A characterization of minimal surfaces in S°
with parallel normal vector field

Rodrigo Ristow Montes

Abstract. In this paper we proof that the Holomorphic angle for compact
minimal surfaces in the sphere S® with constant Contact angle and with
a parallel normal vector field must be constant.
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1 Introduction

The notion of Kéhler angle was introduced by Chern and Wolfson in [3] and [12]; it is
a fundamental invariant for minimal surfaces in complex manifolds. Using the tech-
nique of moving frames, Wolfson obtained equations for the Laplacian and Gaussian
curvature for an immersed minimal surface in CP". Later, Kenmotsu in [7], Ohnita in
[10] and Ogata in [11] classified minimal surfaces with constant Gaussian curvature
and constant Kahler angle.

A few years ago, Li in [14] gave a counterexample to the conjecture of Bolton, Jensen
and Rigoli (see [2]), according to which a minimal immersion (non-holomorphic, non
anti-holomorphic, non totally real) of a two-sphere in CP"™ with constant Kéhler angle
would have constant Gaussian curvature.

In [8] we introduced the notion of Contact angle, that can be considered as a new
geometric invariant useful to investigate the geometry of immersed surfaces in S2.
Geometrically, the Contact angle (3) is the complementary angle between the con-
tact distribution and the tangent space of the surface. Also in [8], we deduced formulas
for the Gaussian curvature and the Laplacian of an immersed minimal surface in S,
and we gave a characterization of the Clifford Torus as the only minimal surface in
S3 with constant Contact angle.

We define « to be the angle given by cosa = (ie1, v), where e; and v are defined in
section 2. The Holomorphic angle « is the analogue of the Kéahler angle introduced
by Chern and Wolfson in [3].

Recently, in [9], we construct a family of minimal tori in S® with constant Contact
and Holomorphic angle. These tori are parametrized by the following circle equation
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(1.1) a® + (b—(m.ﬂz> 22%7

1+sin*g (1 + sin” )2
where a and b are given in Section 3 (equation (3.7)). In particular, when a = 0
in (1.1), we recover the examples found by Kenmotsu, in [6]. These examples are
defined for 0 < 3 < 7. Also, when b = 0 in (1.1), we find a new family of minimal
tori in S®, and these tori are defined for £ < 8 < Z. Also, in [9], when 3 = %, we
give an alternative proof of this classification of a Theorem from Blair in [1], and
Yamaguchi, Kon and Miyahara in [13] for Legendrian minimal surfaces in S° with
constant Gaussian curvature.
In this paper, we will classify minimal surfaces in S® with constant Contact angle
and with a parallel normal vector field. We suppose that es (in equation (3.1)) is a
parallel normal vector field, and we get the following

Theorem 1. The Holomorphic angle (0 < o < 3) is constant for compact minimal
surfaces in S° with constant Contact angle B and null principal curvatures a,b

Remark 1. The Theorem 1 implies a more general classification in [9] that gives a
family of minimal flat tori in S° with constant Contact angle and constant Holomor-
phic angle

2 Contact Angle for Immersed Surfaces in S5?"*!
Consider in C™*! the following objects:
e the Hermitian product: (z,w) = Z?:o 2w,

e the inner product: (z,w) = Re(z,w);

e the unit sphere: 52" = {z € C"*!|(z,2) = 1};

the Reeb vector field in S2"+1, given by: £(2) = iz;

the contact distribution in S?"*!, which is orthogonal to &:

A, = {veT.5* (& v) =0}
We observe that A is invariant by the complex structure of C"*1.

Let now S be an immersed orientable surface in S27+1.

Definition 1. The Contact angle 3 is the complementary angle between the contact
distribution A and the tangent space T'S of the surface.

Let (e1,e2) be a local frame of T'S, where e; € T'S N A. Then cos 3 = (£, ea).
Finally, let v be the unit vector in the direction of the orthogonal projection of e5 on
A, defined by the following relation

(2.1) ez = sin v + cos B€.
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3 Equations for Gaussian curvature and Laplacian
of a minimal surface in S°

In this section, we deduce the equations for the Gaussian curvature and for the Lapla-
cian of a minimal surface in S® in terms of the Contact angle and the Holomorphic
angle. Consider the normal vector fields

e3 = 1cscae; —cotau
(31) €4

€5

cot aeq + 7 cscav

csc € — cot Begy

where 5 # 0,7 and a # 0, 7. We will call (e;)1< j<5 an adapted frame.
Using (2.1) and (3.1), we get

(3.2) v = sin fes — cos Bes, v = sin aey — cos aey
& = cos (Beg + sin ey

It follows from (3.1) and (3.2) that

(3.3) iey = cosasin fes + sin aes — cos a cos Ges

ieg = —cos Bz — cosasin (e + sin asin fey
Consider now the dual basis (67) of (e;). The connection forms (9%) are given by
De; = erlﬁ
and the second fundamental form with respect to this frame are given by
I = ¢J0' +00% j=3,..5.

Using (3.3) and differentiating v and £ on the surface S, we get

DE = —cosasinB6%e; + cosasin S0 ey + sin afles + sin asin 30%ey
(3.4) —cos acos 360" es,
Dv = (sin36) — cos 303)e; + cos 3(df — 02)ey + (sin 305 — cos (63 )es

+(sin 802 — cos 303 )ey + sin B(dB + 63)es.

Differentiating es, e4 and es, we have
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R
07 = sin B(da + 0}) — cos Bsin af?
03 = csc 07 — cot (63 4 csc 303)
9:‘;’ = cot 60;’ — csc Bsinab’
Gi = —da — csc ﬁ@g’ + sin « cot 691
@2 — _pl
03 = csc 303 + cot (03 4 csc 303)
63 = cot 305 — sinah?
0 = —cosaf? — cot 305

(3.5) 02 = dB+ cosafd?
02 = —cot 303+ cscBsinab’
03 = —cotp0; +sinab?

The conditions of minimality and of symmetry are equivalent to the following equa-
tions:

(3.6) OPAOT - 02 NO2 =0=07 NO%— 05 NGO

On the surface S, we consider

03 = af' +b6?
It follows from (3.6) that
0} = ab' +00’
05 = bo' —ab?
0! = da+ (bescB —sinacot 3)0' — acsc 36>
(3.7) 03 = daolJ—acscfO — (beseB — sinacot 3)62
02 = dBoJ— cosab?
05 = —dB— cosafd?
where J is the complex structure of S is given by Je; = es and Jey = —e;. Moreover,

the normal connection forms are given by:

Gé = —secfdfBoJ — cotacscfdao.J+ acotacot® 56!
+(bcot acot? B — cos acot B esc § + 2 sec B cos ar)f?
(3.8) 05 = (bcot B —cscBsina)f' — acot 36
0; = cot B(da o J) — acot Bcsc B0 +

(—bcsc B ot f+ sina(cot? B —1))62,
while the Gauss equation is equivalent to the equation:
(3.9) dos +0L no5 = 6 62

Therefore, using equations (3.7) and (3.9), we have
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K = 1—|VB]*—2cosaf —cos?a— (14 csc? B)(a® + b?)
+2bsin a csc 3 cot B + 2sin acot Ba; — |Val?
+2a csc fog — 2bese Bay — sin® accot? B
(3.10) =1—(1+csc?B)(a® +b*) — 2besc flay — sinacot B) + 2a csc Bay

—|VB + cos aey|? — |[Va — sina cot fBe; |?
Using (3.5) and the complex structure of S, we get
(3.11) 03 = tanB(dBo J — 2cosab?)
Differentiating (3.11), we conclude that

doy = (—(1+tan®B)|VB* —tan BAS — 2cos a1l + 2tan® 3)3;
+2tan Bsin aa; — 4 tan? 3 cos? a)f! A 6>

where A = trV? is the Laplacian of S. The Gaussian curvature is therefore given by:

K = —(1+tan?B)|Vf|? —tan BAS — 2cos a(l + 2tan” §) 3y
(3.12) +2tan Bsin aa; — 4 tan? 3 cos? a.

From (3.10) and (3.12), we obtain the following formula for the Laplacian of S:

tan BAB = (14 csc? B)(a® + b?) + 2bcesc B(ay — sin acot 3) — 2a csc Bay
—tan? B(|VB + 2 cos ae; |2 — | cot fVa + sin (1 — cot? B)e;|?)
(3.13) +sin? a1 — tan? 3)

4 Gauss-Codazzi-Ricci equations for a minimal sur-
face in S° with constant Contact angle (3

In this section, we will compute Gauss-Codazzi-Ricci equations for a minimal surface
in S° with constant Contact angle (3.
Using the connection form (3.7) and (3.8) in the Codazzi-Ricci equations, we have

do3 + 03 N0+ 03 N0 +O2N00 = 0O
This implies that

(4.1) (by — a2) + (a® + b?) cot a csc Bcot? B — acot acsc? B + cot? B)ary
+b(cota(csc? B+ cot? B)ay — cos acot B(csc? B+ cot? B — 3sec? B(1 + sin? B)))
— cos a csc B(2(cot B — tan B)ag — sin a(cot? B — 3)) + cot avcse B|[Val? =0

Replacing the following (3.8) in the Codazzi-Ricci equations

dos + 03 NOY+ 03 NO3 + 02 N0 =
doy + 05 NO7 + 05 NO3 +0I N0 =
R N N N
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We get

(a1 4 b2) + beot as + a(cot aag + 6 tan 5 cos o)
(4.2) —2sec Bcosaag =0

Using the connection form (3.8) in the Codazzi-Ricci equations

dos + 0T N0+ 05 NO3+0IN0) =
dos + 03 N0y + 05 A OF + 05 A0
dos + 01 NOS+ 05 NO3+ 02 NOF =

‘We have

(4.3) (ag — b1) — (a® 4+ b*) cot asin B cot? B 4 a cot aary
+b(—cotaa; + 2 cos a(cot 3 — 3tan 3)) + 2 cos asin B(cot B — tan 5)ay
+ sin o cos asin B(5 — cot? B) + sin fAa = 0

Codazzi-Ricci equations

do} + 05 N0+ 05 ANOT+ 02 N0 = 62 NG
doS + 05 N0? + 05 N03 +O3N0F = 0O

give the following equation

(a® +b?)(1 + csc? B) + 2besc B(ag — cot Bsina) — 2a csc fas
+|Val? + 2sin a(tan 8 — cot B)a; — 4tan? B cos® o
(4.4) —sin®a(l —cot? ) =0

The following Codazzi equation is automatically verified

dos + 05 N0+ 03 N03 03005 = O
5 Proof of the Theorem 1

In this section, we will give a proof of the theorem, using Gauss-Codazzi-Ricci
equations for a minimal surface in S° with constant Contact angle and null principal
curvatures a, b.

Suppose that a, b are nulls and the Contact angle ( is constant, then using the Codazzi
equation (4.1), we have

(5.1) cos a(2(cot B — tan B)ay — sin a(cot? B — 3)) — cot a|Val> =0

On the other hand, Codazzi equation (4.3) with a, b nulls and constant Contact angle
implies

(5.2) 2 cos a(cot 3 — tan B)ay + sina cos a5 — cot? 3) + Aa = 0
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Using equations (5.1) and (5.2), we obtain a new Laplacian equation of «
(5.3) Aa = —sin(2a) — cot a|Val?

Now suppose that (0 < a < 7). Using the Hopf’s Lemma, we get the Theorem 1. [J
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