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Abstract. In ([12]), ([8]) the prolongation to Osc2M of Riemannian, Fins-
lerian and Lagrangian structures were introduced. These allow us to con-
struct, in this paper, a Randers, Kropina and Matsumoto space of second
order and also to give the L-dual of these special Finsler spaces of order
two, using Legendre transformation of second order.
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1 Introduction

The L-duality of Finsler and Lagrange spaces was introduced by R. Miron ([10]) and
was intensively studied by others, including the last author of this article.

Concrete cases of Hamiltonians obtained by L-duality methods were also con-
structed. In special the L-duals of some (α, β)-metrics like Randers and Kropina are
quite interesting ([4]), ([5]). Moreover, very recently ([13]) have succeeded to compute
the L-dual of another famous (α, β)-metric, namely the Matsumoto metric. We have,
actually, shown that the L-dual of a Matsumoto metric is a Hamiltonian written by
means of four quadratic forms and a 1-form.

A natural question arises: what are the duals of second order Randers, Kropina
and Matsumoto metrics? In the present paper this is the question we are going to
answer.

By means of the prolongation of a Riemannian metric to second order introduced
by R. Miron ([10]) we define the second order Randers, Kropina and Matsumoto
spaces. Using then the second order Legendre transformation ([9]) we compute the
L-duals of these metrics. The L-duals obtained are the first order Randers, Kropina
and Matsumoto spaces, respectively. Initially we hoped to obtain same second or-
der metrics as the duals of second order Randers, Kropina and Matsumoto metrics,
respectively. The present paper is a kind of rigidity result showing that using the
definitions of the second order (α, β)-metrics and the L-duality defined by (2.12) the
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L-duals of these second order metrics can be only first order (α, β)-metrics. The main
reasons behind the rigidity is the definition (2.12) of L-duality.

The present rigidity results easily extend to the higher-order.

2 The Legendre transformation

Let us consider a Lagrange space of order two ([8]) denoted by L(2)n = (M,L(x, y(1), y(2))),
where L : (x, y(1), y(2)) ∈ T 2M −→ L(x, y(1), y(2)) ∈ R is the fundamental function
and cij is the fundamental metric tensor given by:

cij(x, y(1), y(2)) =
1
2

∂2L

∂y(2)i∂y(2)j
.(2.1)

If M is paracompact manifold, the existence of second order Lagrange spaces, with
positively defined fundamental tensor field is always assured ([8]). In this case, there
is also a Riemannian metric a on M . Then, the Liouville d-vector

z(2)i = y(2)i +
1
2
γi

jky(1)jy(1)k,(2.2)

is globally defined on Ẽ, where

Ẽ = Osc2M\{0} = {(x, y(1), y(2)) ∈ Osc2M |rank‖y(1)i‖ = 1}
and it depends only on the metric a. Here γi

jk are the Christoffel symbols of Rie-
mannian metric a.
The Liouville d-vector z(2)i allows us to construct not only the regular Lagrangian:

L(x, y(1), y(2)) =
1
2
(
aij(x)z(2)iz(2)j

)2
,

but also some others, for example, putting α2 = aij(x)z(2)iz(2)j and β = bi(x)z(2)i a
differential linear function in z(2)i. This is the Prolongation of a Riemannian metric
to Osc2M , introduced by R. Miron in ([10]).

It is known, ([9]), a Finsler space of order two F (2)n = (M,F (x, y(1), y(2))) is a
Lagrange space of second order L(2)n = (M, L(x, y(1), y(2))) with

L(x, y(1), y(2)) = F 2(x, y(1), y(2)),(2.3)

having the fundamental function F positively, 2-homogeneous with respect to y(2)i,
the fundamental tensor cij positively defined. In this way, we can define an (α, β)
Finsler spaces of order two as follows:

1. a Randers space of second order having the fundamental function:

F (x, y(1), y(2)) = α(x, y(1), y(2)) + β(x, y(1), y(2)),(2.4)

2. a Kropina space of order two with fundamental function:

F (x, y(1), y(2)) =
α2(x, y(1), y(2))
β(x, y(1), y(2))

,(2.5)
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3. a Matsumoto space of order two with:

F (x, y(1), y(2)) =
α2(x, y(1), y(2))

α(x, y(1), y(2))− β(x, y(1), y(2))
.(2.6)

The fundamental function is called, like in classical case, an (α, β)-metric if F is
homogeneous of α and β of degree two.

Let us consider a Hamilton space of order two H(2)n = (M,H(x, y, p)) with the
regular Hamiltonian H : T ∗2M −→ R, differentiable on ˜T ∗2M and continuous on
the zero section of the projection π∗2 : T ∗2M −→ M , having the fundamental tensor
field:

gij(x, y, p) =
1
2

∂2H

∂pi∂pj
,(2.7)

with constant signature on the manifold T ∗2M .
Let C(2)n = (M, K(x, y, p)) be a Cartan space of order two. From ([12]) is known,
that is a Hamilton space of second order H(2)n for which the fundamental function
H(x, y, p) is 2-homogeneous with respect to momenta pi and

H(x, y, p) = K2(x, y, p).(2.8)

Proposition 1.1 ([12]) For any Cartan space of order two we have:

1. The components gij(x, y, p) of the fundamental tensor are 0-homogeneous with
respect to pi.

2.

1
2

∂K2

∂pi
= gijpj ,(2.9)

3.

gij(x, y, p)pipj = K2(x, y, p),(2.10)

4.

piC
ijk = 0, Cijk = −1

4
∂3K2

∂pi∂pj∂pk
.(2.11)

Let gij(x, y, p) be the covariant tensor of gij(x, y, p) .
A point (x, y(1), y(2)) of the manifold T 2M will be denoted by (y(0), y(1), y(2)) and its
coordinates by (y(0)i, y(1)i, y(2)i) ([9]).

For a Lagrange space of order two, one can consider ([12]) a local diffeomorphism
ϕ : T 2M −→ T ∗2M which preserves the fibers, in the following:
Proposition 1.2 ([12]) If L is a fundamental function of a Lagrange space of order
two, L(2)n, then, the following mapping:

ϕ : (y(0), y(1), y(2)) ∈ ˜T 2M −→ (x, y, p) ∈ ˜T ∗2M,(2.12)
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given by:

xi = y(0)i, yi = y(1)i, pi =
1
2

∂2L

∂y(2)i
,

is a local diffeomorphism which preserves the fibers.

This local diffeomorphism is called the Legendre transformation of
second order.
It is also known, ([12]),

pi =
1
2

∂2L

∂y(2)i
= ϕi(y(0), y(1), y(2)),

and ϕi is a d-covector field on L(2)n.
The inverse local diffeomorphism ξ = ϕ−1 is given by:

y(0)i = xi, y(1)i = yi, y(2)i = ξi(x, y, p).

The mappings ϕ and ξ satisfy the conditions:

ξ ◦ ϕ = 1Ǔ , ϕ ◦ ξ = 1Û , Ǔ = (π2)−1(U), Û = (π∗2)−1(U), U ⊂ M.

The following identities hold good:

cij(y(0), y(1), y(2)) =
∂ϕi

∂y(2)j
, cij(x, y, ξ(x, y, p)) =

∂ξi

∂pj
,

and

∂ϕi

∂xj
= −cis

∂ξs

∂xj
;

∂ϕi

∂yj
= −cis

∂ξs

∂yj
;

∂ϕi

∂y(2)j
= cij ;

∂ξi

∂xj
= −cis ∂ϕs

∂xj
;

∂ξi

∂yj
= −cis ∂ϕs

∂yj
;

∂ξi

∂pj
= cij .

By means of the mapping ϕ, ([12]) a regular Lagrangian L(y(0), y(1), y(2)) is trans-
formed into a regular Hamiltonian. Notice that y(2)i = ξi(x, y, p) is not a vector field.
Therefore, the product piξ

i(x, y, p) is not a scalar field as in the classical case of the
Hamiltonian space H(1)n = (M, H(x, p)).
Still, the Liouville d-vector in T 2M :

z(2)i = y(2)i +
1
2
γi

jky(1)jy(1)k.

is transformed by ϕ in the following d-vector field on T ∗2M :

ž(2)i = ξi(x, y, p) +
1
2
γi

jky(1)jy(1)k,(2.13)
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Theorem 1.1 ([12]) The Hamiltonian

H(x, y, p) = 2piž
(2)i − L(x, y, ξ(x, y, p))(2.14)

is the fundamental function of the Hamiltonian space H(2)n and its fundamental ten-
sor field cij(x, y, ξ(x, y, p)) is the contravariant of the fundamental tensor field cij of
the space L(2)n = (M, L).

This space, H(2)n = (M, H) is called the dual of the space L(2)n = (M, L).
In addition, ([12]),

1
2

∂H

∂pi
= ž(2)i,(2.15)

and

gij(x, y, p) =
1
2

∂2H

∂pi∂pj
=

∂ž(2)j

∂pi
=

∂ξj

∂pi
= cij(x, y, ξ(x, y, p)).(2.16)

Moreover, for a Cartan space of order two C(2)n = (M, K(x, y, p)) and a Finsler space
of order two F (2)n = (M,F (x, y(1), ξ(x, y, p))), using the property of homogeneity of
K2 and F 2 with respect to momenta pi, respective y(pi), from Proposition 1.1, we
have:

K2 = 2piž
(2)i − F 2 = pi

∂K2

∂pi
= 2gijpipj − F 2 = 2K2 − F 2,

i.e.

K2(x, y, p) = F 2(x, y(1), ξ(x, y, p))(2.17)

3 The L-dual of an (α, β) space of order two

Let F (2)n = (M, F ) be an (α, β)-metric Finsler space of second order defined as above,
with α2 = aij(x)z(2)iz(2)j and β = bi(x)z(2)i and z(2)i from (2.2).
Inspired by ([14]), let us choose:

zi =
1
2

∂F 2

∂z(2)i
, li =

1
α

aijz
(2)j =

1
α

zi, li = aij lj ,

bi = aijbj , di = bi + li, hij = aij − lilj ,

where hij is the angular metric tensor of the space (M,aij) .
We also choose like in ([12]):

pi = aijpj , α∗ = pip
i = aijpipj , β∗ = bip

i

Theorem 2.1 Let (M, F ) be a Randers space of order two and b = (aijb
ibj)

1
2 the

Riemannian length of bi. Then:
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1. If b2 = 1, the L-dual of (M, F ) is a Kropina space on T ∗M with:

H(x, p) =
1
2

(
aijpipj

2bipi

)2

.(3.1)

2. If b2 6= 1, the L-dual of (M, F ) is a Randers space on T ∗M with:

H(x, p) =
1
2

(√
ãijpipj ± b̃ipi

)2

,(3.2)

where

ãij =
1

1− b2
aij +

1
(1− b2)2

bibj ; b̃i =
1

1− b2
bi,

(in (3.2) ′−′ corresponds to b2 < 1 and ′+′ corresponds to b2 > 1).

Proof: By using the Theorem 1.1, the fundamental tensor field rij of space H(2)n

is the contravariant of the fundamental tensor field rij of the space F (2)n. Therefore,
we have to find the fundamental and its contravariant tensor field of F (2)n. Now,
inspired by ([14]), using the same model, we find for F = α + β:

rij =
α + β

α
hij + didj ,(3.3)

and

rij =
α

α + β
aij − α2

(α + β)2
(bilj + bj li) +

α2(αb2 + β)
(α + β)3

lilj .(3.4)

¿From Proposition 1.1 we know that rij(x, y, p)pipj = K2(x, y, p). So, we compute
rijpipj and we find:

K2 =
α

F
− 2αβ∗ + Fα(b2 − 1) + F 2.

Using now formula (2.2), we find, like in classical case C(1)n = (M,K) ([12]):

F 2(b2 − 1)− 2β∗F + α2∗ = 0,

and for b2 = 1 we get F = α2∗
2β∗ and b2 6= 1

(
F − β∗

b2 − 1

)2

=
β∗

(b2 − 1)2
− α∗

b2 − 1

which means:

F =
β∗

b2 − 1
±

√
β∗

(b2 − 1)2
− α∗

b2 − 1
.

Setting now, for first case b̃i = 2bi we get statement 1, and for the second case
b̃i = 1

b2−1bi, ãij = 1
1−b2 aij + 1

(1−b2)2 bibj we get 2.
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Remark: One can prove Theorem 2.1 in the same as in the classical case C(1)n =
(M, K), namely:

pi =
1
2

∂F 2

∂y(2)i
= F

(aijz
(2)j

α
+ bi

)
,(3.5)

ξi =
α

F
aij(pj − Fbj)− 1

2
γi

jky(1)jy(1)k,(3.6)

ž(2)i =
α

F
aij(pj − Fbj).(3.7)

Now, contracting in (3.5) by pi and bi we get:

α∗ = F
(F 2

α
+ β∗

)
,(3.8)

β∗ = F
(β

α
+ b2

)
.(3.9)

Therefore,

β∗ = F
(F

α
+ b2 − 1

)
.(3.10)

For (3.8) and (3.9) by substitution, like in case C(1)n = (M,K), ([12]), for b2 = 1 we
get F = α2∗

2β∗ and for b2 6= 1

(
F +

β∗

1− b2

)2

=
β∗

(1− b2)2
+

α∗

1− b2
,

proving in this way our theorem.

In other words, using α∗ and β∗ the Theorem 2.1 can be written:

Remark 2.1 ([13]) Let (M,F ) be a Randers space of order two and b = (aijb
ibj)

1
2

the Riemannian length of bi. Then:

1. If b2 = 1, the L-dual of (M, F ) is a Kropina space on T ∗M with:

H(x, p) =
1
2

(
α∗2

2β∗

)2

.(3.11)

2. If b2 6= 1, the L-dual of (M, F ) is a Randers space on T ∗M with:

H(x, p) =
1
2

(
α∗ ± β∗

)2

,(3.12)

with α∗ =
√

ãij(x)pipj and β∗ = b̃ipi where

ãij =
1

1− b2
aij +

1
(1− b2)2

bibj ; b̃i =
1

1− b2
bi,

(in (3.12) ′−′ corresponds to b2 < 1 and ′+′ corresponds to b2 > 1).
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Remarks:

1. The L-dual of a Randers space of order two is a Kropina space (for b2 = 1) and
a Randers space (for b2 6= 1), both in T ∗M .

2. It is known that a Randers space F = α + β is positively defined if and only if
b2 < 1 or aij − bibj is positively defined, where b2 = aijbibj ([1]).
In ([2]), it has been proved that the above condition is necessary and sufficient
for the Randers space to have the fundamental tensor positively defined. We are
going to use the same techniques to prove the same result for a Randers space
of order two.
Proposition 2.1 A Randers metric of second order F = α + β is positive-
valued for any z(2) if and only if the length b of bi with respect to α is less than
1 or aij − bibj is positively defined, provided aij is positively defined.

Proof. The proof is the same as in case of Randers space of first order ([1]).

3. The condition ‖b‖ < 1, which guarantees the positivity of F , also ensures the
strong convexity.

4. The L-dual of a strongly convex Randers space of order two is also a strongly
convex Randers space ([14]).

5. The L-dual of a dual of a Randers space of second order
(M, F =

√
aijz(2)iz(2)j + biz

(2)i) is:
a) If b2 = 1, a Randers space of second order on T 2M having the fundamental
function:

F (x, y(1), y(2)) = b̃iz
(2)i ±

√
ãij(x)z(2)iz(2)j ,(3.13)

where b̃i = 2bi and ãij = 4aij .
b) If b2 6= 1, a Randers space of second order with the fundamental function:

F (x, y(1), y(2)) =
√

ãij(x)z(2)iz(2)j ± b̃iz
(2)i,(3.14)

where ãij = 2aij |b2 − 1|+ (
2b2−3
2|b2−1|

)2
bibj and b̃i = 2b2−3

2|b2−1|bi ,
where |a| means the absolute value of number a.
(in (3.14) ’+’ corresponds to b2 > 1 and ’-’ corresponds to b2 < 1).
This last remark can be proved in the same as the classical case
C(1)n = (M, K) knowing that ([12]) z(2)i = 1

2
∂H
∂pi

.

Theorem 2.2 The L-dual of a Kropina space of order two is a Randers space on
T ∗M with the Hamiltonian:

H(x, p) =
1
2

(√
ãijpipj ± b̃ipi

)2

,(3.15)

where

ãij =
b2

4
aij ; b̃i =

1
2
bi,



The L-dual of an (α, β) Finsler space 93

(in (3.15) ′−′ corresponds to β < 0 and ′+′ corresponds to β > 0).

Proof: We prove this theorem by using Theorem 1.1. For F = α2

β like in ([14])
the covariant tensor and its contravariant tensor for F (2)n:

kij = 2
α2

β2
hij +

3α2(2β2 − α2)
β4

lilj + 3
α4

β4
didj − 3

α3(α + 4β)
β4

(bilj + bj li),(3.16)

and

kij =
1
2

β2

α2
aij − 1

2b2

β2

α2
bibj +

1
b2

(bilj + bj lj)− β2

α2

(β2

α2

2
b2
− 1

)
lilj .(3.17)

Contracting (3.17) by pipj we get:

4F 2 − 4Fβ∗ + β∗2 = α∗2b2,

i.e.

(2F − β∗)2 = α∗2,

and

F =
1
2
(β∗ ± α∗b).

Setting now aij = b2

4 aij and b̃i = 1
2bi, we easily get (3.15).

Remark: Another way of proving this result is by finding:

pi =
1
2

∂F 2

∂y(2)i
=

F

β
(aijz

(2)j − Fbi),(3.18)

ξi =
1
2
aij(pj

1
F

+ Fbj)− 1
2
γi

jky(1)jy(1)k,(3.19)

ž(2)i =
1
2
aij(

1
F

pj + Fbj).(3.20)

Contracting now in (3.18) by pi and bi we get:

α∗2 =
F 2

β
(2F − β∗),(3.21)

β∗ =
F

β
(2β − Fb2).(3.22)

After a simple computation, we obtain, like in the previous case, (2F − β∗)2 = α∗2

and (3.15).

Using again α∗ and β∗ Theorem 2.2 becomes:
Remark 2.2 ([13]) The L-dual of a Kropina space of order two is a Randers space
on T ∗M with the Hamiltonian:
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H(x, p) =
1
2

(
α∗ ± β∗

)2

,(3.23)

with α∗ =
√

ãij(x)pipj and β∗ = b̃ipi where

ãij =
b2

4
aij ; b̃i =

1
2
bi,

(in (3.23) ′−′ corresponds to β < 0 and ′+′ corresponds to β > 0).

Remarks:

1. The L-dual of a Kropina space of order two is a Randers space in T ∗M .

2. The L-dual of a dual of a Kropina space of second order
(

M, F = aijz(2)iz(2)j

biz(2)i

)

is a Kropina space of second order having the fundamental function:

F = ± 8
b2

aijz
(2)iz(2)j

biz(2)i
,(3.24)

(in (3.24) ’+’ corresponds to β > 0 and ’-’ corresponds to β < 0).
This last remark can be proved in the same as the classical case
C(1)n = (M, K) knowing that ([12]) z(2)i = 1

2
∂H
∂pi

.

Theorem 2.3 Let (M, F ) be a Matsumoto space of order two and b = (aijb
ibj)

1
2 the

Riemannian length of bi. Then

1. If b2 = 1, the L-dual of (M, F ) is the space having the fundamental function:

H(x, p) =
1
2

(
−bipi

2

(
3
√

aijpipj + 3
√(

bipi +
√

ãijpipj

)2
)3

aijpipj +
(
bipi +

√
ãijpipj

)2

)2

,(3.25)

where

ãij = bibj − aij .

2. If b2 6= 1, the L-dual of (M,F ) is the space on T ∗M having the fundamental
function:

H(x, p) =
1
2

(
−bipi

200

25
(
2
√

dij
2 pipj +

√
dij
4 pipj

)2

+ dij
8 pipj

√
dij
2 pipj

√
dij
4 pipj + dij

9 pipj

)2

,(3.26)

where
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cij
1 = (bibj + 2ε1a

ij)2 + (2aij)2ε3,

cij
2 = aij(θ2

4b
ibj + aijε2),

cij
3 = (2aij)2θ3

5,

3
√

ãij
2

= 3
√

cij
1 − 2 3

√
cij
2 + 3

√
cij
3 ,

dij
1 = dij

3 + 4m(aijb2 − bibj),

dij
2 =

√
dij
3 aij + 4

√
dij
1 aij − dij

3 ,

dij
3 = 2 3

√
2aij(ãij)2,√

dij
4 =

√
dij
3 + 3

√
aij ,

√
dij
5 =

√
dij
3 aij ,

dij
6 = dij

1 aij ,√
dij
7 = 2

√
dij
2 +

√
dij
4 ,

dij
8 = 200

(√
dij
6 + 2naij

)
− 5

(
4
√

dij
3 +

√
dij
4

)
,

dij
9 = 4

√
dij
6 + 4aijp + 9

√
dij
5 ,

and

m = 1− b2,

n =
20b2 − 29

29
,

p =
1− 2b2

2
,

θ1 = −712b6 − 452b4 + 24b2 + 1
1728

,

θ2 =
576b4 − 2232b2 + 2628

1728
,

θ3 = −
(

8b2 + 1
12

)2

,

θ4 =
2b2 + 1

6
,

θ5 =
11b2 + 1

12
,

ε1 = 2(θ2
4 − θ2),

ε2 = 3θ3θ
2
4 + θ2

2,

ε3 = 4ε2 − 2θ1 − ε1.

Proof: Let us prove this theorem in the same way as the classical case. So, we have:
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pi =
1
2

∂F 2

∂y(2)i
= F

aijz
(2)j(α− 2β) + α2bi

(α− β)2
,(3.27)

ξi =
1

α− 2β
aij

( (α− 2β)2

F
pj + α2bj

)
− 1

2
γi

jky(1)jy(1)k,(3.28)

ž(2)i =
1

α− 2β
aij

( (α− 2β)2

F
pj + α2bj

)
.(3.29)

Contracting now in (3.27) by pi and bi and setting s = β
α ([15]) we get:

α?2 = F 2 1− 2s

(1− s)3
+ F

1
(1− s)2

β?(3.30)

β? = Fs
1− 2s

(1− s)2
+ F

1
(1− s)2

b2.

Now we put 1− s = t, i.e. s = 1− t and both equations become:

α?2 = F 2 2t− 1
t3

+ F
1
t2

β?(3.31)

β? = F (1− t)
2t− 1

t2
+ F

1
t2

b2.(3.32)

We get

β∗t2 = M(−2t2 + 3t + b2 − 1).(3.33)

For b2 = 1 from (3.32) we obtain:

F = − β∗t
2t− 3

(3.34)

and by substitution of F in (3.32), after some computations we get a cubic equation:

t3 − 3t +
9
4
t− β?

2α?2
= 0.(3.35)

Using Cardano’s method for solving cubic equation ([16]), we get:

F = −β?

2
(2P − 1)2

3P 2 + (P − 1)2
,(3.36)

where for P we have:

P =
1
2

3

√√√√
(

β? +
√

β?2 − α?2

α?

)2

.(3.37)

After some computations, for F we get:

F = −β?

2

(
3
√

α?2 + 3

√
(β? +

√
β?2 − α?2)2

)3

α?2 + (β? +
√

β?2 − α?2)2
.(3.38)
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Substituting now β∗ = bipi and α∗2 = pip
i = aijpipj we can easily get (3.25).

If b2 6= 1 (3.34) is more complicated because:

F =
β∗t2

−2t2 + 3t + b2 − 1
,(3.39)

and by substituting this in (3.31) we obtain the quadric equation:

t4 − 3t3 + t2
13− 4b2

4
+ t

6α∗2(b2 − 1)
4α∗2

+
α∗2(b2 − 1)2 + β∗2(1− b2)

4α∗2
= 0.(3.40)

After a quite long computation, formula (3.40) becomes a cubic equation and solving
it we get:

F = −β∗

2

((√
−A2 + 3A + 2

√
A2 + m

(
b2 − β∗2

α∗2

)
+

A

2
+

3
4

)2

+

√
A2 + m

(
b2 − β∗2

α∗2

)
− 5

4

(
A +

3
10

)2

+ n

)
/

/

((3
2

+ 2A
)
(

√
−A2 + 3A + 2

√
A2 + m

(
b2 − β∗2

α∗2

)

+ 2

√
A2 + m

(
b2 − β∗2

α∗2

)
+

9
2
A + p

)
,(3.41)

where

A2 = 3

√(1
2

β∗2

α∗2
+ ε1

)2

+ ε3 + 3

√
−4

(
θ3
4

β∗2

α∗2
+ ε2

)
+ θ5.(3.42)

By substituting now β∗ = bipi and α∗2 = pip
i = aijpipj , after some computations,

we obtain (3.26).

Using now α∗ and β∗ the Theorem 2.3 becomes:
Remark 2.3 Let (M, F ) be a Matsumoto space of second order and b = (aijb

ibj)
1
2

the Riemannian length of bi. Then

1. If b2 = 1, the L-dual of (M, F ) is the space having the fundamental function:

H(x, p) =
1
2

(
−β?

2

(
3
√

α?2 + 3
√(

β? +
√

β?2 − α?2
)2

)3

α?2 + (β? +
√

β?2 − α?2)2

)2

.(3.43)

with α∗ =
√

ãij(x)pipj and β∗ = bipi where

ãij = bibj − aij .

2. If b2 6= 1, the L-dual of (M,F ) is the space on T ∗M having the fundamental
function:
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H(x, p) =
1
2

(
− β∗

200
25

(
2α∗2 + α∗4

)2 +
(
α∗8

)2

α∗2α
∗
4 +

(
α∗9

)2

)2

,(3.44)

where

α∗2 =
√

dij
2 pipj , α∗4 =

√
dij
4 pipj ,

α∗8 =
√

dij
8 pipj , α∗9 =

√
dij
9 pipj .

Remarks:

1. In (3.25) ãij is positive-definite and the Randers metric on T ∗M
pib

i +
√

pipj ãij is positive-valued for any p.

2. Some of the values for which α∗2, α∗4, α∗8, α∗9 exist are:b2 < 1
2 and aij > 2bibj . Cer-

tainly, there are many other values for b2, aij , bi, bj which justify the existence
of (3.44).

3. The L-dual of a Matsumoto metric of second order is given by means of four
distinct quadratic forms on T ∗M . The coefficients of the quadratic forms are
constructed only from the Riemannian metric, aij and the 1-forms β’s coeffi-
cients bi(x).

4. As dual in T 2M of the above space, the L-dual of a Matsumoto space of second
order (M, F = aijz(2)iz(2)j√

aijz(2)iz(2)j−biz(2)i
), we find the Matsumoto space of second

order with the fundamental function:

F =
ãijz

(2)iz(2)j

√
b2aijz(2)iz(2)j − b̃iz(2)i

,(3.45)

where

b̃i = 4b2bi,

ãij = a2
ijbibj(7 + 8b2)−√aijbi[aij(1 + 2b2)− 12bibj ]

± mij [a2
ijbi(7 + 8b2)−√aij(aij − 12bibj)],

with

mij =
√

bibj − b2aij .

This last remark can be proved in the same as the classical case
C(1)n = (M, K) knowing that ([12]) z(2)i = 1

2
∂H
∂pi

.
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