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Abstract. We introduced a class of conformally invariant Ehresmann
connections so–called L-horizontal endomorphism in [7]. Using this class,
we define conformally invariant manifolds: Wagner–type manifold and lo-
cally Minkowski–type manifold as special generalized Berwald manifolds.
Then a generalization of Hashiguchi–Ichijyō’s Theorems to Wagner–type
manifolds is presented.
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1 Introduction

In [5] M. Hashiguchi and Y. Ichijyō have explored the significance of Wagner mani-
folds relating them to the conformal change. One of the most important observations
in [5] is that the class of Wagner manifolds is closed under the conformal change. In
[4], Hashiguchi suggested and (in some sense!) solved the problem: under what condi-
tions does a Finsler manifold become conformal to a Berwald (or a locally Minkowski)
manifold. In [14] Cs. Vincze presents intrinsic version of Hashiguchi–Ichijyō’s theo-
rem for Wagner manifolds. In this paper, we introduce Wagner–type manifolds as a
generalization of Wagner manifolds by using a class of Ehresmann connections so–
called L–horizontal endomorphisms which are closed under conformal change. Then
we prove generalization of Hashiguchi–Ichijyō’s Theorems to Wagner–type manifolds.
In last section, we introduce and study locally Minkowski–type manifolds. The main
result of this section is to show the conformally closeness of the locally Minkowski–
type manifolds.

2 Preliminary

We work on an n-dimensional connected smooth manifold M whose topology is Haus-
dorff and has a countable base. C∞(M) denotes the ring of smooth real-valued func-
tions on M , X(M) stands for the C∞(M)-module of (smooth) vector fields on M .
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Ω(M) := ⊕n
i=0Ω

k(M) is the graded algebra of differential forms on M , with multipli-
cation given by the wedge product. The symbols d, iX , LX (X ∈ X(M)) denote the
exterior derivative, the substitution operator and the Lie derivative.

TM is the 2n-dimensional tangent manifold of M , TM ⊂ TM is the open sub-
manifold of the non-zero tangent vectors to M . fv and f c stand for the vertical and
the complete lift of a smooth function f on M into TM .

For any vector field X on M there exist unique vector fields Xv,Xc on TM such
that

Xvf c = (Xf)v, Xcfc = (Xf)c (f ∈ C∞(M)).(2.2.1)

Xv is the vertical lift, Xc is the complete lift of X. The C∞(TM)−module of vertical
fields on TM will be denoted by Xv(TM). The Liouville vector field C ∈ Xv(TM) is
generated by the flow of positive dilatation pt : v ∈ TM 7−→ pt(v) := etv ∈ TM (t ∈
R). Notice that

[C, Xv] = −Xv, (X ∈ X(M)).(2.2.2)

By a vector k−form on TM we mean a skew symmetric C∞(TM)-multilinear
map K : (X(TM)k → X(TM) if k ∈ {1, 2, . . . , 2n}, and a vector field on TM , if
k = 0. In particular, a vector 1−form on TM is just a type (1, 1) tensor field. The
C∞(TM)−module of vector k−forms on TM will be denoted by Ψk(TM). There is
a unique vector 1−form J ∈ Ψ1(TM) such that

JXv = 0, JXc = Xv, (X ∈ X(M).(2.2.3)

J is called the vertical endomorphism. Clearly, J is of rank n and J2 = 0. A vector
form K ∈ Ψk(TM) is semibasic, if iJξK = 0 and J ◦K = 0 (k ≥ 1, ξ ∈ X(TM)).

We recall that if θr and θs are graded derivation of degree r and s, resp. of a
graded algebra, then their graded commutator is defined by

[θr, θs] := θr ◦ θs − (−1)rsθs ◦ θr.(2.2.4)

Then [θr, θs] is a graded derivation of degree r + s. By the Frölicher-Nijenhuis theory
of vector forms to any vector k–form K ∈ Ψk(TM) two graded derivations of Ω(TM)
are associated, denoted by iK and dK . iK is of degree k − 1, dK is of degree k, and
the following rules are prescribed:

iK ¹ C∞(TM) = 0; iK ◦ α = α ◦K, if α ∈ Ω1(TM);(2.2.5)

dK := [iK , d] = iK ◦ d− (−1)k−1d ◦ iK .(2.2.6)

Then, in particular, for all F ∈ C∞(TM),K ∈ Ψk(TM) we have dKF = dF ◦K. For
vector 0-forms ξ ∈ Ψ0(TM) = X(TM), i.e., for vector fields on TM , iξ and dξ reduce
to the usual substitution operator and Lie derivative, respectively. To any vector forms
K ∈ Ψk(TM), L ∈ Ψ`(TM) there is a unique vector (k+l)−form [K, L] ∈ Ψk+l(TM),
the Frölicher-Nijenhuis bracket of K and L such that

d[K,L] = [dK , dL].

In this paper we are going to systematically use the Frölicher-Nijenhuis calculus of
vector forms. A detailed account on the theoretical background can be found e.g.
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in monographs ([6]), ([11]), and (of course) in the original source ([2]). Let K be a
vector 1-form and β a differential 1-form. Then the following important formula can
be deduced:

[K,β ⊗X] = dKβ ⊗X − dβ ⊗KX − β ∧ [K, X],(2.2.7)

(X ∈ X(M)).

3 Conformal change of L-horizontal endomorphisms

A vector 1–form h ∈ Ψ1(TM), smooth –in general– only over TM is said to be a
horizontal endomorphism (or Ehresmann connection) over M if it is a projector (i.e.,
h2 = h) and kerh = Xv(TM). h is called homogeneous if [C,h] = 0. The (strong)
torsion of h is the vector 2–form Ω := − 1

2 [h,h]. The mapping

X ∈ X(TM) 7→ Xh := hXc ∈ X(TM)(3.3.1)

is called the horizontal lifting determined by horizontal endomorphism h.
Suppose that ∇ is a linear connection on the manifold M . It is well–known that

∇ induces a homogeneous horizontal structure h∇ ∈ Ψ1(TM), which is smooth on
the whole tangent manifold TM . In this case

∀ X, Y ∈ X(M) :
(∇XY

)v = [Xh∇ , Y v].

By Lemma 1.5 of ([8]), If two homogeneous horizontal endomorphisms h1 and h2

on M satisfy the relation

[Xh1 , Y v] = [Xh2 , Y v],(3.3.2)

for any vector fields X, Y on M , then h1 = h2. Thus h∇ is unique.
Let a function E : TM → R be given. The pair (M, E) is said to be a Finsler

manifold if the following conditions are satisfied:

(F 1) For any vector v ∈ TM,E(v) > 0, E(0) = 0.

(F 2) E is of class C1 on TM and smooth over TM .

(F 3) CE = 2E, i.e, E is homogeneous of degree 2.

(F 4) The fundamental form ω := d dJE is symplectic.

Due to the nondegeneracy of ω, for any 1–form β ∈ Ω1(TM) there is unique vector
field β# on TM (smooth, in general, only on TM) such that

iβ# ω = β.(3.3.3)

This map # : β → β# is called the (Finslerian) sharp operator. In particular, the
gradient of a function F ∈ C∞(TM) is the vector field grad F := (dF )#.

For every Finsler manifold there is a horizontal endomorphism h0 on M , called
the Barthel endomorphism. The Barthel endomorphism is homogeneous, conservative
(i.e., dh0E = 0) and torsion free (i.e., [J,h0] = 0).
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Let L be a semibasic vector 1–form on TM . The horizontal endomorphism

hL := h0 + L + [J, (dLE)#](3.3.4)

is called L–horizontal endomorphism on Finsler manifold (M, E).
Wagner endomorphism h on Finsler manifold (M,E) is conservative and

h = h 1
2 αcJ− 1

2 dαv⊗C = h0 + αcJ − E[J, grad αv]− dJE ⊗ grad αv,(3.3.5)

(see [7], [15]).
Let α be a smooth function on M and define a positive function on TM by

ϕ := exp ◦ αv.(3.3.6)

If
∼
E := ϕE, then (M,

∼
E) is also a Finsler manifold (see [14] Lemma 1). We say that

(M,
∼
E) has been obtained by a conformal change of E given by the scale function ϕ. It

is known ([7]) that the set of all conservative L–horizontal endomorphism is invariant

under conformal change with scale function (3.3.6). L–horizontal endomorphism
∼
hL

of (M,
∼
E) are related to the corresponding data of (M, E) by

∼
hL = hL − 1

2
(αcJ + dαv ⊗ C) +

1
2
E[J, grad αv] +

1
2
dJE ⊗ grad αv.(3.3.7)

4 Wagner–type manifolds

Suppose that (M,E) is a Finsler manifold and let ∇ be a linear connection on M .
The triplet (M,E,∇) is said to be a generalized Berwald manifold if horizontal en-
domorphism h∇ is conservative, i.e., dh∇E = 0, ([8]).

Suppose that (M, E,∇) and (M,E,∇) are generalized Berwald manifolds. The
linear connections ∇ and ∇ are equal if and only if h∇ = h∇ ([9]).

Sz. Szakál and J. Szilasi have shown in ([9]) that (M, E,∇, α) is a Wagner manifold
if and only if the horizontal endomorphism h∇ is of form

h∇ = h0 + αcJ + E[J, grad αv]− dJE ⊗ grad αv.(4.4.1)

Next we consider a quite natural generalization.

Definition 1. A quadruple (M, E,∇, L) is said to be Wagner–type manifold with
respect to L if (M, E,∇) is a generalized Berwald manifold, and h∇ is the L–horizontal
endomorphism.

Remark. The linear connection of a Wagner–type manifold with respect to the semi-
basic vector one-form L is clearly unique.

Lemma 1.

(i) A Berwald manifold (M, E) is a Wagner–type manifold with respect to 0.
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(ii) A Wagner manifold (M,E) with respect to α (α is smooth function on M) is a
Wagner–type manifold with respect to

wα :=
1
2

(αcJ − dαv ⊗ C).

Proof. (i) By Definition 6.5 and Remarks 6.6(a) of ([12]) A Finsler manifold (M,E)
is said to be a Berwald manifold if there is a linear connection ∇ on M such that
the horizontal endomorphism induced by ∇ is just the Barthel endomorphism, i.e.,
h∇ = h0.
(ii) By 4.2 Finsler manifold (M, E,∇, α) is a Wagner manifold if and only if the
horizontal endomorphism h∇ is of form

h∇ = h0 + αcJ + E[J, grad αv]− dJE ⊗ grad αv (3.3.5)
= hwα .(4.4.2)

It proves what we want.

Next we gather together some equivalent definition for Wagner–type manifolds.

Proposition 1. Let (M, E) be a Finslermanifold, L be a semibasic vector one–form
on TM and hL is consevative. Suppose ∇ is a linear connection on M . Then following
conditions are equivalent:

(1) (M, E,∇, L) is a Wagner–type manifold.

(2) For each vector fields X, Y on M ,

(∇XY )v = [XhL , Y v].

(3) For all vector fields X, Y on M , [XhL , Y v] is a vertical lift.

Proof. It is evident by Lemma 6.7 of ([12]), Definition 1 and (3.3.2).

Cs. Vincze in ([14]) prove an intrinsic version of Hashiguchi–Ichijyō’s Theorem
for Wagner manifolds, here we state and prove our main result, generalization of this
theorem for Wagner–type manifolds.

Theorem 1. Let (M,E) be a Wagner–type manifold with respect to L and let us
consider the conformal change given by the scale function (3.3.6). Then the Finsler

manifold (M,
∼
E) is a Wagner–type manifold with respect to L + 1

2 wα.

Proof. We have

h(L+ 1
2 wα) = hL +

1
2

(hwα − h0)

therefore h(L+ 1
2 wα) and consequently

∼
h(L+ 1

2 wα) is conservative by (3.3.7). It is suf-

ficient to show that for all X,Y ∈ X(M) the vector field [X
∼
h(L+ 1

2 wα) , Y v] is vertical
lift.
A direct computation yields
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∼
h(L+ 1

2 wα)

(3.3.7)
= h(L+ 1

2 wα) −
1
2

(αcJ + dαv ⊗ C)

+
1
2

E[J, grad αv] +
1
2

dJE ⊗ grad αv

(3.3.4)
= hL +

1
2

αcJ − 1
2

E[J, grad αv]

− 1
2

dJE ⊗ grad αv − 1
2

(αcJ + dαv ⊗ C)

+
1
2

E[J, grad αv] +
1
2

dJE ⊗ grad αv

= hL − 1
2

dαv ⊗ C.

(4.4.3)

By Proposition 1, the vector field [XhL , Y v] is a vertical lift for all X, Y ∈ X(M),
since (M,E) is a Wagner–type manifold with respect to L. Then an straightforward
computation implies that

[X
∼
h(L+ 1

2 wα) , Y v]
(3.3.1)

= [
∼
h(L+ 1

2 wα)(X
c), Y v]

(4.4.3)
= [hL(Xc), Y v]

− 1
2

[(dαv ⊗ C)(Xc), Y v]
(3.3.1),(2.2.1)

= [XhL , Y v]

− 1
2

[(Xα)vC, Y v] = [XhL , Y v]− 1
2

(Xα)v[C, Y v]

(2.2.2)
= [XhL , Y v] +

1
2

(Xα)vY v

It means that [X
∼
h(L+ 1

2 wα) , Y v] is a vertical lift. Applying Proposition 1, we conclude

that (M,
∼
E) is a Wagner–type manifold with respect to L + 1

2 wα.

Definition 2. A Finsler manifold (M, E) is said to be conformal to a Wagner–type

manifold with respect to L, if there is a conformal change
∼
E := ϕE such that (M,

∼
E)

is a Wagner–type manifold with respect to L.

We are in the position to show the conforlmally closeness of Wagner–type manifolds.

Theorem 2. A Finsler manifold is conformal to a Wagner–type manifold with respect
to L if and only if it is a Wagner–type manifold with respect to L− 1

2 wα for a smooth
function α on M .

Proof. Let us suppose that the Finsler manifold (M, E) is conformal to a Wagner–type

manifold with respect to L, i.e., there is a conformal change
∼
E = ϕE (ϕ = exp ◦ αv)

such that (M,
∼
E) is a Wagner–type manifold with respect to L. In view of Theorem

1 the conformal change E = 1
ϕ

∼
E yields a Wagner–type manifold with respect to

L− 1
2 wα. The converse is also true by Theorem 1.

Let us mention some corollaries of the Theorem 1.

Corollary 1. A Wagner–type manifold with respect to L is conformal to a Wagner–
type manifold with respect to L̄ with scale function (3.3.6) if and only if L̄−L = 1

2 wα.
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Corollary 2. A Finsler manifold is conformal to a Wagner manifold if and only if
it is a Wagner manifold.

Corollary 3. A Finsler manifold is conformal to a Berwald manifold if and only if
it is a Wagner manifold.

5 Locally Minkowski–type manifolds

Definition 3. A Wagner–type manifold with respect to L is called locally Minkowski–
type manifold with respect to L if

ΩL = 0,(5.5.1)

where ΩL is the (strong) torsion of hL.

Lemma 2. A Locally Minkowski manifold is a locally Minkowski–type manifold with
respect to 0.

Proof. By Definition 7.1 of ([12]) a Berwald manifold (M, E) is said to be locally
Minkowski manifold if Ω0 = 0.

Theorem 3. A Finsler manifold is conformal to a locally Minkowski–type manifold
with respect to L if and only if for a smooth function α on M , it is a locally Minkowski–
type manifold with respect to L− 1

2 wα.

Proof. Let us suppose that the Finsler manifold (M,E) is conformal to a locally

Minkowski–type manifold with respect to L, i.e., there is a conformal change
∼
E =

ϕE (ϕ = exp ◦ αv) such that (M,
∼
E) is a locally Minkowski–type manifold with

respect to L. In view of Theorem 2, (M, E) is a Wagner–type manifold with respect

to L − 1
2 wα. Since (M,

∼
E) is a locally Minkowski–type manifold with respect to L

thus
∼
ΩL = 0, therefore we get

−2 Ω (L− 1
2 wα) =

[
h (L− 1

2 wα),h (L− 1
2 wα)

]

(4.4.3)
=

[∼
hL +

1
2

dαv ⊗ C,
∼
hL +

1
2

dαv ⊗ C
]

=
[∼
hL,

∼
hL

]
+

[∼
hL, dαv ⊗ C

]
+

1
4

[
dαv ⊗ C, dαv ⊗ C

]

=
[∼
hL, dαv ⊗ C

]
+

1
4

[
dαv ⊗ C, dαv ⊗ C

]

(2.2.7)
= d∼

hL

dαv ⊗ C − dαv ∧ [∼
hL, C

]

+
1
4

d dαv⊗C dαv ⊗ C − 1
4

dαv ∧ [
dαv ⊗ C, C

]
= 0.

Thus (M, E) is a locally Minkowski–type manifold with respect to L − 1
2 wα. The

converse is similar.

Corollary 4. A Finsler manifold is conformal to a locally Minkowski manifold if and
only if for a smooth function α on M , it is a locally Minkowski–type manifold with
respect to 1

2 wα.
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Corollary 5. Following diagram is commutative.

Wagner−type
Ω L=0−−−−−−−→ Locally Minkowski−type

w.r.t L w.r.t L
| ↑ ↑ |
ϕ ϕ−1 ϕ−1 ϕ
↓ | | ↓

Wagner−type
Ω(L+ 1

2 wα)=0

−−−−−−−→ Locally Minkowski−type
w.r.t L + 1

2wα w.r.t L + 1
2wα

where ϕ := exp ◦ αv is the scale function of a conformal change.
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