gravitational theory.

7. This point of view holds if we consider a change of coordinates on R x T'M
(2.2). In this case we have the relations:

B, _ 9 od ,

Phw<PzatAzj)a

B,y OV 0000, (000 Og O
h 3(jh % aqh % &jh ot ij i

(3.6")

agh ot oqh ot

8. By the relations (2.1'), if Q;; = 0, follows for the components of the inverse
matrix A™! of the field that: (A%) is the inverse of the matrix (A4;;) and the functions
B are the contravariant components of B, lifted with the components of the inverse
matrix (AY).

IV. The case of a dynamical system given by the Lagrange
function

Given the Lagrange function L = L(t, ¢, v), the Euler-Lagrange equations are:

L L ) )
d (8 >—8.:0, (dg* = v'dt).

dt \ Ov oq*
We have:
0*L W 0%’L iy 0%°L oL
— —— — — —— =
ovtovI ov*oqI oot 0¢*

This system is written in the main form (3.1), where:

0L
Oviovd’
L, 0L oL

= gviag " T ovior  og

Aij =

The Lagrange form is:

o*L ., .1 9°L 0L , ,
Q == 7(1 E /\ d J - - o - - d g /\ d J
L= Buigei ¢+ 2 (8(]’5‘1;] 81)’8(13) ? 7
oL , O0°L 0%L . 0°L ;
- — " - - — — —dv' | A dt.
[(8(1’ Y avkag  aviat) T T auhaui Y
. . ) 0%L
In this case, it follows for the components of the field the expressions: A;; = Joidu]
vl Ov
0%L 0%L 0’L
(the metric), B;; = (the magnetic induction), P, = ———v’ (the

dqidvi  dvidg OvtovI
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oL 0*L n 0L
= — — - — v -

Oqt  Oviot Ovhogqt
satisfy the Maxwell’s equations. _

By the Lagrange equations, the field of force with the Lorentz expression: F* =

. oL d (L
A (B}, + Bpo®), lead us to: Fy; = — — pr ( 5 ) + F"Ap; = Ay F"| which show
v

0q*
that the Lorentz force F; is the covariant expression of the Newtonian field F?, with
respect to the canonical d-metric A;;.

impulse), E; (the electric field). Obviously, this values
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