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Abstract. The points of the affine coordinate plane A(K) are identified
with the elements of the ring K[α] = {x + αy | x, y ∈ K2}, where −α
is a root of a polynomial of second degree over the field K of odd order.
Depending on the choice of that polynomial we introduce the induced or-
thogonality of lines in A(K). The matrix formed of generalized reflections
of A(K) are given. Finally, we show that generalized reflections of A(K)
have entirely analogous properties to the ones of the reflections of the
Euclidean plane.
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1 Introduction

Let K be a field. A point is defined as any ordered pair (x, y) ∈ K2. A line is defined as
a set of the points of the form

{
(x, y) ∈ K2 | y = kx + l

}
or

{
(x0, y) ∈ K2 | y ∈ K

}
,

where k, l, x0 are fixed elements of K. The line of the form
{
(x, y) ∈ K2 | y = kx + l

}
will be called ”the line y = kx + l”, and the line of the form

{
(x0, y) ∈ K2 | y ∈ K

}
will be called ”the line x = x0”.

Let G be the set of all lines. We shall say that a point P ∈ K2 is incident to a line
g ∈ G if P ∈ g. The incidence structure A(K) := (K2,G,∈) will be called the affine
coordinate plane over K. From now on, suppose K is a field of odd order.

Let λ(x) = x2−ex−f ∈ K[x] be a polynomial with the discriminant ∆ = e2+4f 6=
0.

The points of A(K) can be identified with the elements of the ring K[α] = {x+αy |
x, y ∈ K}, where K[α] ∼= K[x]/(λ(x)) and −α is a root of a polynomial λ(x) (α /∈ K).
So, we identify the element x + αy of K[α] with the point (x, y).

Moreover, we define the squared length of the vector z = (x, y) ∈ K[α] by
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d(2)((x, y)) = ‖(x, y)‖2 = ‖z‖2 := zz = (x + αy)(x + βy),

where −α and −β are the roots of λ(x) and z = x + βy is the conjugated vector of
z = x + αy. It is easy to show that

d(2)((x, y)) = ‖(x, y)‖2 = ‖z‖2 = zz = x2 − exy − fy2.

The squared distance of the points z1 = x1 + αy1 and z2 = x2 + αy2 is defined by

d(2)(z1, z2) = d(2)((x1, y1), (x2, y2)) = ‖z2 − z1‖2 =

= (x2 − x1)2 − e(x2 − x1)(y2 − y1)− f(y2 − y1)2.

The automorphisms of A(K) preserving the squared distance of any two points are
called isometries.

From now on, we suppose that the coefficients of λ(x) = x2 − ex − f are the
elements of the prime subfield of the field K.

The matrix and the vector forms of isometries of A(K) = AG(2, q), where K is
the finite field GF (q), are given in [2]. It can be shown that the following theorem,
proven in [2] for the finite field K, holds for an arbitrary field K.

Theorem 1. An automorphism of A(K) is an isometry if and only if for each (x, y) ∈
K[α] its matrix form is one of the following

(x, y) → (x, y)
[

k l
fl k − el

]
+ (r, s)(1.1)

or

(x, y) → (x, y)
[

k l
−fl − ek −k

]
+ (r, s),(1.2)

where r, s, k, l ∈ K, satisfying k2 − ekl − fl2 = 1.

It is obvious that all isometries of A(K) form the subgroup I(A(K)) of the group
of all automorphisms of A(K). An isometry different from the identity and fixes all
the points belonging to some line (the axis) will be called the generalized reflection
of A(K). Also, an isometry of the form (1.1) will be called the generalized rotation
of A(K), and it can be easily proven that all generalized rotations of A(K) form a
subgroup of I(A(K)).

From Theorem 1 it easily follows that the group I(A(K)) is a semidirect product
of subgroups T and (I(A(K)))0, where T is a group of all translations (x, y) 7→
(x + r, y + s) of A(K) and (I(A(K)))0 is the stabilizer of the point 0 = (0, 0).

Theorem 1 leads to the following characterization of the group (I(A(K)))0.

Corollary 2. The group (I(A(K)))0 consists exactly of mappings

(x, y) → (x, y)
[

k l
fl k − el

]
(1.3)

or

(x, y) → (x, y)
[

k l
−fl − ek −k

]
,(1.4)

where k, l ∈ K, satisfying k2 − ekl − fl2 = 1.
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2 Generalized orthogonality

Let K be a field of odd order.
The squared length of the vector u = (x1, x2) of K2 is defined by

d(2)(u) = Q(u) = a11x
2
1 + 2a12x1x2 + a22x

2
2,

where Q is a quadratic form Q : K2 → K. The corresponding polar bilinear (sym-
metric) form f : K2 ×K2 → K is defined by

f(u, v) =
1
2
[Q(u + v)−Q(u)−Q(v)],

where u = (x1, x2), v = (y1, y2) and u + v = (x1 + y1, x2 + y2). We obtain

f(u, v) = a11x1y1 + a12(x1y2 + x2y1) + a22x2y2

and f(u, u) = Q(u).
We say that the vectors u, v ∈ K2 are f−orthogonal if f(u, v) = 0. In this case,

we write u⊥v.
Let p1, p2 be the lines of A(K) containing the point S ≡ (xS , yS) and let Mi ≡

(xi, yi) 6= S be arbitrary points from pi, where i = 1, 2. Hence,
−−→
SMi ≡ (xi−xS , yi−yS),

for i = 1, 2. We say that the lines p1, p2 are f−orthogonal if f(
−−→
SM1,

−−→
SM2) = 0.

Proposition 3. If p1 ≡ y − yS = k1(x− xS) and p2 ≡ y − yS = k2(x− xS), then

f(
−−→
SM1,

−−→
SM2) = 0 ⇔ a11 + a12(k1 + k2) + a22k1k2 = 0.(2.1)

Proof. Note that

f(
−−→
SM1,

−−→
SM2) = a11(x1 − xS)(x2 − xS) + a12[(x1 − xS)k2(x2 − xS) +

+ (x2 − xS)k1(x1 − xS)] + a22k1k2(x1 − xS)(x2 − xS) =
= (x1 − xS)(x2 − xS)[a11 + a12(k1 + k2) + a22k1k2].

So, we have f(
−−→
SM1,

−−→
SM2) = 0 if and only if a11 + a12(k1 + k2) + a22k1k2 = 0.

In this way the ”condition of the orthogonality” (2.1) is obtained. I◦. t can be easily
proven that the condition of orthogonality of the lines p1 ≡ y − yS = k1(x− xS) and
p2 ≡ x = xS is a12 + a22k1 = 0. Furthermore, we find the lines y = y0 and x = x0

to be f−orthogonal if and only if a12 = 0. I◦. n this paper we consider the case
when the points of A(K) ≡ K[α] are u = (x1, x2) = z = x1 + x2α, where −α is
a root of polynomial λ(x) = x2 − ex − f ∈ K[x] (e2 + 4f 6= 0). Therefore we have
d(2)(u) = Q(u) = ‖z‖2 = x2

1 − ex1x2 − fx2
2. If λ(x) is an irreducible polynomial over

the field K, then d(2) = Q is the squared Euclidean length, since kerQ = {0}. If λ(x)
is a reducible polynomial over K, then kerQ consists of two different lines from A(K)
and d(2) = Q is the squared Minkowskian length. For both cases, the condition of the
orthogonality is

p1⊥p2 ⇔ 1− e

2
(k1 + k2)− fk1k2 = 0.

This is regarded as ”induced orthogonality” in A(K).
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Example 4. a) For all u ∈ A(K), let us take the squared Euclidean length
d(2)(u) = Q(u) = QE(u) = x2

1 + x2
2. The corresponding bilinear form f is

f(u, v) = fE(u, v) = x1y1 +x2y2, where u = (x1, x2) and v = (y1, y2). Note that
this is the standard scalar product by coordinates. In this case, the condition of
the orthogonality is p1⊥p2 ⇔ k1k2 = −1 which is well known for the real affine
coordinate plane.

b) For all u ∈ A(K), let us take the squared Minkowskian length d(2)(u) = Q(u) =
QM (u) = x2

1 − x2
2. The corresponding bilinear form f is f(u, v) = fM (u, v) =

x1y1 − x2y2. The condition of the orthogonality is p1⊥p2 ⇔ k1k2 = 1.

3 Generalized reflections of A(K)

Our intention is to find all generalized reflections of A(K) and to establish their
properties.

Theorem 5. An isometry of A(K) is a generalized reflection if and only if for each
(x, y) ∈ K[α] it is an involution of the form

(2) (x, y) → (x, y)
[

k l
−fl − ek −k

]
+ (r, s),

where r, s, k, l ∈ K, satisfying k2 − ekl − fl2 = 1.

Proof. Suppose A =
[

k l
−fl − ek −k

]
and (k, l) 6= (1, 0).

If ω is an involution of the form (1.2), i.e. ω((x, y)) = (x, y)A + (r, s), we obtain
(1 − k)s + lr = 0. Also, by Theorem 1, ω is an isometry. From (x, y)A + (r, s) =
(x, y) follows that the isometry ω fixes all the points of some line in A(K). In case
(k, l) = (−1, 0) this line is ey = 2x− r, otherwise the line is (k + 1)y = lx + s (we use
(1− k)s + lr = 0). Hence, ω is a generalized reflection.
To prove the reverse, suppose ω1 is a generalized reflection. Since ω1 is an isometry,
by Theorem 1, ω1 has the form (1.1) or (1.2). It can be obtained that isometries of the
form (1.1) (rotations), which are different from identity, fix only one single point of
A(K). So we can conclude ω1 is of the form (1.2), i.e. ω1((x, y)) = (x, y)A+(r, s). Since,
ω1 fixes all the points belonging to some line (axis), then from (x, y)A+(r, s) = (x, y)
follows (1 − k)s + lr = 0. Also, if (k, l) = (−1, 0) the axis is the line ey = 2x − r,
otherwise the axis is the line (k + 1)y = lx + s. It can be verified that ω1 is an
involution (we use (1− k)s + lr = 0).
The proof in the case (k, l) = (1, 0) is similar to the previous proof.

From the proof of Theorem 5, it follows

Proposition 6. Let ω be a generalized reflection of the form (1.2). If (k, l) = (−1, 0)
the corresponding axis is the line ey = 2x−r, otherwise the axis is the line (1+k)y =
lx + s.

A◦. ll the properties of the generalized reflections of A(K) are entirely analogous
to the properties of reflections of the Euclidean plane. Here the orthogonality is the
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”induced orthogonality”.
For example, if we take the generalized reflection (x, y) → (x, y)A + (r, s), where

A =
[

k l
−fl − ek −k

]
and (k, l) 6= (±1, 0), then by Proposition 6 and the proof of

Theorem 5, the axis is the line y = l
k+1x+ s

k+1 and r = k−1
l s. Let us denote K1 = l

k+1 .
The axis contains the midpoint of the segment with the end points (x, y)A+(r, s) and
(x, y). The slope of the line containing the point (x, y) and its picture (x, y)A+(r, s),
is

K2 =
lx− (k + 1)y + s

(k − 1)x + (fl − ek)y + k−1
l s

= · · · = l

k − 1
.

It is seen that the condition of orthogonality 1− e
2 (K1 +K2)−fK1K2 = 0 is fulfilled.

4 The elements of (I(A(K)))0

Finally, for some choices of λ(x) = x2− ex− f , we will find the elements of the group
(I(A(K)))0. Also, the Lorentz transformations of A(K) will be obtained.

Corollary 7. Generalized reflections of (I(A(K)))0 are exactly all isometries of the
form

(1.4) (x, y) → (x, y)
[

k l
−fl − ek −k

]

where k, l ∈ K satisfying k2 − ekl − fl2 = 1.

Proof. The claim follows from Theorem 5, since each isometry of the form (1.4) is an
involution.

Corollary 8. If (k, l) = (−1, 0) the axis of the generalized reflection

(x, y) → (x, y)
[

k l
−fl − ek −k

]

is the line ey = 2x, otherwise the axis is the line (1 + k)y = lx, where k, l ∈ K,
satisfying k2 − ekl − fl2 = 1.

Proof. The assertion follows from Corollary7 and Proposition 6.

Isometries of the form (1.3) are the generalized rotations around 0.

Proposition 9. The generalized rotations (around 0) form a subgroup of (I(A(K)))0.
The product of two generalized reflections in lines through 0 is a generalized rotation
(around 0). The product of a generalized rotation (around 0) and a generalized reflec-
tion in a line through 0 is a generalized reflection in a line through 0.

Proof. The assertion is trivial to prove.

Example 10. (A) Let λ(x) = x2 + 1, i.e. d(2)(u) = QE(u) = x2
1 + x2

2, where u =
(x1, x2) ∈ A(K), e = 0 and f = −1.
In this case, isometries of the Euclidean plane A(K) are
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(x, y) → (x, y)
[

k l
−l k

]
+ (r, s)

or

(x, y) → (x, y)
[

k l
l −k

]
+ (r, s),

where k, l, r, s ∈ K, satisfying k2 + l2 = 1. Also, the isometries

(x, y) → (x, y)
[

k l
−l k

]

are the ”Euclidean” rotations around 0 and the isometries

(x, y) → (x, y)
[

k l
l −k

]

are the ”Euclidean” reflections in the lines through 0. If k 6= −1 the correspond-
ing axis is the line y = l

k+1x and if k = −1 the axis is y-axis.

(B) Let λ(x) = x2 − 1, i.e. d(2)(u) = QM (u) = x2
1 − x2

2, where u = (x1, x2) ∈ A(K),
e = 0 and f = 1.
In this case, the elements of (I(A(K)))0 are the Lorentz rotations around 0

(x, y) → (x, y)
[

k l
l k

]

or the Lorentz reflections in the lines through 0

(x, y) → (x, y)
[

k l
−l −k

]
,

where k, l ∈ K, satisfying k2 − l2 = 1. If k 6= −1 the corresponding axis is
y = l

k+1x and if k = −1 the axis is y-axis.I◦. n case of the real affine coordinate
plane A(R), the elements of (I(A(K)))0 are the Lorentz rotations

(x, y) → (x, y)




1

±
√

1− v2

c2

−v

±c
√

1− v2

c2−v

±c
√

1− v2

c2

1

±
√

1− v2

c2




(det = k2 − l2 = 1; where k = 1

±
√

1− v2

c2

, l = −v

±c
√

1− v2

c2

) and the involutions

(x, y) → (x, y)




1

±
√

1− v2

c2

−v

±c
√

1− v2

c2
v

±c
√

1− v2

c2

−1

±
√

1− v2

c2


 ; (det = −1)

which are the Lorentz reflections in the lines y = −v
c±√c2−v2 x.
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